

Configuration Manual

MSc Research Project
MSc Cloud Computing

Mahir Ahmed Jabarullah
Student ID: X22134433

School of Computing
National College of Ireland

Supervisor: Mr. Vikas Shani

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

 ………Mahir Ahmed Jabarullah…………………

Student ID:

……………X22134433……………………………………

Programme:

………MSc Cloud Computing……………………

Year:

………2024/2025…..

Module:

…………Research Project (Configuration Manual) ………………….………

Lecturer:

……………Mr. Vikas Shani………………………………….………

Submission Due
Date:

………………03/01/2025………………………………………….………

Project Title:

	Deep-learning and Cloud-based IoT framework for intrusion
detection using video surveillance.………	

Word Count:

……………………… Page Count: ……………25…………………….…….………

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

……………mahir ahmed………………………………………………………………

Date:

……………03/01/25………………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:
Date:
Penalty Applied (if applicable):

1

 Configuration Manual

Hardware Requirements:

1. Processor: Multi-core CPU (Intel i7 or AMD equivalent)
2. RAM: Minimum 8 GB (16 GB recommended for larger datasets).
3. Storage: 20 GB for dataset, model files, and intermediate results.
4. GPU Memory: 4 GB or more for faster inference (optional).

Software Requirements:

1. Operating System: Windows/Linux/macOS.
2. Programming Language: Python 3.8 or newer.
3. Libraries:

o TensorFlow/Keras: For loading and running the FaceNet model.
o numpy: For numerical operations.
o opencv-python: For image preprocessing (optional).
o matplotlib: For visualization.
o tqdm: For progress bars.

4. Pretrained Model: FaceNet model (facenet_keras.h5).
5. Dataset Management: File system or a structured folder layout for images.
6. Environment: Google Colab

Steps to Execute:

• Step 1: Have to execute the code in Google Colab. So, save the code files in
google drive.

• Step 2: Mount the drive in the colab before run the program.
• Step 3: Then import following libraries which we need in the program.

• Libraries to import:

• h5py: Library for working with HDF5 files.
• numpy: For numerical computations.
• matplotlib.pyplot: For plotting.
• %matplotlib inline: Ensures that plots are displayed inline in Jupyter

Notebook.

• Metrics from sklearn:

• Functions like precision_recall_curve, accuracy_score, f1_score,
precision_score, and recall_score are imported to evaluate model
performance.

• warnings.filterwarnings('ignore'): Suppresses all warnings from being
displayed during the execution.

2

Path Setup:

• os: Library to handle file and directory paths.
• source_dir: Defines the path to the dataset 105_classes_pins_dataset

stored in /kaggle/input/pins-face-recognition.

• IdentityMetadata Class:

• Stores metadata for each image:
o base: Base directory.
o name: Identity name (subfolder name).
o file: Image file name.

• Provides the image_path() method to get the full file path.

3

• load_metadata() Function:

• Iterates through the dataset directory.
• Collects metadata for .jpg or .jpeg images.
• Returns an array of IdentityMetadata objects.

• Example:

• Loads metadata from source_dir, organizing image details for later use.

• prints the shape of the metadata array. Since metadata is a NumPy array of

IdentityMetadata objects (created by load_metadata()), its shape will
indicate the total number of images processed from the directory.

type(metadata[1500]), metadata[1500].image_path():

• type(metadata[1500]) checks the type of the 1501st metadata entry (likely
<class '__main__.IdentityMetadata'>).

• metadata[1500].image_path() returns the full path of the image
corresponding to that metadata entry.

load_image(path) Function:

• Uses OpenCV (cv2) to load an image from the given path.
• The cv2.imread(path, 1) function reads the image in color mode.
• The slicing [..., ::-1] reverses the order of color channels (BGR → RGB) to

make it compatible with libraries like Matplotlib.

• Load the image.
• Print its type (numpy.ndarray) and shape (e.g., (height, width, 3)).

4

VGG Face Model Definition (vgg_face() function):

• Builds a custom VGG-style convolutional neural network (CNN) architecture using
Sequential from Keras.

• Contains layers like ZeroPadding2D, Convolution2D, MaxPooling2D,
Dropout, Flatten, and Activation.

• Includes 16 convolutional layers with increasing filters (64, 128, 256, 512) followed
by pooling layers and dropout.

• Ends with fully connected layers for classification (4096 and 2622 units), dropout,
and a softmax activation for multi-class classification.

• The network is designed for face recognition, based on the VGG architecture but with
specific weight configurations.

5

• The model's weights are loaded from vgg_face_weights.h5 using

model.load_weights() method. The weights should correspond to the
architecture defined in vgg_face().

• Creates a new Keras Model (vgg_face_descriptor) that takes the same input as the
original model but outputs the second-to-last layer (model.layers[-2]), which is the feature
descriptor for the face.
• This new model is often used for extracting embeddings (feature vectors) for each image,
which can then be used for tasks like face verification or identification.

• type(vgg_face_descriptor):

• This returns the type of the model object (likely <class
'tensorflow.python.keras.engine.training.Model'>), indicating it's a Keras
Model object.

• vgg_face_descriptor.inputs and vgg_face_descriptor.outputs:

• These give information about the model's input and output layers. For instance, the
input is typically an image of shape (224, 224, 3) and the output will be a 4096-
dimensional feature vector.

6

Image Preprocessing:

• Load Image: img = load_image(metadata[0].image_path()) loads the image
and converts it from BGR to RGB.

• Normalization: img = (img / 255.).astype(np.float32) scales pixel values to
[0, 1].

• Resize: img = cv2.resize(img, (224, 224)) resizes the image to 224x224.

Generate Embedding:

• embedding_vector = vgg_face_descriptor.predict(np.expand_dims(img,
axis=0))[0]:

o Adds batch dimension, predicts embedding vector, and extracts the vector
(shape (4096,)).

• Fetches the first element of the embedding_vector array and displays its type

alongside the type of the entire array.
• Accesses elements at index 2, 98, and the second-to-last index of the

embedding_vector.

• Counts the number of entries in the metadata object and prints the total number

of images.

• Initializes an array embeddings to store feature vectors of size 2622 for each image in
metadata.
• Loads, normalizes, resizes, and passes each image through a model
(vgg_face_descriptor) to generate its embedding.

• Stores the embedding in the embeddings array at the corresponding index.

7

• Fetches the embedding of the first image (embeddings[0]).
• Fetches the embedding of the 988th image (embeddings[988]).
• Retrieves the shape of the embedding for the 988th image.

• Calculates the squared Euclidean distance between two embeddings emb1 and

emb2.

• Visualizes two images side-by-side, calculates, and displays their distance (using

embeddings).

• Usage: Calls the show_pair function for different pairs of images.

• Same function as above, used here for different pairs (images at indices 1100 and

1101, and 1100 and 1300).

• Again, compares two pairs of images using their embeddings, one close in indices

(likely similar) and another farther apart (likely dissimilar).

8

• Splits data into training and testing sets using indices divisible by 9.
• Stores embeddings (x_train, x_test) and corresponding labels (y_train, y_test).

• Prints the shapes of training and test datasets for both features (X_train,
X_test) and labels (y_train, y_test).

• Accesses specific entries in y_test and y_train arrays to verify the labels (e.g.,

names of individuals).
• Counts the number of unique classes (labels) in y_test and y_train.

9

• Encodes the string labels in y_train and y_test into numerical values using
LabelEncoder.
• le.classes_ stores the mapping of class names to numbers.

• Prints the encoded training and testing labels to confirm the transformation was

successful.

• Standardizes the feature matrix X_train (mean = 0, std = 1).
• Stores the standardized features in X_train_std.

• Prints the shapes of standardized feature matrices and encoded label arrays for both

training and testing datasets.

• Reduces the dimensionality of standardized features using PCA to 128 components.
• fit_transform is applied on the training set, and transform is applied on the test
set using the same PCA model

• Initializes an SVM classifier with specified parameters (C for regularization, gamma for
the kernel coefficient).
• Trains the classifier on the PCA-transformed training data.

10

• Displays the predicted labels (y_predict) from the model.
• Shows the actual encoded labels (y_test_encoded) for comparison.

• Accesses and displays a slice of the actual encoded test labels (from index 32 to 48)

for a detailed examination of predictions vs. ground truth.

• Computes the classification accuracy by comparing the predicted labels with the

actual test labels.

• Uses PCA to reduce dimensionality of standardized feature data to 256 components.
• fit_transform is applied on the training data; the test data is transformed using the
same PCA model.

• Trains an SVM classifier with PCA-reduced training data and labels.
• Predicts test labels and decodes them back to their original categorical form
(y_predict_encoded).

• Loads an example image from the test set, predicts its label, and displays the image with
the predicted label.
• example_idx = 401 specifies the index of the example in the test set.

11

• Processes and visualizes a different test image (at index 900) for classification.

• Allows inspection of another test image's classification result.

• Demonstrates flexibility in index selection (using negative indexing) for visualization

and validation.

Celebs_face_recognition

12

• Imports commonly used libraries for file handling (os, glob), numerical computations
(numpy), image processing (cv2), and visualization (plotly, matplotlib).
• Imports tools for progress tracking (tqdm) and model loading (load_model).

• Sets a random seed for reproducibility in any random operations.
• Defines image dimensions (160x160x3, where 3 represents RGB channels).

• Sets the root path to the dataset.
• Extracts and formats the names of individuals (from directory names).
• Counts the number of unique individuals and prints their names.

• Counts the number of images available per person by traversing subdirectories.
• Calculates and displays the total number of images in the dataset.

• Creates a bar chart using Plotly to visualize the distribution of the number of images per
individual.
• Adds a title to the chart and displays it.

13

• Selects 50 image paths per person, shuffles them, and initializes arrays for image and label
storage.
• Processes each image: reads, resizes, normalizes, and stores it along with its label.

14

• Displays a grid of images with their labels or predictions.
• Optionally performs face recognition and shows predicted labels alongside true labels.

15

16

This code processes images to generate face embeddings using a pretrained model:

1. load_image: Loads, resizes, and normalizes an image for model input.
2. image_to_embedding: Generates and normalizes a face embedding for the

image.
3. generate_avg_embedding: Processes multiple images to compute their average

face embedding, representing them as a single embedding.

• Loads a pretrained FaceNet model for generating 128-dimensional face embeddings.

• Randomly selects 10 images per person from directories (root_path).
• dir_names contains subdirectory names corresponding to persons.

• Creates a dictionary (database) where:
o Keys: Person names (person_names).
o Values: Average embeddings generated for their images using

generate_avg_embedding.

17

Compares two 128-dimensional embeddings:

• Computes the Euclidean distance (L2 norm) between embeddings.
• Returns the distance if it's below the threshold (match), else returns 0 (no match).

18

 Function: recognize_face

This function recognizes a face in a given image by comparing its embedding to a database of
known face embeddings.

Steps:

1. Generate Embedding:
o The function calls image_to_embedding to extract the embedding of the

input image using the pretrained model.
2. Compare Embeddings:

o Loops through the database dictionary (which contains known
embeddings).

o For each person in the database, compares their embedding with the input
image embedding using compare_embeddings.

3. Find Closest Match:
o Stores distances for all matches below the threshold.
o Returns the name of the person with the smallest distance.
o If no match is found (all distances exceed the threshold), returns "No Match

Found."

• Selects an image and its true label from the dataset.
• Predicts the label for the selected image using the recognize_face function.
• Displays the image along with the true label and predicted label.

19

This code evaluates the accuracy of a face recognition model:

1. Setup: Selects 50 random images and their labels.
2. Prediction: Uses recognize_face to predict the label for each image.
3. Comparison: Compares predicted labels to true labels and counts correct matches.
4. Accuracy Calculation: Computes accuracy as the percentage of correct predictions.
5. Result: Prints the model's accuracy.

• For each person, randomly selects 50 image file paths.
• Creates a database (large_database) with average embeddings for each person using
generate_avg_embedding.

o Displays data (images and labels) for verification using the
recognize_face function and the large_database.

20

• Randomly selects 100 images from all_images and corresponding labels from
all_labels.

• Iterates through the selected images and predicts labels using recognize_face.
• Compares true and predicted labels, updating the count of correct predictions.
• Computes accuracy as the percentage of correctly classified images.
• Prints the result.

• Creates a medium-sized database with 25 randomly selected images per person.

• Displays images and corresponding labels using the recognize_face function

and the medium/large database.

21

• Randomly picks 100 images and corresponding labels.
• Uses recognize_face to predict the label for each image and compares it with

the true label.
• Calculates and prints the model accuracy as a percentage.

• Creates a larger database with 65 images per person for more comprehensive
recognition.

22

This code evaluates face recognition accuracy:

1. Randomly selects 100 images from the dataset.
2. Predicts labels for each image using recognize_face with the medium-sized

database (med_database).
3. Compares predictions to true labels and counts correct matches.
4. Calculates accuracy as (correct predictions / 100) * 100.
5. Prints the model accuracy as a percentage.

23

References:

1. Kandhro, I.A., Alanazi, S.M., Ali, F., Kehar, A., Fatima, K., Uddin, M. and Karuppayah, S.,
2023. Detection of real-time malicious intrusions and attacks in IoT empowered cybersecurity
infrastructures. IEEE Access, 11, pp.9136-9148.Fathy, C., & Saleh, S. N. (2022). Integrating
Deep Learning-Based IoT and Fog Computing with Software-Defined Networking for
Detecting Weapons in Video Surveillance Systems. Sensors.
https://doi.org/10.3390/s22145075

2. Nizamudeen, S.M.T., 2023. Intelligent intrusion detection framework for multi-clouds–IoT
environment using swarm-based deep learning classifier. Journal of Cloud Computing, 12(1),
p.134.Norov, S. K. (2023). Intelligent Intrusion Detection Framework for Multi-Clouds – Iot
Environment Using Swarm-Based Deep Learning Classifier. https://doi.org/10.21203/rs.3.rs-
2409418/v1

3. Wang, G., Li, J., Wu, Z., Xu, J., Shen, J. and Yang, W., 2023. EfficientFace: an
efficient deep network with feature enhancement for accurate face
detection. Multimedia Systems, 29(5), pp.2825-2839.

4. Mamieva, D., Abdusalomov, A.B., Mukhiddinov, M. and Whangbo, T.K., 2023.
Improved face detection method via learning small faces on hard images based on a
deep learning approach. Sensors, 23(1), p.502.

5. Singh, S., Ahuja, U., Kumar, M., Kumar, K. and Sachdeva, M., 2021. Face mask

detection using YOLOv3 and faster R-CNN models: COVID-19
environment. Multimedia Tools and Applications, 80, pp.19753-19768.

https://doi.org/10.3390/s22145075
https://doi.org/10.21203/rs.3.rs-2409418/v1
https://doi.org/10.21203/rs.3.rs-2409418/v1

