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                                               Configuration Manual 

Hardware Requirements: 

1. Processor: Multi-core CPU (Intel i7 or AMD equivalent)  
2. RAM: Minimum 8 GB (16 GB recommended for larger datasets). 
3. Storage: 20 GB for dataset, model files, and intermediate results. 
4. GPU Memory: 4 GB or more for faster inference (optional). 

Software Requirements: 

1. Operating System: Windows/Linux/macOS. 
2. Programming Language: Python 3.8 or newer. 
3. Libraries: 

o TensorFlow/Keras: For loading and running the FaceNet model. 
o numpy: For numerical operations. 
o opencv-python: For image preprocessing (optional). 
o matplotlib: For visualization. 
o tqdm: For progress bars. 

4. Pretrained Model: FaceNet model (facenet_keras.h5). 
5. Dataset Management: File system or a structured folder layout for images. 
6. Environment:  Google Colab  

Steps to Execute: 

• Step 1: Have to execute the code in Google Colab. So, save the code files in 
google drive. 

• Step 2: Mount the drive in the colab before run the program. 
• Step 3: Then import following libraries which we need in the program. 

•  Libraries to import:  

• h5py: Library for working with HDF5 files. 
• numpy: For numerical computations. 
• matplotlib.pyplot: For plotting. 
• %matplotlib inline: Ensures that plots are displayed inline in Jupyter 

Notebook. 

•  Metrics from sklearn: 

• Functions like precision_recall_curve, accuracy_score, f1_score, 
precision_score, and recall_score are imported to evaluate model 
performance. 

• warnings.filterwarnings('ignore'): Suppresses all warnings from being 
displayed during the execution. 
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Path Setup: 
 

 

• os: Library to handle file and directory paths. 
• source_dir: Defines the path to the dataset 105_classes_pins_dataset 

stored in /kaggle/input/pins-face-recognition. 

 
 

 

•  IdentityMetadata Class: 

• Stores metadata for each image: 
o base: Base directory. 
o name: Identity name (subfolder name). 
o file: Image file name. 

• Provides the image_path() method to get the full file path. 
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•  load_metadata() Function: 

• Iterates through the dataset directory. 
• Collects metadata for .jpg or .jpeg images. 
• Returns an array of IdentityMetadata objects. 

•  Example: 

• Loads metadata from source_dir, organizing image details for later use. 

 
• prints the shape of the metadata array. Since metadata is a NumPy array of 

IdentityMetadata objects (created by load_metadata()), its shape will 
indicate the total number of images processed from the directory. 

 

type(metadata[1500]), metadata[1500].image_path(): 

• type(metadata[1500]) checks the type of the 1501st metadata entry (likely 
<class '__main__.IdentityMetadata'>). 

• metadata[1500].image_path() returns the full path of the image 
corresponding to that metadata entry. 

 

 

load_image(path) Function: 

• Uses OpenCV (cv2) to load an image from the given path. 
• The cv2.imread(path, 1) function reads the image in color mode. 
• The slicing [..., ::-1] reverses the order of color channels (BGR → RGB) to 

make it compatible with libraries like Matplotlib. 

 
 

 
 
•  Load the image. 
•  Print its type (numpy.ndarray) and shape (e.g., (height, width, 3)). 
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VGG Face Model Definition (vgg_face() function): 

• Builds a custom VGG-style convolutional neural network (CNN) architecture using 
Sequential from Keras. 

• Contains layers like ZeroPadding2D, Convolution2D, MaxPooling2D, 
Dropout, Flatten, and Activation. 

• Includes 16 convolutional layers with increasing filters (64, 128, 256, 512) followed 
by pooling layers and dropout. 

• Ends with fully connected layers for classification (4096 and 2622 units), dropout, 
and a softmax activation for multi-class classification. 

• The network is designed for face recognition, based on the VGG architecture but with 
specific weight configurations. 
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• The model's weights are loaded from vgg_face_weights.h5 using 

model.load_weights() method. The weights should correspond to the 
architecture defined in vgg_face(). 

 
• Creates a new Keras Model (vgg_face_descriptor) that takes the same input as the 
original model but outputs the second-to-last layer (model.layers[-2]), which is the feature 
descriptor for the face. 
• This new model is often used for extracting embeddings (feature vectors) for each image, 
which can then be used for tasks like face verification or identification. 
 

 
•  type(vgg_face_descriptor): 

• This returns the type of the model object (likely <class 
'tensorflow.python.keras.engine.training.Model'>), indicating it's a Keras 
Model object. 

•  vgg_face_descriptor.inputs and vgg_face_descriptor.outputs: 

• These give information about the model's input and output layers. For instance, the 
input is typically an image of shape (224, 224, 3) and the output will be a 4096-
dimensional feature vector. 
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Image Preprocessing: 

• Load Image: img = load_image(metadata[0].image_path()) loads the image 
and converts it from BGR to RGB. 

• Normalization: img = (img / 255.).astype(np.float32) scales pixel values to 
[0, 1]. 

• Resize: img = cv2.resize(img, (224, 224)) resizes the image to 224x224. 

Generate Embedding: 

• embedding_vector = vgg_face_descriptor.predict(np.expand_dims(img, 
axis=0))[0]: 

o Adds batch dimension, predicts embedding vector, and extracts the vector 
(shape (4096,)).  

            
• Fetches the first element of the embedding_vector array and displays its type 

alongside the type of the entire array. 
• Accesses elements at index 2, 98, and the second-to-last index of the   

embedding_vector. 

            
• Counts the number of entries in the metadata object and prints the total number 

of images. 

       
•  Initializes an array embeddings to store feature vectors of size 2622 for each image in 
metadata. 
•  Loads, normalizes, resizes, and passes each image through a model 
(vgg_face_descriptor) to generate its embedding. 
 
•  Stores the embedding in the embeddings array at the corresponding index. 
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•  Fetches the embedding of the first image (embeddings[0]). 
•  Fetches the embedding of the 988th image (embeddings[988]). 
•  Retrieves the shape of the embedding for the 988th image. 
 

    
• Calculates the squared Euclidean distance between two embeddings emb1 and 

emb2. 

 
• Visualizes two images side-by-side, calculates, and displays their distance (using 

embeddings). 

• Usage: Calls the show_pair function for different pairs of images. 

 

 
• Same function as above, used here for different pairs (images at indices 1100 and 

1101, and 1100 and 1300). 

 

        
• Again, compares two pairs of images using their embeddings, one close in indices 

(likely similar) and another farther apart (likely dissimilar). 
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•  Splits data into training and testing sets using indices divisible by 9. 
•  Stores embeddings (x_train, x_test) and corresponding labels (y_train, y_test). 
 

     
 

• Prints the shapes of training and test datasets for both features (X_train, 
X_test) and labels (y_train, y_test). 

 

     
• Accesses specific entries in y_test and y_train arrays to verify the labels (e.g., 

names of individuals). 
• Counts the number of unique classes (labels) in y_test and y_train. 
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•  Encodes the string labels in y_train and y_test into numerical values using 
LabelEncoder. 
•  le.classes_ stores the mapping of class names to numbers. 
 

 
• Prints the encoded training and testing labels to confirm the transformation was 

successful. 

 
 
•  Standardizes the feature matrix X_train (mean = 0, std = 1). 
•  Stores the standardized features in X_train_std. 
 

 
• Prints the shapes of standardized feature matrices and encoded label arrays for both 

training and testing datasets. 

 

 
 
•  Reduces the dimensionality of standardized features using PCA to 128 components. 
•  fit_transform is applied on the training set, and transform is applied on the test 
set using the same PCA model 
 

 
 
•  Initializes an SVM classifier with specified parameters (C for regularization, gamma for 
the kernel coefficient). 
•  Trains the classifier on the PCA-transformed training data. 
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•  Displays the predicted labels (y_predict) from the model. 
•  Shows the actual encoded labels (y_test_encoded) for comparison. 
 

 
• Accesses and displays a slice of the actual encoded test labels (from index 32 to 48) 

for a detailed examination of predictions vs. ground truth. 

 

 
• Computes the classification accuracy by comparing the predicted labels with the 

actual test labels. 

 
 
•  Uses PCA to reduce dimensionality of standardized feature data to 256 components. 
•  fit_transform is applied on the training data; the test data is transformed using the 
same PCA model. 
 

 
 
•  Trains an SVM classifier with PCA-reduced training data and labels. 
•  Predicts test labels and decodes them back to their original categorical form 
(y_predict_encoded). 
 

 
 
•  Loads an example image from the test set, predicts its label, and displays the image with 
the predicted label. 
•  example_idx = 401 specifies the index of the example in the test set. 
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• Processes and visualizes a different test image (at index 900) for classification. 

 
• Allows inspection of another test image's classification result. 

 

 
• Demonstrates flexibility in index selection (using negative indexing) for visualization 

and validation. 

Celebs_face_recognition 
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•  Imports commonly used libraries for file handling (os, glob), numerical computations 
(numpy), image processing (cv2), and visualization (plotly, matplotlib). 
•  Imports tools for progress tracking (tqdm) and model loading (load_model). 
 

 
 
•  Sets a random seed for reproducibility in any random operations. 
•  Defines image dimensions (160x160x3, where 3 represents RGB channels). 
 

 
 
•  Sets the root path to the dataset. 
•  Extracts and formats the names of individuals (from directory names). 
•  Counts the number of unique individuals and prints their names. 
 

 
 
•  Counts the number of images available per person by traversing subdirectories. 
•  Calculates and displays the total number of images in the dataset. 
 

 
 
•  Creates a bar chart using Plotly to visualize the distribution of the number of images per 
individual. 
•  Adds a title to the chart and displays it. 
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•  Selects 50 image paths per person, shuffles them, and initializes arrays for image and label 
storage. 
•  Processes each image: reads, resizes, normalizes, and stores it along with its label. 
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•  Displays a grid of images with their labels or predictions. 
•  Optionally performs face recognition and shows predicted labels alongside true labels. 
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This code processes images to generate face embeddings using a pretrained model: 

1. load_image: Loads, resizes, and normalizes an image for model input. 
2. image_to_embedding: Generates and normalizes a face embedding for the 

image. 
3. generate_avg_embedding: Processes multiple images to compute their average 

face embedding, representing them as a single embedding. 

 

 
• Loads a pretrained FaceNet model for generating 128-dimensional face embeddings. 

 
 
•  Randomly selects 10 images per person from directories (root_path). 
•  dir_names contains subdirectory names corresponding to persons. 

• Creates a dictionary (database) where: 
o Keys: Person names (person_names). 
o Values: Average embeddings generated for their images using 

generate_avg_embedding. 
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Compares two 128-dimensional embeddings: 

• Computes the Euclidean distance (L2 norm) between embeddings. 
• Returns the distance if it's below the threshold (match), else returns 0 (no match). 
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 Function: recognize_face 

This function recognizes a face in a given image by comparing its embedding to a database of 
known face embeddings. 

Steps: 

1. Generate Embedding: 
o The function calls image_to_embedding to extract the embedding of the 

input image using the pretrained model. 
2. Compare Embeddings: 

o Loops through the database dictionary (which contains known 
embeddings). 

o For each person in the database, compares their embedding with the input 
image embedding using compare_embeddings. 

3. Find Closest Match: 
o Stores distances for all matches below the threshold. 
o Returns the name of the person with the smallest distance. 
o If no match is found (all distances exceed the threshold), returns "No Match 

Found." 

 
 

 
• Selects an image and its true label from the dataset. 
• Predicts the label for the selected image using the recognize_face function. 
• Displays the image along with the true label and predicted label. 
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This code evaluates the accuracy of a face recognition model: 

1. Setup: Selects 50 random images and their labels. 
2. Prediction: Uses recognize_face to predict the label for each image. 
3. Comparison: Compares predicted labels to true labels and counts correct matches. 
4. Accuracy Calculation: Computes accuracy as the percentage of correct predictions. 
5. Result: Prints the model's accuracy. 

 
 
•  For each person, randomly selects 50 image file paths. 
•  Creates a database (large_database) with average embeddings for each person using 
generate_avg_embedding. 
 

 

o Displays data (images and labels) for verification using the 
recognize_face function and the large_database. 
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• Randomly selects 100 images from all_images and corresponding labels from 
all_labels. 

• Iterates through the selected images and predicts labels using recognize_face. 
• Compares true and predicted labels, updating the count of correct predictions. 
• Computes accuracy as the percentage of correctly classified images. 
• Prints the result. 

 

 
• Creates a medium-sized database with 25 randomly selected images per person. 

 
• Displays images and corresponding labels using the recognize_face function 

and the medium/large database. 
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• Randomly picks 100 images and corresponding labels. 
• Uses recognize_face to predict the label for each image and compares it with 

the true label. 
• Calculates and prints the model accuracy as a percentage. 

 

 
 

• Creates a larger database with 65 images per person for more comprehensive 
recognition. 
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This code evaluates face recognition accuracy: 

1. Randomly selects 100 images from the dataset. 
2. Predicts labels for each image using recognize_face with the medium-sized 

database (med_database). 
3. Compares predictions to true labels and counts correct matches. 
4. Calculates accuracy as (correct predictions / 100) * 100. 
5. Prints the model accuracy as a percentage. 
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