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Devising an Ideal Network Slicing Ring Fencing Ratio
for Cloud Energy Infrastructure

Vinay Sriram Iyer
X23203595

Abstract

Disparate differences in total energy consumption by heterogeneous architec-
tures often magnify through designed network topologies in cloud energy data cen-
ters that contrast sharply against the actualised energy consumption. A prelimin-
ary correlation can be drawn by how network operators design high-quality ’Net-
work Slices’ composed of logical ring fences akin to Radio Access Networks(RAN’s)
through end-to-end network slicing that reduces the network ’churn’ often associ-
ated in large losses of energy consumption in cloud energy infrastructures. However,
certain limitations still exist with significant cutoffs in workload resource specific
requirements and the actualised energy consumption drawn from ’Network Slices’.
This paper proposes an ideal network slicing to ring fencing ratio through an Iter-
ative Heuristic Energy-Aware Non-Convex equation that optimises cloud architec-
tural management through optimal convergence in energy consumption with refined
computational execution time. Through subsequent iterative testing against a con-
sistent convergence criterion, the Iterative Heuristic Energy-Aware Non-Convex
equation reported an efficiency gain of 91.46% in total energy consumption when
benchmarked against a Heuristic AUGMENT Non-Convex Algorithm(Hossain and
Ansari. achieved efficiency gain of 63.89%) and Priority Selection Offloading Al-
gorithm(Anajemba et al. achieved efficiency gain of 58.6%). By benchmarking
speed in convergence with the overall energy consumption and refined compu-
tational execution time, a network-slicing ring-fencing ratio ensures a balance in
idealised energy consumption is met between the network architect, operator and
client.

Keywords - network topologies, energy efficiency, Network Slices
ring fences, convergence criterion, execution time

1 Introduction

Novel heterogeneous cloud topologies currently offering resource and workload resource
characteristics often fail to satisfy the quality of service (QoS) requirements sought by
end-users. Some of these infrastructural requirements that vary in traffic volume include
CPU utilisation, network transmission and disk bandwidth which is a substantial point of
concern for network operators to design application workload models according to Saxena
and Sivalingam (2022). Studies such as (Zhang, Kosta and Mogensen; 2023) have shown
that network operators can establish designs for workload resource efficient algorithms by
optimising such application specific parameters. Yet, certain offsets with overall resource
specific requirements still exist while optimising paradigms for architectural scenarios.
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Network operators tending to client demand for real-world applications desire differing
system specific requirements that result in large offsets of total energy consumption.
Clearly, an optimised solution for cloud energy models is desirable to network operators
on balancing application workload and workload resource specific requirements while
improving Quality of Service(QoS).

1.1 Motivation and Background

By defining high quality efficiently allocated ’network slices’ in independent 5G networks,
network architects are well aware of establishing designs for cloud topologies with the re-
quired key performance indicators shown in studies such as (Lorincz et al.; 2024). Like
a Radio Access Network(RAN), a ’Network Slice’ can be likened to an independent to-
pology drawn by ring-fencing techniques that constructs logical ring fences aiming on
balancing optimal resource allocation while idealising energy consumption. While ring-
fencing techniques may achieve a close-to-ideal energy efficiency, similar abnormalities
exist with lowered computational execution time or suboptimal resource coverage dis-
cussed in (Masoudi et al.; 2022). A better approach for cloud topologies is to ’map’
resources efficiently in ’high-quality’ network slices with improved ring fences by optim-
ising a computational resource, fence and overall slice ratio as much as possible. While
studies such as (Hossain and Ansari; 2021) and (Anajemba et al.; 2020) have described
Non-Orthogonal Multiple Access(NOMA) clustering applied to network slices with in-
creased channel gain and efficient computational offloading priority respectively, certain
cutoffs associated with disparate energy consumption still exist for cloud-centric architec-
tures. As both algorithms closely model the network slicing to ring fencing ratio through
convergence in energy consumption, an iterative heuristic energy-aware non-convex equa-
tion in this paper can prove advantageous by minimising the network ’churn’ as much as
possible in distributed, heterogeneous architectures.

Figure 1: Centralised orchestration-based f-RAN network access slicing in (Xiang et al.;
2017).
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1.2 Project Specification

By designing a solution specific uneven network slicing ring fencing architecture starting
from the root ’network slice’, network operators should be able to maintain a high level of
interaction with clients seeking user end services with minimised energy consumption and
task execution time. Based on the above requirement, this paper shall aim on determining
an answer to the research question below:

1.2.1 Research Question

An investigation has been conducted in this paper to determine a solution to the en-
ergy efficiency problem by providing a goal for idealised energy consumption through the
Iterative Heuristic Energy-Aware Non-Convex Equation for Cloud Energy Infrastructure:

”How well can cloud energy infrastructures optimise energy efficiency through
convergence in energy consumption in a network slicing ring fencing ratio de-
scribed by the iterative heuristic energy-aware non-convex equation? Can
network architects benefit from such an equation when designing scalable
cloud energy infrastructures for network operators to user centric services?”

1.2.2 Research Objective

The following experiments in this research paper shall address and validate the research
question above:
Objective 1: Preprocessing a dataset that contain the performance metrics of 1750 Virtual
Machines(VM’s) attached to fast storage area network (SAN) devices and slower Network
Attached Storage (NAS) devices.
Objective 2: Incorporating the uneven network slicing ring fencing architecture for the
desired iterative heuristic energy-aware non-convex equation, a heuristic AUGMENT
non-convex algorithm and a priority selection offloading algorithm through a simulation
environment by evaluating performance through convergence in energy consumption.
Objective 3: Assessing scalability for these three algorithmic programs in a simulation
environment and real-world testing by ensuring the iterative heuristic energy-aware non-
convex equation idealises speed in convergence with refined execution time as an optimised
solution.

1.2.3 Report Structure

The rest of this paper is arranged as follows: In Section 2, an overview of the literature
review shall examine the total energy consumption that incorporates iterative, heuristic
and energy-aware specifications against the inadequacies of the heuristic AUGMENT
non-convex algorithm and priority selection offloading algorithm. Section 3 shall de-
scribe the derivation of the iterative heuristic energy-aware non-convex equation along
with a description of the respective simulation environments. Section 4 shall outline the
algorithmic programs and convergence criterion for optimising sensitivity in energy con-
sumption. Section 5 shall provide a description of the incorporated algorithms in their
environmental simulation setups critical for benchmarking. The last two sections shall
examine the experimental results derived as a result of the research objectives along with
a summary of the research paper’s objectives and recommendations for future work to
be useful for academia and the cloud computing community.
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2 Related Work

A critical analysis of the derivation towards the iterative heuristic energy-aware non-
convex optimisation equation is necessary for evaluation by ensuring speed and value in
convergence of total energy consumption of the cloud model. The following sections shall
touch upon the major components necessary for implementation. In the first subsection,
the energy optimisation problem shall first be discussed in it’s formulation that jointly
allocates communication like task-to-VM mapping and computation like task schedul-
ing. In subsection 2.2, the benefit of achieving close-to-ideal optimisation with latency
constraints along with the drawbacks of the heuristic AUGMENT non-convex equation
shall be discussed here. Subsection 2.3 shall refine the overall resource allocation with
offloading along with the drawbacks of the priority offloading equation that iteratively
derives the refined total energy consumption equation here.

2.1 Overview of the Non-Convex Optimisation problem

Issues with Network Slicing Parameters: Transforming high-quality network slices
from designed scalable network topologies cannot closely optimise energy efficiency from
conceptualisation as issues exist with heterogeneous service requirements. Further discus-
sion in (Chien et al.; 2020) and (Kwak et al.; 2017) raises discussion with ultra-reliable,
low-latency communication(uRLLC) traffic influencing inter-edge traffic without account-
ing for heterogeneous extreme service requirements and fault-delay tolerance through
downstream service quality which further impacts overall performance.
Network Slices utilising resource-intensive computational network resources in smaller
modular architectures against slices with distributed workloads might ensure inconsist-
encies in striking a balance with idealised energy consumption and poor computational
offloading. (Foukas et al.; 2017) raises discussion on the poor flexibility of end-to-end
network slicing to jointly allocate parameters as network resources.

The Open Industry-Wide SLA standard and ’Functional Splitting’: By ful-
filling an ideal end-to-end slice that is fine-grained but conforms to a strict SLA might
suffer from interoperability issues and requirements that vary from vendor to vendor.
The required parameters incorporated in the model should account for adaptability while
not compromising on service quality. Designing network functions with the intention of
’functional splitting’ such as implemented caching in (Sriram et al.; 2019) could incor-
porate the required bandwidth for reducing the tradeoffs in overall energy consumption.
However, the end-to-end delay is still present such as content access delay and cache
induced congestion.

The Non-Convex Optimisation Equation: To idealise a holistic cloud energy frame-
work that fulfills the open-industry wide standards, the optimisation problem should
account for joint optimisation, communication and computation with SLA requirements
that are non-vendor centric. The idealisation of a non-convex expression that integrates
a central cloud, network slice and ring fence is insufficient without accounting for latency
constraints. The drawbacks of NOMA clustering and the incorporation of latency to
increase the search space of the derived optimisation equation shall be discussed in the
next section.
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2.2 Overview of the Non-Convex Heuristic Equation

Leveraging Desired Parameters for Non-Convex Optimisation: Recasting the
non-convex optimisation equation into a convex form by joint optimisation can be lever-
aged with certain parameters such as energy-aware constraints to facilitate a near-optimal
solution according to (Hossain and Ansari; 2021). However, present metrics such as data-
rate or throughput incorporated with communication techniques between network slices
may be insufficient to cope with transmit power according to (Buzzi et al.; 2016).

Increased Carbon Footprint of Central Cloud Models: While uRLLC traffic in
heterogeneous services offloads high-compute intensive tasks according to (Mao et al.;
2016), an absence of a centralised cooling cloud unit presents large inadequacies to con-
sistently refine energy consumption through iteration. Disparities in carbon-based energy
still exist with mission-critical devices incorporating heterogeneous services through cent-
ral cooling cloud units, with user-level services subjected to inadequate computational
data rate according to (Fehske et al.; 2011) and (Auer et al.; 2011).

Incorporating QoS and the Impact of NOMA: Network operators tasking ’high-
quality’ slices to clients may consider ’shaving’ off unnecessary slices to mitigate their
exponential rise in energy consumption or task execution time. While NOMA cluster-
ing proposes user grouping based on the maximum delay tolerance of slices, inconsistent
power levels leads to unfair resource allocation. ’High-Quality’ network slices incorpor-
ating NOMA cluster sizes with larger Nmax values such as the heuristic AUGMENT
non-convex algorithm discussed in (Hossain and Ansari; 2021) results in computational
overhead with aggregated network slices. Network operators should be able to consider
the specific frameworks that only contribute to optimal energy efficiency.

The Heuristic Non-Convex Equation: To balance the associated requirements with
efficient network slicing, end-to-end latency requirements ensures the required perform-
ance levels are met for cloud energy infrastructures. Incorporating Dmin and Dmax in the
non-convex equation ensures baseline performance levels are set to a defined threshold
and ring-isolation efficiency is balanced for the non-convex heuristic energy consumption
equation.

2.3 Overview of the Iterative Heuristic Energy-Aware Non-
Convex Equation:

Priority Offloading: Modeling an energy consumption equation on the basis of end-
to-end latency constraints seems sufficient to meet QoS in an optimised solution desiring
speed in convergence with refined execution time. However, high-compute computational
network resources suffers from poor capacity to facilitate communication with increased
aggregation and complexity of resource allocation. Computational network resources need
to evaluate tasks through constant inter-VM communication which mitigates tradeoffs in
energy consumption.

Incorporation of Dynamic Voltage Scaling(DVS): The joint allocation of heavier
workloads in resource computational network resources through heterogeneous architec-
tures with communication still remains an issue.
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Chip design technique accounts for energy consumption should be accounted for the non-
convex heuristic energy consumption equation with the correct architectural changes in
place.
The Iterative Heuristic Energy-Aware Non-Convex Optimisation Equation:
Induced delay with computational offloading between Smart Communicating Devices(SCD’s)
discussed in (Tao et al.; 2017) and (Anajemba et al.; 2020) and computational network
resources may lead to a significant increase in energy consumption through subsequent
iterative testing for the priority selection offloading algorithm. Incorporating Dynamic
Voltage Scaling(DVS) while solving multiuser offloading shall focus solely on energy con-
sumption through the iterative heuristic energy-aware non-convex optimisation equation.
Overall, the iterative heuristic energy-aware non-convex equation aims to address holistic
optimal energy-efficient cloud infrastructures to be fit for aggregation and academia.

2.4 Research Niche

2.4.1 Summary of Literature Review

The related research papers that represent the basis of the energy consumption equation
are compared based on their framework, scenario, advantages, and limitations in table 1.

Table 1: Summary of Reviewed Papers

References Framework Scenarios Advantages Limitations
(Chien et al.
2020)

Algorithm to adjust
capacity.

Augmented Reality
(AR).

Avoid over-
provisioning with
latency constraints.

Bottleneck for uRLLC
through enhanced mo-
bile broadband(emBB)
services.

(Kwak et al.
2017)

Bandwidth slicing
algorithm.

Video Streaming
Services.

Increase transmit
power and quality.

Poor delay-tolerance.

(Foukas et al.
2017)

5G mobile network
architecture.

Specialized sensors. Enhanced deployment. Poor flexibility in out-
side network criteria.

(Sriram et al.
2019)

’Functional Split-
ting’.

5G mobile stream-
ing.

Minimises power con-
sumption by cache in-
duced access delay.

Increased congestion.

(Hossain & An-
sari 2021)

NOMA Telemedical surger-
ies.

Reduces needless alloc-
ations.

Communication
impairment with
aggregated clusters.

(Buzzi et al.
2016)

Next generation
(5G).

Drones. Scaled ubiquitous con-
nectivity.

Increased communica-
tion capacity.

(Fehske et al.
2011)

Green Communica-
tion Mobile Tech-
nologies.

Broadband sub-
scriptions.

Increased penetration. Increased carbon foot-
print in data centers.

(Auer et al.
2011)

Energy efficient
evaluation frame-
work.

3G mobile comput-
ing.

Independent power
from traffic load.

LTE rollout with low
traffic workloads.

(Anajemba et
al. 2020)

Group offloading
for multi-access
MEC.

IoT smart devices. Faster data processing
through DVS.

Poor QoS without
end-to-end delay con-
straints.

(Tao et al.
2017)

Energy minimisa-
tion problem.

Real-time mobile
cloud computing.

Offloading on energy
consumption.

Lack of energy-aware
chip design techniques.
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3 Methodology

Based on the considerations identified in the literature analysis, the iterative heuristic
energy-aware non-convex optimisation equation aims on optimising the network slice -
ring fence - network resource energy efficiency and is described through a mathematical
outline and description of said associated components. Next, the preprocessing steps ne-
cessary for extracting relevant computational network resource data from the GWA-T-12
Bitbrains dataset was described altogether in 3.1. In 3.2, Assessing performance and eval-
uating scalability of the incorporated algorithmic programs through the uneven network
slicing ring fencing architectures was summarised by CloudSim Calheiros et al. (2011)
environment and real-world AWS testing respectively. Determining the captured metrics
relevant to the techniques and outputs produced at the final stage of implementation
shall provide a key idea of research and results in 3.3.

3.1 Proposed Iterative Heuristic Energy-Aware Non-Convex Op-
timisation Equation

The derivation of the total energy consumption equation that idealises the network slice
- ring fence - network resource ratio for cloud energy infrastructure aims on optimising
energy efficiency or Etotal through convergence and optimal resource allocation of all re-
spective components while satisfying the necessary constraints.
Non-Convex Optimisation Equation: The total energy consumption of the network
is expressed as the sum of energy consumption through the central cloud model, network
slice, ring fence and computational network resource to derive the non-convex optimisa-
tion equation. The equation accounted for CPU processing and energy consumption of
network resources including inter-network slice communication that factors in bandwidth
according to (Masoudi et al.; 2022). Centralised cooling associated with the core com-
putational tasks is provided as well. Based on the associated requirements, the energy
consumption is presented as:

Etotal =
1

ζCC

(
PCC
compute + PCC

cool

)
T +

PCC
proc

ζCC

∑
s∈S

∑
u∈Us

dCPU,u,rf +
∑

NS∈Network

∑
RF∈NS

(
1

ζRF

PRF
staticT +

∑
u∈Us

ENR
u,rf

)
+
∑
s∈S

∑
s′∈S

Bs,s′P
comm
s,s′ T +

∑
j∈S

∑
i∈Uj

(
αj
iD

j
max + βj

iD
j
min

)
+ τ

∑
s∈S

∑
u∈Us

S3tui
.

(1)
where ζCC is the power efficiency of the central cloud, T is the total operation time of all
network slices, with PCC

compute and PCC
cool representing the computational power and cooling

power consumption of the cloud respectively. 1
ζRF

and PRF
static represent the efficiency and

static power consumption of the ring fence respectively where
∑

RF∈NS

(
1

ζRF
PRF
staticT

)
rep-

resents the total energy consumption of ring fences assigned to a network slice.
∑

u∈Us
ENR

u,rf

is the energy consumption of a network resource u within each ring fence rf and
PCC
proc

ζCC

∑
s∈S
∑

u∈Us
dCPU,u,rf accounts for the energy consumed due to the CPU processing

of all network resources within each ring fence rf , considering processing power consump-
tion PCC

proc.
∑

s∈S
∑

s′∈S Bs,s′P
comm
s,s′ T represents the energy consumption due to commu-

nication between different network slices s and s′, considering bandwidth Bs,s′ and power
consumption P comm

s,s′ over time T .
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The search space of the iterative heuristic energy-aware non-convex optimisation equa-
tion was increased by incorporating QoS, latency constraints and energy-aware scheduling
through DVS as discussed in (Hossain and Ansari; 2021) and (Anajemba et al.; 2020).∑

s∈S τS
3tui

incorporates the power consumption of the CPU based on the dynamic
voltage scaling technique, where

∑
s∈S τS

3tui
is the parameter. τ is the coefficient sub-

ject to chip design, S is the computational speed of the CPU, and tui
is the task execution

time for user ui.
∑

j∈S
∑

i∈Uj
αj
iD

j
max and

∑
j∈S
∑

i∈Uj
βj
iD

j
min incorporates the minimum

and maximum latency constraints for users allocated to slices respectively.

3.1.1 GWA-T-12 Bitbrains Dataset

The GWA-T-12 Bitbrains Dataset contains the network performance metrics of 1750
VM’s including information about resource usage like CPU, memory, disk, network data
from fast storage network(fastStorage) and slower network attached storage(Rnd) devices.
For the relevant preprocessing in Python, the relevant resource performance metrics spe-
cific to energy consumption in the GWA-T-12 Bitbrains dataset such as CPU usage,
memory usage, disk usage, and network I/O are provided in steps below:
Understanding the Data Structure: Two dataset traces labelled fastStorage and
Rnd that consist of the network performance metrics of 1250 VM’s and 500 VM’s con-
nected to fast storage area network (SAN) devices and slower network attached storage
(NAS) devices were loaded from a specified directory with the separator ’;\t’ properly
splitting the data in the dataset. With libraries like Pandas for data manipulation, the
required parameters were renamed in the preprocessed program.
Filtering the relevant network performance metrics: The overall resource compu-
tational load was aggregated for each relevant trace per hour for a network computational
resource as the mean resource usage can fluctuate significantly as compared to daily usage
with energy consumption. With non-numeric values in the ’Timestamp’ column, CPU
core values rounded to either 0 or 1 and extracted relevant time-series data, irrelevant
fields were filtered out and normalisation with consistent scaling is ensured.
Loading and structuring the data for CloudSim: Through proper concatenation
of the relevant Dataframe, the preprocessed dataset from each network storage device is
converted into a format as preprocessed dataset programs. With columns like timestamp,
CPU, memory, disk, and network usage, the script saved the cleaned dataset in CSV files
labelled as preprocessed fastStorage.csv and preprocessed rnd.csv for inputs in CloudSim.

3.2 CloudSim and AWS Real-World Testing

3.2.1 CloudSim

CloudSim is a flexible, extensible simulation framework that provides benefits through
time effectiveness where network researchers and practitioners can simulate, model, as-
sess, and evaluate cloud-based applications for heterogeneous real-world cloud energy
infrastructures. CloudSim was written in Java for this project for extensively simu-
lating the incorporated algorithmic programs through the network slicing ring fencing
architecture. Key components of the CloudSim tool include the Datacenter Character-
istics, DatacenterBroker, NetworkTopology, Virtual Machines, and Cloudlets. For the
incorporated network slicing ring fencing architecture, network slices, ring fences and
computational network resources are defined as datacenters, hosts inside datacenters and
VM’s respectively.
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A cooling constraint central to the desired total energy consumption equation was simu-
lated indirectly in the architecture to model initial energy constraints for each algorithmic
program.

1. Datacenter: Represents the physical cloud resources which are later assigned
as ’Network Slices,’ discussed during the design specification. Incorporated data-
centers or physical machines(PM’s) are ring fences or hosts inside datacenters.
2. DatacenterBroker: Represents an intermediary between the cloud user and
cloud provider where the stated goal is to reduce QoS through overall optimal re-
sponse time.
3. NetworkTopology: Necessary information on the network configuration and
topology for the incorporated network slicing ring fencing architecture which is dis-
cussed in the design specification.
4. Hosts: Allocated the performance metrics central to the simulation including
CPU, memory, disk, and network bandwidth.
5. Virtual Machines: Modeled resource-specific information analogous to the
multi-objective optimisation energy approach in Choudhary and Perinpanayagam
(2022). The simulated resource definitions such as CPU, memory, storage and net-
work bandwidth were allocated to each network resource inside each ring fence.
6. Cloudlets: Created the tasks performed in datacenters or ’Network Slices’ to
virtual machines.

Figure 2: Layered CloudSim architecture that incorporates the uneven high-quality
network slicing ring fencing architecture as per Calheiros et al. (2011).

3.2.2 AWS Real-World Testing

Architectural Incorporation:
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The differences in energy consumption with convergence and resource allocation of net-
work slices can be more efficiently highlighted with two uneven multi-scale architectures
differing in complexity and size. By designing denser, uneven ’aggregated’ architectures
with high-quality network slices that accommodate ring fences with a larger number of
hosts, network architects benefit greatly from the efficiency gain in scalability testing
by seeking observations with differences in energy metrics. Clients seeking heterogen-
eous requirements such as deployed mobile virtual network functions(VNF’s) described
in Mesodiakaki et al. (2021) can benefit greatly with energy-efficient models spread across
aggregated slices. For AWS testing, Java was the primary language for the simulation.
The various network slices, ring fences with their computational network resources was
mimicked through their logical components which are virtual private clouds with sub-
nets, security groups and elastic compute cloud(EC2) instances. AWS Lambda served as
the counterpart to CloudSim IDE by evaluating each algorithmic program against each
other. AWS CloudWatch correspondingly provided the output of key performance met-
rics collected in real-time to validate the convergence of the desired iterative heuristic
energy-aware non-convex optimisation equation. An AWS S3 Bucket served as a means
of storage for the output of the algorithmic programs collected at the end of each Lambda
Test event for minutely examining the performance metrics and respective logs.

3.3 Performance Metrics

To efficiently reduce tradeoffs between energy consumption and system efficiency that
satisfies cloud energy model requirements, optimising paradigms such as convergence in
energy consumption should closely balance user and system requirements with overall re-
fined computational network resource execution time. Some important metrics involved
include task completion time, energy consumption, total energy consumption with cool-
ing, response time, iteration time and average iteration time in the table below:

Table 2: Performance Metrics Description and Justification

Performance Metric Description Justification
Task Completion Time Time taken for overall task completion for

each algorithmic program
Evaluates and assesses each algorithmic
program’s ability to handle tasks effi-
ciently.

Energy Consumption Measured the total energy used dur-
ing task execution, inter-network resource
communication and offloading for each al-
gorithm.

Highlights the energy consumption of each
algorithmic program.

Cooling Power Con-
sumption

Cooling constraint incorporated indirectly
to maintain thermal stability for each net-
work slice.

Highlights the energy constraints associ-
ated with inefficient energy usage imposed
by inter-slice communication and associ-
ated components.

Total Energy Consump-
tion with Cooling

Total energy usage from all logical com-
ponents of the simulation.

A holistic view of energy consumption
for evaluating performance and assessing
scalability for each algorithmic technique.

Iteration Time Time taken for one iteration of the al-
gorithm.

Gauges the overall computational effi-
ciency for each algorithmic customisation.

Average Iteration Time Average time taken through the number
of iterations required for each algorithm
to converge.

Compares the computational time for
each algorithm by ensuring a fair criteria
for convergence.

Convergence Time Overall time taken for the algorithm for
convergence.

Ensuring overall effectiveness of the net-
work slicing ring fencing ratio with con-
vergence speed.
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4 Design Specification

4.1 Proposed Architectural Diagrams

Two architectural diagrams representing the implementation of the uneven network sli-
cing ring fencing architecture are provided below:

Figure 3: A simplistic representation of an uneven high-quality network slicing ring fen-
cing architecture. The equation simulated different configurations of network slices with
a varying number of ring fences and network resources assigned dynamically depending
on the user requirements.

Figure 4: An aggregated representation of an uneven high-quality network slicing ring
fencing architecture. The equation was utilised to simulate an aggregated number of
network slices and respective components by assessing increased resource utilisation.

11



4.2 Algorithmic Incorporation

4.2.1 Iterative Heuristic Energy-Aware Non-Convex Algorithm

Algorithmic customisations: The following equation was translated in Java code by
making use of the equation and it’s respective parameters.
Since the iterative heuristic energy-aware non-convex algorithm has an existing large
search space with the evaluation of it’s architectural components and specifications as
detailed in Anajemba et al. (2020), incorporating additional discrete variables like task
scheduling and task-to-VM mapping helped tested the threshold of comparison against
other algorithmic programs.

Table 3: Discrete variables for increased complexity

Performance Metric Description Justification
taskExecutionTime Facilitated task scheduling for a VM based

on the chip design technique.
Assesses and refines the execution time by
energy-aware scheduling.

commBandwidth Classified tasks with bandwidth due to
communication from network slice-to-
slice.

Models the total network energy con-
sumption for each slice’s energy consump-
tion according to Masoudi et al. (2022).

4.2.2 Heuristic AUGMENT Non-Convex Algorithm

Algorithmic customisations: The heuristic AUGMENT non-convex algorithm primar-
ily utilised a search approach with the sorted network slices in ascending order of max-
imum latency with an intention on minimising energy consumption. Aspects like NOMA
clustering to UE’s and inter VM-VM communication modeled the incorporated program
to determine the degree of convergence in energy consumption.

Table 4: Discrete variables for an increased search space

Performance Metric Description Justification
dynamicBandwidth Adjusted for current load and task re-

quirements with dynamically adjusted
bandwidth based on a task size factor.

Can maximise energy efficiency in down-
stream networks as described in Abuajwa
and Mitani (2024).

bandwidthPenalty Induced latency-based penalties for dis-
parate bandwidth scenarios.

Can simplify complex network rela-
tionships and improve the performance
through power allocation according to
Huang et al. (2019).

4.2.3 Priority Selection Offloading Algorithm

Algorithmic customisations: By focusing on the criticality of improving throughput
through latency, channel quality with offloading computational tasks between SCD’s is a
major focus of the priority selection offloading algorithm as described in (Anajemba et al.;
2020). With CloudSim, SCD’s and offloaded tasks was simulated as VM and cloudlet
behavior.

Table 5: Discrete variables for an increased complexity

Performance Metric Description Justification
latencyPenalty Task execution was greatly prioritised

based over response time constraints after
computing the local execution energy and
transmission energy.

Can cope with the multi-access character-
istics of heterogeneous networks by indu-
cing minimised energy consumption as de-
scribed in Zhang et al. (2016).

12



4.2.4 Consistent Convergence Criterion:

For each algorithm, a consistent convergence criterion ensured a fair comparison of effect-
iveness by assessing the performance of each algorithm with the environmental conditions.
This single convergence threshold value ϵ denoted as 0.01 was set as 1% of the initial total
energy consumption to refine the sensitivity of each algorithmic program. By comparing
tests with varied parameter values in the re-run algorithmic programs through iterative
testing, the defined threshold ensured the desired energy consumption stabilises over a
certain threshold through convergence.
Steps for Evaluation:

Figure 5: Step-by-step method for ensuring the optimised solution within precision
limits.

5 Implementation

The implementation of the research techniques on evaluating performance and assessing
scalability against all algorithmic programs were primarily carried out to demonstrate the
efficacy in energy efficiency through the network slicing ring fencing equation. Through
an environmental setup, CloudSim is a vital part of this experimental verification that
gauged all sources specific to energy consumption and processed execution time. In
addition to fulfilling all the prerequisite criteria, a CloudSim IDE setup benchmarked
speed in convergence with refined execution time of all energy sources specific to the
algorithmic programs in scalable, architectural setups. The incorporated algorithmic
programs and preprocessed dataset programs were primarily written in Java with Java17
and CloudSim SDK as managed dependencies for real-world AWS setup and testing,
which shall be discussed later in this section.
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5.1 Tools and Technologies

The following tools and technologies were utilised in evaluating and benchmarking the
iterative heuristic energy-aware non-convex optimisation equation against the respective
algorithmic techniques:

• Eclipse IDE 2024-03 (4.31.0)

• CloudSim Toolkit 3.0.13

• Python 3.12.2

• Java17

• NetworkSlicing VPC

• NetworkSlice Subnet

• RingFence SecurityGroup

• NetworkResource VM

• AggregatedLambdaNetworkSlicing

• AggregatedMetricsMonitor

• AggregatedMetricsLogs

CloudSim Configurational Settings: This research paper utilised CloudSim 3.0.3
toolkit to benchmark each algorithmic program against each other for the desired fi-
nal energy consumption set by the desired convergent limit ϵ. Various procedures like
energy-aware latency-constraint scheduling, NOMA non-convex clustering for network
slicing, computational task offloading can be efficiently evaluated through algorithmic
performance and speed in a simulating environment. Specifications for the tests were
conducted on a 11th Gen Intel(R) Core(TM) i5 processor and Windows 11 Pro platform.

Table 6: Configurational settings for CloudSim 3.0.3 IDE

Parameter Property Value
Datacenters Size 1000

RAM (MB) 64
MIPS 5
BW (mbps) 100
pesNumber 1

Virtual Machines MIPS 5
RAM (MB) 256
BW (mbps) 1000
Storage (MB) 100000

Cloudlets File Size 100
Output Size 100

14



5.2 Algorithmic Implementation with CloudSim

5.2.1 Iterative Heuristic Energy-Aware Non-Convex Algorithm

The defined objective specific energy consumption equation of this research paper de-
scribed as an algorithm satisfied the degree of convergence most efficiently against the
compared algorithmic techniques in the step-by-step implementation below.

Algorithm 1 The Iterative Heuristic Energy-Aware Non-Convex Pseudocode
//Step 1: Initialize the Parameters
Set simulation environment with parameters for energy consumption with simulation start and end times.

//Step 2: Create Datacenters and Initialize Datacenter Broker
for each network slice in network slices do

Define hosts with Processing Elements (PEs), RAM, Bandwidth, storage with
hosts. Configure DatacenterCharacteristics and Datacenter.

end for
for each ring fence in a network slice do

Define VMs with MIPS, RAM, Bandwidth, Image Size, Number of PEs, VMM,
and add VMMs to the broker’s list.

end for

//Step 3: Load Cloudlets from Preprocessed Dataset and Submit Corresponding
VMs and Cloudlets
Read data from preprocessed CSV files fastStorage and rnd.
for each data row do

Extract CPU usage, cores, and other metrics. Create Cloudlets with Length,
PEs, Input and Output sizes and add the Cloudlets to the broker’s list.

end for
Submit VM list and Cloudlet list to the broker.

//Step 4: Simulate Inter-VM Communication
for each predefined VM-to-VM communication pair do

Simulate bandwidth usage, compute and aggregate communication energy
consumption.

end for
for each isolated VM do

Add idle energy consumption to total energy.
end for

//Step 5: Start CloudSim Simulation and Collect the Simulation Results
Start the simulation to execute all Cloudlets. Stop the simulation once all Cloudlets are processed and retrieve
processed Cloudlets from the broker with the displayed results (execution time, start time, finish time).

//Step 6: Calculate Energy Consumption
Compute and cooling energy: pComputeCC + pCoolCC/zetaCC.
Static power energy: pStaticRF/zetaRF .
Processing power energy: pProcCC × CPUTime.
Communication energy: commPower × commBandwidth.
Latency and DVS energy: τ · cpuSpeed · (dynamicScalingFactor)3 · CPUTime.
Add cooling overhead: CoolingPower = TotalEnergy × CoolingFactor.

//Step 7: Log and Write Results
Print energy consumption results: Total energy, cooling power, and total energy with cooling and the detailed
results to an output file with the terminated CloudSim environment.

5.2.2 Heuristic AUGMENT Non-Convex Algorithm

The following non-convex algorithm was proposed to incorporate network-slice user aware
grouping for NOMA with resource allocation in (Hossain and Ansari; 2021). With the
components incorporated through the network slicing ring fencing architecture, the energy
consumption was simulated to model the iterative heuristic energy-aware non-convex
algorithm described earlier.
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Algorithm 2 The Heuristic AUGMENT Non-Convex Algorithmic Pseudocode
// Step 1: Initialize Simulation Environment
Set up CloudSim environment and configure start and end times.

// Step 2: Create Datacenters and Initialize Broker
for each network slice do

Define hosts with PEs, RAM, Bandwidth, and Storage. Configure Datacenters and
DatacenterCharacteristics with Datacenter through VM and Cloudlet Assignments..

end for
for each ring fence in all slices do

Define VMs with MIPS, RAM, Bandwidth, Image Size, and PEs. Add VMs to broker’s list.
end for

// Step 3: Load Cloudlets from Preprocessed Dataset and Submit Corresponding VMs
and Cloudlets
Read task data from preprocessed CSV files fastStorage and rnd.
for each data row in dataset do

Extract CPU usage, cores, and other metrics. Create Cloudlets with Length, PEs, Input, Output
sizes and add Cloudlets to the broker’s list.
end for

// Step 4: Simulate Inter-VM Communication
for each predefined VM-to-VM communication pair do

dynamicBandwidth = bandwidth * (1 + randomFactor).
bandwidthPenalty = penaltyFactor, if dynamicBandwidth <threshold.

= 1.0, otherwise.
communicationEnergyCost = bandwidth * energyCostMultiplier.
transmissionPower: totalEnergy += bandwidthPenalty * transmissionPowerBase.
totalEnergy += communicationEnergyCost.
totalEnergy += bandwidthPenalty * communicationEnergyCost * adjustmentFactor.
totalEnergy += transmissionPowerBase * adjustmentFactor.

end for
for each isolated VM do

totalEnergy += idleEnergyConsumption.
end for

// Step 5: Execute Simulation and Collect Results
Start the simulation to execute all Cloudlets. Retrieve processed cloudlets from the broker with the
displayed results at the end of the simulation (e.g., execution time, start time, finish time).

// Step 6: Calculate Total Energy Consumption
totalEnergy += processingPower * CPUTime.
CoolingPower = totalEnergy * CoolingFactor.
Add cooling overhead to total energy.

// Step 7: Log and Write Results
Print energy consumption results: Total energy, cooling power, and total energy with cooling with the
detailed results to an output file with the terminated CloudSim environment.

5.2.3 Priority Selection Offloading Algorithm

To tie in with the network slicing ring fencing architecture, offloading priority based
on resource availability closely models energy consumption to be benchmarked for this
algorithmic program.
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Algorithm 3 The Priority Selection Offloading Algorithmic Pseudocode
// Step 1: Initialize the Simulation Environment
Initialize the CloudSim environment with one user. Configure simulation start and end times.

// Step 2: Create Datacenters (Representing Network Slices)
for each datacenter do

Define hosts with PEs, RAM, Bandwidth, Storage, and configure DatacenterCharacteristics.
end for

// Step 3: Create Datacenter Broker with created Virtual Machines (VMs)
Instantiate a broker to manage VM and Cloudlet assignments.
for each VM do

Define VMs with MIPS, RAM, Bandwidth, Image Size, and Number of PEs and add
VMs to the broker’s list.

end for

// Step 4: Load Cloudlets from Preprocessed Dataset
Read task data from preprocessed CSV files.
for each row in dataset do

Extract task metrics like CPU usage, cores, input size and output size.
Create Cloudlets and add them to the broker’s list.

end for

// Step 5: Simulate Offloading and Communication
for each VM in the list

for each Cloudlet do
localTime = cloudletLength / vmMIPS.
localEnergy = localTime * energyCostFactor.
transmissionEnergy = transmissionPower * cloudletLength / systemChannelGain.
latencyPenalty = latencyFactor * (localExecutionTime - transmissionEnergy).
localEnergyConsumption = localEnergyConsumption + latencyPenalty.
Local Execution and Offloading Energies:
if localEnergy <transmissionEnergy then

Add Offloading Energy to Total Energy.
totalEnergy += transmissionEnergy. Submit the Cloudlet
to the broker for offloading.

else
Add Local Execution Energy to Total Energy:
totalEnergy += localEnergyConsumption

end if
end for

end for

//Step 6: Simulate VM-to-VM communication based on network slicing ring fencing
architecture
for each VM-to-VM connection do

communicationEnergy += bandwidth * energyMultiplier.
Add communication energy to Total Energy.

end for
for each isolated VM do

Add constant idle energy consumption to Total Energy.
end for

//Step 7: Start CloudSim Simulation and calculate Energy Consumption with Results.
Start and stop the simulation to process and execute all Cloudlets.
coolingPower = totalEnergy * coolingFactor.
totalEnergyWithCooling = totalEnergy + coolingPower.
Print Energy consumption results: Total Energy, Cooling Power and Total Energy with Cooling for the
desired results to an output file with the terminated CloudSim environment.

17



5.3 CloudSim Implementation and AWS Environmental Setup

To achieve the experimental objectives on benchmarking each algorithmic program on
the basis of assessed scalability and evaluated performance against a consistent conver-
gence criterion, CloudSim and AWS real-world testing were incorporated as simulation
environments. Through the creation of simulation environments, cloud data centers can
be setup to understand all energy estimates where the iterative heuristic energy-aware
non-convex algorithmic program proved to be most efficient for all experiments. The
architectural diagram representing the implementation of the aggregated uneven network
slicing ring fencing architecture in CloudSim and AWS were provided in the configuration
manual respectively.

6 Evaluation

The following section examined three major experimental results conducted on the basis
of optimising the network slicing ring fencing ratio through the iterative heuristic energy-
aware non-convex equation against a convergence threshold. The first experiment evalu-
ated the results obtained by preprocessing computational network resource metrics from
fast storage network(fastStorage) and slower network attached storage(Rnd) devices into
their respective preprocessed files. The next section dealt with the limitations of results
derived by the initial incorporated algorithmic programs. The third section critically eval-
uated the results obtained by the aggregated scalable program counterparts in CloudSim
and AWS real-world testing. The ideal iterative heuristic energy-aware non-convex equa-
tion to be adapted as a model based on the results of the experiments shall be provided
in the last subsection.

6.1 Experiment 1: Preprocessing ’GWA-T-12’ Bitbrains

By the consideration of URLLC according to (Farreras et al.; 2024), preprocessing data-
sets of computational network resource data with an allocation of nodes is a good starting
point for this section.

Figure 6: Computational Network Resource Data for the Preprocessed Dataset
’GWA-T-12 Bitbrains’.
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The following experiment was conducted on CloudSim 3.0.3 toolkit with Python
3.12.2. The network resource metrics to be analysed in this section are CPU Usage,
Disk IO, Net Band and Memory Usage that correspond to CPU Usage, Disk Usage, Net-
work Bandwidth and Memory Usage in Figure 6. preprocessed fastStorage.csv resulted
in a CPU and memory usage of around 1172 MHz and 559 MB respectively while pre-
processed rnd.csv resulted in a CPU and memory usage of 815 MHz and 508 MB re-
spectively. By reporting a 43.87% decrease in CPU execution with an efficiency gain of
memory utilisation by 9.12% in figure 6 aggregated workloads with distributed compu-
tational network resources can adopt preprocessed rnd.csv for lower computational task
execution time. Despite possessing 1463 less tasks, preprocessed fastStorage.csv cannot
be ruled out for preprocessing as it is more efficiently suited for heavier workloads dis-
tributed in heterogeneous architectures.

With an improved network bandwidth of 25.93% for preprocessed rnd.csv as compared
to preprocessed fastStorage.csv, the network bandwidth should increase exponentially
with a larger number of computational network nodes for those slices, according to (Far-
reras et al.; 2024). The iterative heuristic energy-aware non-convex equation can idealise
scenarios with network resources possessing greater computational offloading and task
distribution per network resource. This largely aligns with the preliminary goal in this
paper to preprocess datasets on scalable, distributed architectural infrastructures such as
the aggregated network slicing ring fencing architecture in Experiment 3.

6.2 Experiment 2: Evaluating Baseline Simulation Performance

The following two experiments were also conducted on CloudSim 3.0.3 toolkit with Java
17. Normalising speed through a convergence threshold has demonstrated novel ap-
proaches such as Zhang et al. (2023) which describes a deep layer reinforcement NOMA
learning algorithm in 5G network slicing that ensures optimisation in the guise of task
offloading. A convergence threshold can help idealise the approach of iterative calculation
to convergence in energy consumption for the respective algorithms which is the goal in
this section.

Figure 7: Energy Metrics for the Baseline Algorithmic Programs with Strict Guided
Search Space and Increased Search Space’.
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Figure 8: Time Metrics for the Baseline Algorithmic Programs with Strict Guided
Search Space and Increased Search Space’.

The heuristic AUGMENT non-convex algorithm and priority selection offloading al-
gorithm reported energy metrics of 10355.299 kJ and 9909.403 kJ respectively when
iterating for convergence in energy consumption by figure 7. Additionally, the iterative
heuristic energy-aware non-convex algorithmic approach took three iterations while the
other algorithmic approaches took two or less in figure 7. By ensuring the same system
requirements, the new baseline heuristic AUGMENT non-convex algorithm and priority
selection offloading algorithm reported a total energy consumption at around 10680.219
kJ, 2464.300 kJ and 10738.070 kJ respectively for the last iteration in figure 7 with a
larger search space such as dynamic bandwidth penalty and delay specific penalties ex-
plored in (Zhang, Kosta and Mogensen; 2023). This indicated an efficiency loss and gain
of 76.20% and 8.36% for the heuristic AUGMENT non-convex algorithmic program and
priority selection offloading algorithm respectively when compared against the restric-
ted guided algorithmic equivalent. Akin to total energy consumption, similar disparities
for the heuristic AUGMENT non-convex algorithm and priority selection offloading al-
gorithm were reported at 990102.83 seconds and 8888.34 seconds for task completion time
in figure 8. Large disparities in total energy consumption and task completion time for
the heuristic AUGMENT non-convex algorithmic program with an increase in iterations
for the priority selection offloading algorithm points to initial inadequacies to idealise the
desired ratio.

While the iterative heuristic energy-aware non-convex program reported an efficiency
gain of 3.38% from 11054.202 kJ to 10680.219 kJ in the same manner, the consistency in
sensitivity for total energy consumption mostly fell within acceptable limits. Thus, pre-
cision tied to an optimised solution can be linked to the iterative heuristic energy-aware
non-convex algorithm which achieved speed in convergence through consistency for net-
work architects to design aggregated cloud models with varied system requirements.
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6.3 Experiment 3: Aggregating Scalability through Real-World
Applicability

The parameters of the baseline incorporated programs were updated to reflect the ag-
gregation of the uneven network slicing ring fencing architecture on CloudSim 3.0.3
and us-east-1(North Virginia Region) on AWS. Three Lambda test events named Ag-
gregatedIterLambdaTest, AggregatedHeurLambdaTest and AggregatedPriLambdaTest
were run on ’AggregatedLambdaNetworkSlicing’ Lambda respectively towards the it-
erative heuristic energy-aware non-convex algorithmic program, heuristic AUGMENT
non-convex algorithmic program and priority selection offloading algorithm. Custom
dashboards for the energy metrics were created at the end of each simulation.

Figure 9: Energy Metrics for the Baseline Algorithmic Programs with Strict Guided
Search Space and Increased Search Space’.

The iterative heuristic energy-aware non-convex algorithmic program, heuristic AUG-
MENT non-convex algorithmic program and priority selection offloading algorithmic pro-
gram all reported total energy consumption of 912.958 kJ, 10168.261 kJ and 26845.584 kJ
in figure 9. The priority selection offloading algorithm reported a 150% increase in total
energy consumption in figure 9 while the heuristic AUGMENT non-convex algorithm
reported an efficiency gain of 1.81% in figure 9. However, the reported convergence in
two iterations as compared to three iterations makes it less favourable as compared to
the iterative heuristic energy-aware non-convex algorithmic equation.
The iterative heuristic energy-aware non-convex algorithmic program fulfills the level of
consistency with an efficiency gain of 91.45% by total energy consumption that proves
advantageous as compared to the heuristic AUGMENT non-convex algorithm and prior-
ity selection offloading algorithm described in (Hossain and Ansari; 2021) and (Anajemba
et al.; 2020). With an inherently larger search space such as energy-aware scheduling and
latency constraints, the iterative heuristic energy-aware non-convex equation can closely
model the network slicing ring fencing ratio for heterogeneous uneven network slicing ring
fencing architectures.
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6.4 Discussion

From the results of the experiments, it is clear that the iterative heuristic energy-aware
non-convex equation is more efficiently suited for heterogeneous architectures with varied
user and system requirements depending on the need of the client. By preprocessing
dissimilar datasets that evaluates performance and assesses scalability through simulation
environments, the optimisation equation demonstrated consistency in convergence by
energy consumption. Discretisation for the heuristic AUGMENT non-convex algorithm
and priority selection offloading algorithm resulted in limitations with disparate results.
With an increased search space defined by an optimised solution, the iterative heuristic
energy-aware non-convex optimisation equation ensures it’s suitability for aggregated
network slicing ring fencing architectures as well as smaller uneven architectures with
resource-heavy workloads.

7 Conclusion and Future Work

The main purpose of this research was to benchmark the iterative heuristic energy-aware
non-convex optimisation equation that refines convergence with energy consumption with
computational execution time to idealise the network slicing ring fencing ratio. By eval-
uating baseline performance and assessing scalability against a consistent convergence
criterion, the iterative heuristic energy-aware non-convex equation was validated as a
stable, optimised solution for heterogeneous architectures. Incorporating discretisation
such as latency constraints and DVS through energy-aware scheduling for the optim-
isation equation proved advantageous in contrasting architectural systems. The same
experimental objectives for the heuristic AUGMENT non-convex algorithm and prior-
ity selection offloading algorithm resulted in largely disparate performance metrics that
might violate SLA constraints. Designing dense uneven network slicing ring fencing archi-
tectures can exponentially raise costs if proper cost management of allocated resources
is not ensured by the client. Adopting AWS Auto-Scaling for non-critical aggregated
workloads is one way of mitigating high costs for carbon footprint reduced data centers.
Meaningful recommendations for the future include adopting least privilege access with
IAM policies and addressing security gaps through vulnerability assessments.
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