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Abstract 

 

This Research project aims to address a prevalent issue of identifying any fabricated 

information being shared online to curb the widespread of any false information being 

shared online. To achieve this, a robust fake news classification application is developed 

using flask framework with an underlying advanced Machine learning model such as 

Hybrid Ensemble Classifier to analyse the textual news data and distinguish them as 

genuine or fake. A Docker image is created for this application along with its 

dependencies such as Flask, packed in the required format for improving scalability and 

simplifying deployment across various platforms for ease of access. The Application is 

tested with high concurrency loads generated by Locust and to combat any performance 

issues for dynamically scaling the computational resources based on demand. For this 

reason, it is essential that the metrics are collected and studied in detail. This project 

utilizes AWS CloudWatch and Azure Monitor cloud tools to collect different metrics of 

the application under study to organize a performance evaluation between AWS and 

Microsoft Azure to assess the application’s efficiency. This comparison is essential in 

aiding the decision that would have to be taken when choosing wither of these cloud 

platforms for a Dockerized application deployment of similar magnitude. 

 

1 Introduction 
 

Social media plays an important role in today’s world in several aspects and it is and 

integral part of the modern age society, drastically changing the way people communicate 

and stay connected through sharing crucial information on a day-to-day basis. Social media 

platforms like X (formerly Twitter), Instagram and Facebook act as the mainstream media in 

multiple regions of the world where people share their opinion on public matters, paving way 

to global interactions and boosting their businesses. In some regions, essential services like 

Facebook Free Basics provide internet access to those who were not privileged enough to 

access it, which is crucial for sharing and offering information about healthcare, job 

opportunities and education. This proves that, for these people, social media is not just 

entertainment, but much more. As these platforms become an indispensable part of their daily 

lives, verifying the content shared on these platforms must be verified for its authenticity as 

the spread of misinformation poses a serious risk. Therefore, developing a trustworthy fake 

news detection system is of the utmost importance to safeguard social stability and public 

trust.  



 

 

This constant threat underscores the necessity of trustworthy tools and detection systems 

to combat the spread of misinformation and to ensure the authenticity of the shared content. 

So, developing a application that can accurately classify fake news from the authentic news is 

the need of the hour, as it provides a efficient and practical solution to this problem. Its 

flexibility, ease of setup and enormous community support makes it the ideal framework to 

build scalable web applications. This application that has been created in this research has a 

Machine Learning model combined with in the form of Hybrid Ensemble Classifier, which is 

a combination of Decision Tree, random Forest and Gradient Boosting ML models. The 

ability to process large amounts of data in real time has led to this choice to ensure the 

integrity of content on social media. 

 

To make sure that application is easy to deploy across multiple environments without 

any complications, the services of Docker is called upon here. The packaging of the 

application along with its dependencies into a lightweight container in the form on a Docker 

Image simplifies the deployment approach and ensures the performance is even across 

multiple cloud platforms. This has several advantages, from consistent and efficient scaling, 

which enables the ability to handle high user traffic while also maintaining high reliability. 

The successful deployment of the application on AWS and Azure cloud platforms majorly 

depends on tools like Docker.  

1.1 Aim of the study 

 

The primary objective of this whole research project is to efficiently evaluate the 

performance of a Dockerized web application that is deployed on AWS and Azure cloud 

platforms. The main focus of this study is in determining the better cloud platform in terms of 

reliability, scalability and cost efficiency when a application of this configuration is deployed 

on cloud. The examination of two different deployment strategies in the form of AWS’s 

Elastic Beanstalk and Azure’s Container Apps and their impact on the application’s overall 

scalability, fault tolerance and the performance is looked upon in this report. The cloud 

services used to conduct the performance analysis on the operational health of the deployed 

applications are AWS CloudWatch and Azure Monitor. The applications have been subjected 

to high load generated using the load testing tool, “Locust” to simulate real world scenarios. 

This research provides valuable insights for the organization and its developers on what is the 

optimal cloud deployment strategy that brings the most performance out of their application.  

 

Research Question: In what ways do cloud specific deployment strategies of a Dockerized 

application impact real-time performance under load? 

 

 

 

 

 



 

1.2 Research Objectives 
 

The objectives of this research are as follows: 

1. To create a web application with a underlying Machine Learning model using 

the Flask framework. 

2. To use Docker Desktop and dockerize the application using the Dockerfile 

created which is compatible with the application. 

3. To deploy the Dockerized application on the Azure cloud environment 

successfully using the tools like Azure Container Registries and Azure 

Container Apps. 

4. To utilize a CI/CD pipeline on the AWS deployment phase using AWS 

CodePipeline and AWS Elastic Beanstalk where the source of the codebase is 

the GitHub repository contain the application code and the Dockerfile. 

5. To create load on the application using Locust to simulate real life scenarios to 

generate invaluable data for collecting insights using monitoring tools such as 

AWS CloudWatch and Azure Monitor. 

6. To conduct performance analysis of the applications using the collected 

metrics to determine the better cloud platform for deploying a Dockerized 

application. 

1.3 Structure of the report 
 

Followed by the Introduction and research objective in Section 1, the Section 2 contains 

the related work of various authors discussing several parts of this project such as Docker, 

performance comparison and even about the complications of training the Machine Learning 

models. The approaches employed in the literature reviews are critically reviewed, evaluated 

and scrutinized before considering the outcomes of the literature study.  

 

Section 3 explains the methodology, pertaining to training the Machine Learning models, 

starting from preprocessing the data to remove null values and drop unnecessary columns, 

model training and finally the use of different visualization techniques such as correlation 

matrix, bar graph to map the outcomes.  

 

Section 4 discusses the design specifications along with the architecture and the 

workflow of the research project followed by Section 5, which talks about the detailed flow 

of end-to-end implementation showing the cloud deployment processes in both AWS and 

Microsoft Azure. 

  

In Section 6, the application performance testing is conducted with Locust and metrics 

obtained from AWS CloudWatch and Azure Monitor are collected to evaluate the end results.  

 

Finally, Section 7 is about the key conclusion derived from the experiments along with 

discussing the limitations and future works that this research paves the way for. 

 

 

 



 

2 Related Work 

2.1 Docker Deployment Advantages 
 

One of the leading technologies in the world of containerization is the tool, Docker, 

which has redefined the process of deployment and application management on cloud 

environments as it has allowed the aspect of virtualization of OS into a lightweight 

containers.IT has been adopted in various domains and it is due to its advantages over other 

techniques in aspects such as scalability, efficiency and rather simplified application 

management. Docker’s role in managing the resources for large-scale systems is studied in 

this research paper where the need for effective monitoring is emphasized to enable optimal 

deployment strategies, enable auto scaling and to evaluate system performance. This research 

focusses on the metrics such as CPU Utilization and Network I/O overhead that is caused by 

Docker containers and images and offers detailed insights into the trade-offs between 

efficiency and performance when places under different loads (Emiliano Casalicchio, 2017).  

 

Another similar study dives deep into the deployment of an astronomy application 

using Docker to present its advantages such as portability, ease of use and a vast open-source 

community support. The research is split into two parts, where the first part is about a 

demonstration of the deployment and next one pertaining to the detailed set up to the tools, 

services and the parameters for the purpose of data processing of these Docker containers. 

This displays the strengths of the Docker deployments in a way where it simplifies software 

deployment and administration of the systems through its capabilities pertaining to container 

management, and the paper is concluded stating that these are the most important aspects of 

deploying a Docker image on Cloud (D. Morris, 2017). 

 

The concept of virtualization is very much prevalent in today’s world as it allows 

multiple services run on cloud platforms seamlessly. This technology provides support to 

create several virtual machines on a single physical machine by utilizing tools and techniques 

such as hypervisors and containers. Here is where Docker comes in as a open-source 

containerization platform, where it provides and enables lightweight virtualization while 

producing practically no or very little overhead. This makes it ideal for deploying or hosting 

applications that are based on microservice architecture. A study relating to this topic was 

conducted where the performance of Docker was compared against conventional methods of 

creating virtual machines utilizing benchmarking tools such as Phoronix, Sysbench and 

Apache benchmark, it revealed valuable insights about the CPU, storage, memory and 

performance related to load-testing, in turn highlighting Docker deployment’s efficiency for 

cloud platforms (Amit M Potdar, 2020).  

 

A similar paper has been studied which deals with containerization and the benefits of 

integrating it with deep learning model deployments. This technology simplifies the frequent 

management of software frameworks that needs updating. This study benchmarks the impact 

of Docker in machine learning application by comparing it with the essential metrics such as 

Memory, CPU and I/O performance inside a container environment and outside it. The 

findings signify that the metrics displayed inside the container environment have minimal 

overhead for processing computationally intensive tasks and states that Docker can perform 

great for machine learning applications with minimal performance trade-offs (P. Xu, 2017). 

 

 



 

Docker images and containers enhance the performance of the deployment process of 

various models and applications as it provides lightweight and scalable solutions unlike 

hypervisor-based virtualization solutions, which makes it suitable for microservice 

architectures. An application deployment model for the purpose of optimizing the placement 

of containers and task assignments is formulated in a study to minimize the costs of 

deployment and simultaneously meet the requirements related to service delays. The display 

of flexibility and cost-efficiency was displayed by the container framework unlike the 

existing conventional strategies that make use of tools like Docker Swarm and Google 

Cluster Traces (Xili Wan, 2018).  

On a similar note, an investigation on the utilization of Docker technology in 

deploying Machine learning projects and developments has been undertaken, this 

investigation identified 6 project categories which leveraged Docker to avail services such as 

platform portability and runtime compatibility. The conclusion was that, in order to use 

Docker for deployments of these projects, the fine-tuning of several parameters pertaining to 

the deployment process had to be done as some Docker images might require more resources 

to run which poses a serious issue when the deployment is done in a large-scale capacity 

(Moses Openja, 2022). 

2.2 Benefits of Cloud Computing 

 

There are many advantages of cloud computing which makes it favorable to those who 

want to make the best of their resources. It offers flexibility in that the user does not have to 

invest on hardware and services; he or she only pays for services consumed. Cloud services 

are elastic since resource can easily be increased or decreased depending with the traffic 

hence guaranteeing flexibility (Saif, 2021). It also promotes remote working since users can 

work on data and applications from anywhere, they have internet connection. Integration is 

enhanced since users are able to edit files and applications within the same or different 

rooms. In addition, cloud platforms are reliable because they update themselves and have 

automatic backups in an event of a failure. 

2.3 Fake News Classification using Machine Learning 
 

The classification of fake news has received a lot of attention to looking for ways to 

increase the accuracy of the machine learning models that are used in the detection on the 

fake news. Some of the used models are Naive Bayes, Decision Trees (J48), Random Forest, 

Extreme Gradient Boosting (XGBoost), Gradient Boosting, and multi-source framework. 

Naïve Bayes, together with Count Vectorizer has fair accuracy of detection of fake news with 

the precision rate in the range of 84 % – 94%.  

 

In the work mentioned given by (Adiba, 2020) corresponds to the increased problem in 

the spread of fake news on online platforms on the part of persons who have ill intentions or a 

wrong approach. Natural Language Processing and machine learning techniques are applied 

to this study, with the Naive Bayes Classifier – a Bayesian-based classification algorithm – 

applied for sorting the fake news. The proposed approach is the improvement of the Naive 

Bayes algorithm based on the enriched corpora concept, which uses a higher number of 



 

corpora for the training of the algorithm model. One of the main issues encountered during 

the work on the project was how to sort out and differentiate between the reliable and fake 

news included into the numerous online articles. First, the NB method attained 87% 

classification rate, and after enhancing the corpora, it was increased to 92%, a higher rate 

than previous studies on fake news detection. 

 

The problem of fake news spread, including through the social media is discussed in 

(Yuslee, 2021) and it is done by reviewing the application of the Naive Bayes algorithms for 

detecting fake news. Issues affecting the audience are shown where as much as advanced 

technology brings the news and fast information flow it also contributes to the influx of fake 

news. The outlined plan of analyzing the data is that the data is preprocessed through means 

of regular expression, stopwords elimination and lemmatization, then it is transformed into 

N-gram through Term Frequency-Inverse Document Frequency (TF-IDF) and Count 

Vectorizer. One of the most important problems in this research was to make the fake news 

detection procedure more accurate and robust. The results suggest that Naive Bayes with N-

grams slightly increases the accuracy and on the other hand, TF-IDF Vectoriser takes more 

efficiency in identifying fake news with precision of 94%. On the other hand, Count 

Vectorizer gives a better differentiation between fake and real news. 

 

Another study given by (Jehad, 2020), the detection of fake news, specifically political 

fake news is discussed by identifying the key issues of utilizing machine learning algorithms 

in handling the lack of benchmark datasets for massive, rapidly published news. The research 

focuses on the employment of two classifiers, namely Random Forest and on Decision Tree 

(J48), and then classify fake news. The data set used includes twenty thousand seven hundred 

and sixty-one sample size with a testing sample size of four thousand three hundred and 

forty-five. Here some of the preprocessing steps used in the current study include; Data 

cleaning where non-significant characters, numbers, English letters and white spaces are 

deleted, stopword removal. TF-IDF is then used to feed the feature extraction aspect of the 

classification process. The findings indicate that among the models, the Decision Tree model 

performed the best giving an accuracy of 89.11%, followed by the Random Forest model 

with an accuracy of 84.97. 

 

The problem of fake news dissemination on online social media is also discussed in 

another study provided by (Birunda, 2021), where a new Score-based Multi-Source Fake 

News Detection framework is introduced. The framework is expected to identify fake news 

based on features derived from the text elements of real and fake news articles using Term 

Frequency-Inverted Document Frequency (TF-IDF). It also computes the credibility of news 

sources based on component variables such as site URL and Top-Level Domain (TLD). 

When the text-based features are combined with the source credibility score, the framework 

measures the procedural honesty of the news. The first and probably the most significant 

limitation of this study is that it was quiet challenging to quantify the amount of genuineness 

in news. To test the proposed framework, different classifiers of machine learning are used, 

and the highest classifier’s accuracy of 99.5% is achieved when the Gradient Boosting 

algorithm is applied. 



 

 

Finally, (Haumahu, 2021), the research focuses on fake news specifically, hoaxes that are 

negative consequences in social communities in regard to hatred and division. The study 

recommends classifying the news as hoax and valid news using the Extreme Gradient 

Boosting (XGBoost) technique and analyzing the Indonesian news during the period 

December 2015 to early 2020. There are 500 articles in the dataset, of which 250 are valid 

news, and 250 are hoax news, and there are 80% training data and 20% testing data. One of 

the complexities with this study lies in correctly identifying fake news from actual news 

within this environment defined by political polarisation. The results prove that the presented 

XGBoost model successfully provides the accuracy of 89%, the precision of 90 %, and the 

recall of 80 %, thus, it can be supposed that the model effectively detects fake news. 

 

2.4 Performance Monitoring on Cloud 

 

     A performance evaluation of the cloud-based web applications has been conducted under 

varied circumstances, where the examination of how altering the type of AWS Elastic Cloud 

Compute (EC2) instances based on its parameters and configuration metrics affect the 

performance of the application hosted on it, such as response times and latency, where the 

values fluctuated more 10 times the normal limits due to the change in the factors like EC2 

usage timings and the type of instance (J. Mukherjee, 2014). Another paper focusses on the 

performance testing tools and talks about the importance of these tools in properly testing e-

commerce websites like Amazon, the testing tools under the spotlight here are Blazemeter 

and Load impact. The emphasis is placed on the necessity of cloud-based performance 

analysis and assessment tools to ensure the web applications’ operations are seamless and the 

customer satisfaction is always high (Dr. P. Arul, 2014). 

 

 The performance evaluation of cloud services has been conducted where a simulation 

and benchmarking methodology for the purpose of predicting cloud-based applications 

performance, especially using the MOSIAC framework. This technique exhibits accurate 

prediction metrics in terms of performance like throughput and message queuing length vary 

under various workloads (Antonio Cuomo, 2015). The focus on IaaS platform and models 

have been emphasized the topics of virtualization and the issue of multitenancy during the 

process of workload execution. The need for conduction a empirical evaluation of different 

policies like provisioning and allocation in order to optimize the performance and lower the 

incurred cost in a cloud based infrastructure. The importance of performance benchmarking 

and prediction of resource management in cloud environments is necessary (Antoniou, 2012). 
 

 After reviewing the limited literature available for the topic of Performance bench 

marking of a Dockerized application, the research gap identified here is the insufficient 

amount of research in the department of performance evaluation of docker deployments. This 

research project addresses exactly that and hopes to add to the existing research in a positive 

way. 
 
 
 
 
 
 
 
 
 

 



 

3 Research Methodology 
 

The research methodology in commenced with the identification of the ideal dataset and 

the choosing of the apt Machine Learning Models for conducting research of this magnitude. 

The dataset that was chosen was picked from Kaggle which contained the real and fake news 

published on social media platforms such as Facebook, Instagram and X. This dataset was 

further preprocessed and prepared to help with ML model training. 

 

Dataset Description 

 

The dataset for this fake news classification project comes from Kaggle and includes two 

separate CSV files: Fake.csv –with 23,502 fake news articles and True.csv – with 21,417 true 

news articles. Each file has the following columns: In this study, there are four variables, 

namely Title, Text, Subject and Date whereby Title is the title of the news article and Text 

constitutes the remaining body of the article. To achieve maximum throughput and since 

there are constraints in the resources used during processing, we decided to work with a 

reduced data set, namely 10,000 records from each of the files. This makes it easier to train 

and to subsequently test the classifiers on a balanced dataset. The given dataset is well suited 

for machine learning tasks connected with text analysis and allows developing models based 

on both lexical and semantic information from headlines and the text itself, which are short as 

well as extended, and represent fake news. Due to differences in articles’ length, topics, and 

time of publication, this set of data is suitable to build models to detect patterns tied with 

misinformation, thus it is useful for analyzing possible classification task of Machine learning 

algorithms in distinguishing news content. 

 

Data Preprocessing – Google Colab 

 

 Initially, several libraries are imported onto the Google Colab environment where the 

Data preprocessing and model training takes place, those libraries include, numpy and pandas 

for tasks such as data manipulation and conducting mathematical computations. Text 

processing and Natural processing Libraries such as re and string for regular expressions and 

string operations, Natural Language ToolKit (nltk) for NLP, where it comes along with 

nltk.corpus for cleaning stopwords, finally wordninja for splitting concatenated words. 

Visualization libraries such as matplotlib, seaborn and wordcloud. For ML, all the libraries 

are from SciKitLearn (SKL), from which all the ML models and the metrics to calculate the 

accuracies are imported. 

 

 After importing the necessary libraries, they are utilized in the subsequent data 

preprocessing steps where the clean_text column of the final dataset is processed by 

removing the HTML references and the presence of URLs, expanding shortened words (eg. 

isn’t, didn’t), filtering out the punctuation and characters that are non-printable, separating 

the alpha numeric words, dealing with words that are consecutive and repetitive, separating 

attached words and removing the stop gap words. The primary purpose of this is to remove 

https://colab.research.google.com/drive/1Si7jJhV81YVudYg__YlxAl3JeTp59-RS


 

noise from the dataset and standardize the text, which will help greatly in processing the 

meaningful features for processing using NLP task of Fake news classification. 

 

Data Visualization 

 

 Word Cloud is used initially to visualize the most recurring words in the whole 

dataset. It is done to provide a visually engaging way to know and identify the most 

prominent words or the theme of the articles present in the article. The size of the word is 

directly proportional to the number of times they occur in the articles in the dataset. This is 

particularly useful to determine what kind of words are used by fake news perpetrators and 

the kind of words that are most likely to be present in those articles. 

 

 

Figure 1: Word Cloud Comparison Between Fake and Real News Articles 

 The value count of the 20,000 articles present in the dataframe is visualized in this 

part using a bar plot, this is necessary in understanding the text data’s characteristics as 

identifying the text lengths or the outliers in terms of number of words present in the article 

greatly aids in data processing and while feature engineering several automated tasks such as 

text classification. This is done in situations where the text might hold significant value in 

possessing a relevant feature. 

 

Figure 2: Histogram Distribution of Text Lengths in News Articles 

 



 

3.3 Tools and Technologies Used 

 

1. Kaggle: For collecting the relevant social media news dataset. 

2. Google Colab: For the purpose of data Pre-processing and Machine Learning 

model training, such as Decision Tree, Random Forest, Gradient Boosting 

Classifiers and Hybrid Ensemble Classifier like stacking learning in this case. 

3. VS Code: To create the Application for Fake news detection using Flask 

framework based on Python. 

4. Docker Desktop: Containerization tool which was used to pack the application 

along with tis dependencies into a Docker image using a Dockerfile. 

5. Microsoft Azure: Cloud Service Provider in which the containerized application 

is deployed using services like Azure Container Registries (ACR) to store the 

Docker image, Azure Container Apps (ACA) for deploying the application and 

Azure Monitor for collecting insights on the operational health of the application. 

6. Azure CLI: Used to push the Docker image form Docker Desktop to the Azure 

Container Registries. 

7. GitHub: Used to create a repository for maintaining the application codebase 

along with its Dockerfile which is later utilized by AWS for setting up a CI/CD 

pipeline. 

8. Amazon Cloud Services (AWS): Another Cloud service provider where the 

application is deployed using the CI/CD pipeline with the help of tools such as 

AWS CodePipeline and AWS Elastic Beanstalk for deployment. AWS 

CloudWatch is also made use of here to gain valuable insights on the 

application’s operational health. 

9. Terraform: Open-source tool that provides IaaS for defining and creating the 

AWS Elastic Beanstalk and its infrastructure parameters and handling its resource 

allocation. 

10. Locust: An open-source tool used to write scripts for load testing the deployed 

applications to create a real-world scenario and collect the operational metrics of 

the application pertaining Latency, CPU Usage and Network I/O 

 

4 Design Specification 
 

 
 

Figure 3: Architecture Diagram of the research project 



 

 
 

 The architecture flow of this research project starts with training the Hybrid Ensemble 

Classifier Machine Learning model with the Kaggle dataset containing the fake and real news 

articles from social media. The trained Model is then used as the base the create a Flask 

application. A Dockerfile is created that includes the instructions for creating a Docker image 

for the application. Hereon, the cloud deployment is executed in two phases; 

 

 The Azure deployment phase starts with the Docker image creation of the application 

code base and the associated Dockerfile, this step is successfully completed using Docker 

Desktop. Subsequently, a repository on the Azure Container Registries (ACR) is created to 

which the Docker image is pushed to. ACR acts as the source for the Dockerized application 

deployment on Azure Container Apps (ACA), where the Docker image is fetched from and 

deployed, producing a URL for users to access it. Finally, a Azure monitor dashboard is set 

up for the deployed application to gain valuable insights on the operational health while it is 

being subjected to heavy loads generated by a Locust script. Those metrics include Average 

Response time, CPU Usage Network I/O in bytes. 

 

 The deployment phase on AWS is initiated when the application codebase and the 

supporting Dockerfile is pushed on to a GitHub repository that was created beforehand. Then, 

a Continuous Integration / Continuous Deployment pipeline is set up in AWS with the usage 

of tools like AWS CodePipeline and AWS Elastic Beanstalk. The source for AWS 

CodePipeline is set as the GitHub repository that contains the Flask application and the 

Dockerfile. The deployment stage in the pipeline is satisfied by AWS Elastic Beanstalk, and 

the Beanstalk environment was created using a Terraform script which contained all the 

parameters set for the environment creation. The Elastic Beanstalk builds the Docker image 

from the obtained Dockerfile in the underlying Elastic Cloud Compute (EC2) instances that 

were created by an automated process by AWS Elastic Beanstalk. A metrics monitoring 

dashboard was set up for the deployed application using AWS CloudWatch for extracting 

valuable insights on the application and its functions when it is put under heavy loads by 

simulating large number of users accessing the site using a Locust script. The metrics that 

were collected are ApplicationLatencyP10, CPUUtilization, Network I/O. 

 

 Finally, a performance comparison was conducted by evaluating the similar metrics 

with each other to determine the better cloud service provider for the deployment of a 

Dockerized application of this specific configuration and of this scale. 

 

5 Implementation 
 
 
 

 
  

Figure 4: Command for building Docker image 



 

 

 A docker image was created for the Application using Docker Desktop. It was done 

by creating a Dockerfile that contained all the instructions for building the said image. The 

Image creation was initiated using the command “docker build -t fakenewsclfapp” on cmd 

and the image is stored by Docker Desktop. This Docker image is pushed to Azure Container 

Registries’ repository using a series of commands executed on the PowerShell terminal on 

the local device which will be looked at in detail in the configuration manual. 
 
 

 
 

Figure 5: Presence of the Docker Image in Docker Desktop 

 

 
 

Figure 6: Azure Container Registry repository containing the Docker Image 

 
 The Docker Image of the Flask application is pushed onto the Repository that was 

created on Azure Container Registries. The application was initially Dockerized using 

Docker Desktop, where the app along with its dependencies like the configuration files and 

requirements were formed into a Docker Image. The Azure Command-Line Interface was 

then installed and configured in order to push the Docker image onto the ACR repository. 



 

The repository was assigned a tag to easily identify it in the latter stages of the deployment 

process The usage of ACR has enabled the integration of other Microsoft Azure services, 

especially while integrating other services like Azure Container Apps and Azure Monitor for 

collecting valuable insights on the performance of the said tools. 
 

 
 

Figure 7: Azure Container Apps where the Dockerized application is deployed 
 

The Deployment of the Docker image present in the ACR repository is done in this stage, on 

Azure Container Apps. The Application is created and the Repository present in ACR is set 

as the source for the deployment, where the Docker image is deployed in an automated 

process. The Image is identified using the tag given to it in the previous stage. The 

application’s various configuration settings were confirmed in this stage such as the required 

allocation of storage space and memory for performing the computational tasks. This whole 

process is situated inside the Azure ecosystem and this enables for smooth integration, 

deployment and the surveillance processes using Azure Monitor.  

 

The deployment process on AWS different than the Azure deployment, where the 

Application codebase along with the Dockerfile created was pushed onto a GitHub repository 

that was created beforehand. This can be described as the initial point to trigger the cloud 

deployment on AWS.  
 

 
 

Figure 8: AWS CodePipeline showing the CI/CD piepline 



 

 

 The Deployment process on Amazon Cloud Services was successfully orchestrated by 

setting up a Continuous Integration / Continuous Deployment (CI/CD) pipeline. The first half 

of the process was enabled be the setting of a pipeline using the service AWS CodePipeline. 

The source for the pipeline is set as the GitHub repository where the code and the Dockerfile 

resides. The usage of CodePipeline is attributed to the fact that the pipeline is always 

triggered automatically whenever the updated code is pushed onto the GitHub repository. The 

next stage of automated deployment is executed using AWS Elastic Beanstalk. 

 

 
 

Figure 9: AWS Elastic Beanstalk environment where the application is deployed 

 

 An environment is created on the AWS Elastic Beanstalk service to deploy the 

application and the Dockerfile, this environment is connected with the AWS CodePipeline, 

from where the codebase and the required files are fetched. The platform on which the 

application would be run is chosen as Docker which in turn automates the Docker image 

creation and deployment of the same on the underlying EC2 instances created by the Elastic 

Beanstalk environment. This pipeline is fully automated where it does not need any human 

intervention while pushing an application update or for the purpose of upkeeping the whole 

CI/CD ecosystem. 
 

 
 

Figure 10: AWS CloudShell where the terraform (.tf) script has been uploaded 
 

 The above AWS Elastic beanstalk environment is created using a Terraform script 

that was run on AWS CloudShell for the purpose of automating environment creation, 

therefore eliminating the need of repetitive configuration of environment and the script can 

also be used for future deployments with the same configurations accurately. The parameters 



 

such as the deployment region, application platform are hardcoded into the script to ensure 

consistency while using this script for multiple future deployments. 

 

6 Evaluation 
 

 
 

Figure 11: Accuracy scores of the Machine Learning models 
 

The Machine Learning models that were trained with the Fake and Real news datasets 

were all classification models such as Decision Tree, Random Forest, Gradient Boosting 

Classifiers. The accuracies that were obtained by these models were respectable with all of 

them performing well enough to have an accuracy score of more than 80% each. The final 

model that as utilized was the Hybrid Ensemble Model which is a Stacking model, where all 

the other classifier models are combined together and their cumulative performance has 

yielded an accuracy of 99.35%. This model was chosen as the base for the development of 

the web application based on the Flask framework. 
 

 
Figure 12: Locust Load testing results of Azure application 



 

 
 

Figure 13: Locust load testing results of AWS application 
 

 A Locust Script was created in order to generate load on the deployed 

applications URLs to simulate real-time users. The parameters were 1000 users accessing the 

site at a frequency of 10 users joining in every second. Figures are the outputs of the testing 

phases on AWS and Azure deployed applications. It is evident that Azure has performed 

marginally better than AWS as the latency experienced by the majority of users (95th 

percentile) are higher in AWS, with an average latency period of 40,000 ms, which is the 

double of Azure which exhibited latency values of around 20,000 ms for the users. 
 

 
 

Figure 14: AWS CloudWatch dashboard containing the necessary metrics 
 

A dashboard on AWS was set up using the service AWS CloudWatch for obtaining 

valuable metrics from the deployed application, the metrics that were chosen as critical for 

understanding the operational capacities of the application are ApplicationLatencyP10, which 

records the average latency experienced by the simulated users who are below the 90th 

percentile. CPUUtilization, which gives valuable insights on how much of the CPU is needed 

to handle a specific amount of load. NetworkIn, that records the amount of data ingested by 

the application, indicating the ability to process large amounts of incoming users. finally, 

NetworkOut, which can be interpreted as the application’s ability to send the users the 

requested data. 



 

 

 
Figure 15: Azure monitor Dashboard containing the necessary metrics 

 

 Another Dashboard was created on Microsoft Azure using the service Azure 

Monitor, where invaluable insights of the operational health of the deployed application on 

Azure has been recorded. The metrics that were chosen are similar to the ones that are on the 

AWS CloudWatch dashboard as there is a need to conduct a Performance comparison to 

determine the better Cloud Service Provider for the deployment of a Dockerized application. 

Ther metrics were, Average Response Time (Latency), CPU Usage, Network In Bytes and 

Network Out Bytes. 
 

 
Figure 16: Latency on AWS 

 

 
Figure 17: Latency on Azure 

 

The recorded measurements for the latency values while conducting the load testing 

experiments using the Locust script revealed that there were significant differences between 



 

the two cloud platforms as the latency exhibited by Azure was 6 seconds on average and 

AWS’s latency was around 30 seconds on average. Another observation was that the values 

of Azure was stable throughout the testing phase while AWS graph was all over the place 

indicating a lot of fluctuations in latency. This leads to conclude that Azure performs 

relatively well and consistent even under high loads and its ability to maintain it for long 

periods proves it can be relied upon for applications that are latency sensitive like gaming 

apps, which requires low latency and real-time processing. 
 

 
 

Figure 18: CPU Utilization on AWS 
 

 
 

Figure 19: CPU usage on Azure 
 

During the bench marking of the CPU Usage metric, Azure displayed impressive 

ability of running and processing the load with an average of just 26% of CPU capacity 

utilized and around 50% maximum utilization of CPU limits. In contrast, AWS had nearly 

full utilization of its capacity at one point and had an average usage of 35% throughout the 

testing period. This leads to the conclusion that AWS was pushed to its limits unlike Azure to 

run the same amount of load. This is led to believe that Azure has superior scalability and 

workload distribution which has allowed it to efficiently handle the incoming users and 

requests with ease and not reach its resource thresholds. As far as AWS is concerned, poor 

optimization of its resources may be a cause of performance bottlenecks present when under 

heavy loads. 
 



 

 
 

Figure 20: Network In (bytes) in AWS 
 

 
 

Figure 21: Network In (bytes) in Azure 
 

There was significant different in the Network IN metric that was recorded during the 

load testing process which read that the Azure application was able to ingest more than 700 

million bytes of data while AWS was able to process 50 million bytes of data under identical 

testing conditions. This revealed that Azure is displaying a significant performance edge over 

AWS as it is able to process larger volumes of data in a similar timeframe. This could been 

an indication of Azure’s robust anad efficient network infrastructure that is apt for application 

that need complex and in-depth data processing and ingestion, as well as requiring a 

considerable amount of network throughput. Azure is able to support and process data-

intensive workloads while also displaying enormous reliability unlike AWS. 

 
 

Figure 22: Network Out (bytes) in AWS 
 



 

 
 

Figure 23: Network Out (bytes) in Azure 
 

By transferring out nearly 120 million Bytes of data, Azure has far succeeded AWS in 

this aspect which has the capacity to only transmit 22 million Bytes of data in the same time 

period and under the same load conditions. The primary reason for this difference is the 

presence of a strong system that is able to handle larger amounts of outbound data more 

efficiently than AWS. Azure’s ability to handle and support data driven applications that 

require high data transfer capabilities to run has ensured consistent and a service delivery 

system that reliable all the way. 
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7 Conclusion and Future Work 
 

This research project was fully focused on developing and deploying a Fake news 

detection Flask application that was powered by Hybrid Ensemble Machine Learning Model, 

which was then Dockerized to be deployed on Microsoft Azure and Amazon Web Services 

cloud platforms. Two distinct workflows were chosen for the deployment processes on the 

cloud service providers. On AWS The whole application codebase along with the Dockerfile 

was hosted onto the GitHub repository, which was then utilized to trigger the pipeline set up 

using AWS CodePipeline for a CI/CD deployment, where the latter part was done using 

AWS Elastic Beanstalk. On Azure, the Docker image created using Docker Desktop for the 

application using the Dockerfile was stored on Azure Container Registrires’ repository and 

deployed on Azure Container Apps. To conduct the performance comparison, monitoring 

toos such as AWS CloudWatch and Azure Monitor were chosen for the respective cloud 

platforms. The metrics that were chosen to be recorded were CPU Usage/Utilization, 

Network I/O, and ApplicationLatency/Average Response Time. A simulation script was 

created using Locust for the purpose of Load testing the web applications to collect data and 

to be aware of the operational health of the applications. 

 

All the findings led to the fact that Microsoft Azure was better at Dockerized 

application deployments than AWS, as it excelled in several areas such as data throughput 

and processing the incoming network. Both these platforms possessed a robust and seamless 

deployment pipeline. The importance of conducting a evaluation on the cloud service 

providers were demonstrated in detail in this research, which will aid in users choosing the 

better platform for their requirements based on the performance exhibited by the respective 

cloud platforms. 

https://github.com/310Ros/fakenewsclassification
http://fakenewsclfflaskappenv.eba-4p9z6dkr.eu-west-2.elasticbeanstalk.com/
https://fakenewsclfapp-webapp.happypebble-97bb53d5.australiaeast.azurecontainerapps.io/


 

 
Future Work: 

 

The potential avenues for conducting future research which takes this research 

forward are immense. Some of them are the integration of Serverless deployment services 

such as AWS Lambda and Azure Functions, where the applications can be run without need 

of a managing server infrastructure. An event-driven architecture can be set up to ensure only 

the necessary resources are consumed, reducing the operational costs. Another benefit of a 

serverless architecture is that the scaling and load balancing aspects of an applications is 

completely automated. 

 

On that note, dynamic scaling policies can be enabled in the future builds of the 

application that will be able to scale in accordance to the real-time performance of the 

application. It can be defined by keeping CPU and Memory usage, latency and request rates 

in mind. It can be configured to scale horizontally or vertically based on the needs of the 

application. More advanced parameters and settings can be enabled by integrating cloud 

services such as AWS Auto Scaling or Azure Autoscale. 
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