
Configuration Manual

MSc Research Project

MSc in Cloud Computing

Allen Joy
Student ID: 23202351

School of Computing

National College of Ireland

Supervisor: Shaguna Gupta

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Allen Joy

Student ID: 23202351

Programme: MSc in Cloud Computing

Year: 2024

Module: MSc Research Project

Supervisor: Shaguna Gupta

Submission Due Date: 12/12/2024

Project Title: Configuration Manual

Word Count: 943

Page Count: 10

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Allen Joy

Date: 11-12-2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). ✓

Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

✓

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

✓

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Allen Joy
23202351

1 Introduction

The document has the information regarding implementation of project and this doc-
ument mainly focuses on the environment and the libraries used for the same. These
libraries and software help the project to deliver its purpose to the best.

2 AWS

The project is deployed on AWS Cloud, which helps in managing and implementing the
three microservices in an effective manner Services (n.d.).

3 Visual Studio Code

The project is developed on VS Code which is compatible with the project of microservices
(Visual Studio Code, 2023).

4 Node.js

Node.js is a JavaScript runtime built into the Chrome V8 engine that allows developers
to execute JavaScript on the server side Introduction to Node.js (n.d.). Due to its non-
blocking, event-oriented processing, it is widely used to create scalable, fast and efficient
web applications.

5 Summary Version Table

Software Name Version Download Link
Node.js 18 https://nodejs.org/en/blog/release/v18.20.2
Visual Studio Code October 2023 (v1.84) https://code.visualstudio.com/updates/v1.84

Table 1: Software Details

1



Library Name Version Purpose Install Com-
mand

Express 4.17.1 To set up REST API npm install

express

CORS 2.8.5 To allow cross-origin requests npm install

cors

Day.js 1.11.13 For date management npm install

dayjs

Jaeger-Client 3.19.0 To track application traces npm install

jaeger-client

Prom-Client 15.1.3 To generate Prometheus met-
rics

npm install

prom-client

Mongoose 8.5.2 Object Data Modeling (ODM)
for MongoDB

npm install

mongoose

Table 2: Library Details

6 Deployment in AWS

Log in to the AWS Management Console,then Go to the AWS Management Console
and log in with your AWS credentials and Launch an Instance, then in the search bar,
type ”EC2” and select the EC2 service, and Click on the ”Launch Instance” button.
select the operating system that is Amazon Linux, then choose an Instance Type that is
”t2.medium” from the list shown in the instance types, which provides a good balance of
CPU and memory for many general-purpose workloads.

To connect to an EC2 choose a Keypair.

2



Connect to the EC2 using SSH

Connect to the EC2 using SSH

Install Docker

Copy the project folder inside the ec2 from the system.

Go to the copied folder and spin up the containers using docker-compose

Then go to the ec2’s security groups and open these ports, 9090, 3000, 9273, 8001 and
16686 etc. so that our applications can be accessed from the browser.

3



7 Implementation of Tools

7.1 Prometheus:

Step 1 Prometheus Container Run

Step 2 Setup prometheus configuration file. prometheus.yml, we write the endpoints
from which to scrape metrices here in this file.

Step 3 Defining custom metrices.

4



7.2 Telegraf:

Step 1 Run telegraf as container. snippet from docker-compose file

Step 2 Create Telegraf.conf config file of Telegraf. Telegraf collects metrices from the
exposed endpoitns and send to Prometheus

5



7.3 Jaeger:

Step 1 Install packages

Step 2 Running Jaeger as container.

Step 3 Using the tracer create span and using span inject custom traces to Jaeger.

6



7.4 Grafana:

Step 1 Run grafana container

Step 2 Go to datasources and add new datasource

Step 3 Type in the query and choose the visualization type to create the panel. then
save dashboard

7



8 Evaluation

The evaluation part focuses on assessing the performance and resource utilization of
lightweight monitoring tools deployed for a microservices architecture in cloud environ-
mentsOyeniran et al. (2024). The tools used for monitoring the microservices were found
very effective, and these findings are the results from the code implementation. The auth,
books, and borrow services all metrics were scraped and stored in Prometheus server and
Telegraf made sure that all scraping the metrics effectively and consistently. It visualize
custom metrics such as HTTP request durations and active user counts in Grafana to
understand how our system behaved under different loads. The dialog below may indic-
ate a potential auth service bottleneck compared to other services; Jaeger’s traces also
indicated the transaction path in detail.

8.1 Overhead Analysis of Monitoring Tool

The analysis of CPU usage and memory consumption revealed that Prometheus and
Telegraf are lightweight in terms of resource utilization which makes them suitable for
resource-constrained environments. Due to the visualization capabilities of Grafana, and
Jaeger, for its distributed tracing, demonstrated higher resource overhead, that is expec-
ted to give their functionalities.

Figure 1: Network traffic of Monitoring Tools

8.2 Data Handling Capabilities in Real-Time

The scenarios which involves real-time data processing, the Prometheus exhibited low re-
sponse times and consistent performance under dynamic workloads. With minimal data
processing latency Telegraf also performed well,and attributed to its efficient push-based
metrics collection mechanism. However, response times increased slightly during visu-
alization updates with Grafana, while handling complex traces, Jaeger exhibited higher
latency.

8



Figure 2: Memory usage of Monitoring Tools

8.3 Scalability of Monitoring Tools

As the number of monitored microservices increases, Prometheus and Telegraf are the best
to demonstrate excellent scalability with consistent throughput and network utilization.
The Grafana’s performance was more variable, requiring optimization for scalability under
heavy workloads.

Figure 3: CPU usage of Monitoring Tools

8.4 Effectiveness of Distributed Tracing

The capabilities in distributed tracing were more effective in identifying bottlenecks and
visualizing inter-service dependencies are in JaegerGetting Started (2022). Instead of
its higher resource utilization, its detailed traces provide mmore significant value for
debugging and optimizing microservices performance.

9



Figure 4: Jaegers Metrics for distributed tracing

References

Getting Started (2022).
URL: https://www.jaegertracing.io/docs/1.64/getting-started/

Introduction to Node.js (n.d.).
URL: https://nodejs.org/en/learn/getting-started/introduction-to-nodejs

Oyeniran, N. O. C., Okechukwu, A., Adams, N., Anthony, L. and Azubuko, F. (2024).
Microservices architecture in cloud-native applications: Design patterns and scalabil-
ity, Computer Science IT Research Journal 5: 2107–2124.
URL: https://www.researchgate.net/publication/383831564M icroservicesarchitectureincloud−
nativeapplicationsDesignpatternsandscalability

Services, A. W. (n.d.). What is amazon ec2? - amazon elastic compute cloud.
URL: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html

10


	Introduction
	AWS
	Visual Studio Code
	Node.js
	Summary Version Table
	Deployment in AWS
	Implementation of Tools
	Prometheus:
	Telegraf:
	Jaeger:
	Grafana:

	Evaluation
	Overhead Analysis of Monitoring Tool
	Data Handling Capabilities in Real-Time
	Scalability of Monitoring Tools
	Effectiveness of Distributed Tracing


