
 
 

 
 
 
 
 
 
 
 
 
 

 

Enhancing the Efficiency of Heart Disease Prediction 

Using Cloud Machine Learning Techniques 
 
 
 
 

 

MSc Research Project 
 

Cloud Computing 
 
 

 

Hui Huang  

X22180966 
 
 
 

School of Computing 
 

National College of Ireland 
 
 
 
 
 
 
 
 
 
 
 

Supervisor: Ahmed Makki 



 

 
National College of Ireland 

 

MSc Project Submission Sheet 

 

School of Computing 

 

Student 

Name: 

 

………….…Hui Huang……………………………………………………………… 

 

Student ID: 

 

……………x22180966……………………………………………………………………………..…… 

 

Programme: 

 

……………MSc in Cloud Computing…… 

 

Year: 

 

………2024-2025.. 

 

Module: 

 

……………Research Project……………………………………………………….……… 

 

Supervisor: 

 

……………Ahmed Makki……………………………………………………………………….……… 

Submission 

Due Date: 

 

………………12th December 2024…………………………………………………….……… 

 

Project Title: 

Enhancing the Efficiency of Heart Disease Prediction Using Cloud 

Machine Learning Techniques 

 

Word Count: 

 

……………7352…………… Page Count……………23……………………….…….. 

 

I hereby certify that the information contained in this (my submission) is information 

pertaining to research I conducted for this project.  All information other than my own 

contribution will be fully referenced and listed in the relevant bibliography section at the 

rear of the project. 

ALL internet material must be referenced in the bibliography section.  Students are 

required to use the Referencing Standard specified in the report template. To use other 

author's written or electronic work is illegal (plagiarism) and may result in disciplinary 

action. 

 

Signature: 

 

……………… …………………………………………………………………………………… 

 

Date: 

 

…………………11th December 2024………………………………………………………………… 

 

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST 

 

Attach a completed copy of this sheet to each project (including multiple 

copies) 

□ 

Attach a Moodle submission receipt of the online project 

submission, to each project (including multiple copies). 

□ 

You must ensure that you retain a HARD COPY of the project, both 

for your own reference and in case a project is lost or mislaid.  It is not 

sufficient to keep a copy on computer.   

□ 

 

Assignments that are submitted to the Programme Coordinator Office must be placed 

into the assignment box located outside the office. 

 

Office Use Only 

Signature:  

Date:  

Penalty Applied (if applicable):  



1 
 

 

 
 

Enhancing the Efficiency of Heart Disease Prediction 

Using Cloud Machine Learning Techniques 
 

Hui Huang  

x22180966  
 

 

Abstract 

                                                                                                                             

Heart disease has been a critical focus of international medical attention as it remains 

to be the major cause of global death. Accurate heart disease prediction is a useful part 

of medical solutions. Traditional prediction approaches often face efficiency limitations 

in terms of prolonged training time, suboptimal resource utilization, and difficulties in 

processing large-scale datasets. To address these challenges, this study investigated the 

potential advantages of using cloud machine learning techniques to enhance the 

efficiency and performance of heart disease prediction. 

Logistic Regression, Random Forest, and XGBoost algorithms were implemented 

with automated hyperparameter tuning to optimize models in both environments.  

Random Forest algorithm was used to assess the impact of parallel processing on various 

nodes and processes. The results show significant improvements in distributed 

computing and automated hyperparameter tuning scenarios. The training time and 

resource utilization have been reduced by 75.2% and 18.9 % in Random Forest training 

with the configuration of 2 nodes and 2 processes for each node, while the accuracy and 

ROC AUC score increased by 0.30% and 0.25%. In the setup of hyperparameter 

optimization in a cloud-based environment, the training time in Logistic Regression and 

XGBoost has been reduced by 55.4% and 8.7 compared with a single-node local 

environment.   

This study offers a practical solution for healthcare institutions to employ cloud 

computing for medical decisions or their clinical applications, especially those with 

restricted computational resources. It aims to narrow the gap between limited 

computational resources and the increasing demand for big data in heart disease 

instances. 
 

1 Introduction              

1.1 Background 

According to the estimated data, around 17.9 million people die from cardiovascular diseases 

annually (Gaidai et al. 2023). Celermajer et al. (2012) argued that early detection and 

efficient medical treatment are useful approaches to reduce the risk of patients suffering from 

heart disease attacks.  

 

Heart disease prediction modeling is considered a critical tool for medical institutions to 

detect cardiovascular diseases (CVDs) and facilitate timely medical decisions. An increasing 

number of institutions are adopting Artificial Intelligence (AI) to assess the health risks of 

patients to develop personalized treatment plans and optimized medical resource allocation. 

A model of prediction of sudden cardiac arrest with hypertrophic cardiomyopathy developed 
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by the Mayo Clinic presents a more accurate forecast of sudden cardiac arrest than traditional 

methods (Bhowmik et al., 2024).  

 

However, considerable attention must be paid when facing increasing various formats of 

reports and large-size medical examination images being issued by different institutions, the 

performance and model training time are affected by the limited scalability in the local 

prediction environment. These limitations are typically reflected in the model's efficiency and 

larger-scale data processing ability. Comprehensive cloud machine learning techniques with 

distributed processing capabilities and optimized resource management facilitate efficient 

solutions to address these challenges and provide integrated implementations for future 

research in healthcare applications. This research demonstrates how to enhance the 

performance and efficiency in model training with distributed computing configuration and 

further hyperparameter optimization setups and provides experimental evidence for 

addressing the restricted resource challenges of medical institutions. 

1.2 Research Challenges 

A challenge in heart disease prediction is the efficiency of model training and massive data 

processing. The main downside of heart disease prediction in an on-premise environment is 

that limited local resources lead to constraints in processing speed and resource utilization. 

According to Rajkomar et al. (2018), predictive modeling faces increasing demand for data 

preprocessing, merging, and data cleaning which accounts for 80% of the modeling workload, 

while there remains a need to improve the scalability in local systems. The inefficient 

resource utilization in local systems often makes it impractical to maintain scalable to handle 

large-scale datasets or more complex modeling. 

 

Algorithms such as Logistic Regression (LR), Random Forest (RF), and XGBoost are 

commonly utilized in heart disease prediction for their nature of classification and regression 

abilities that deal with various data patterns. However, these models are limited by the 

computational constraints in the local environment. Similar to the computational challenges 

of ECG interpretation tasks with artificial neural networks (Hannun et al., 2019), these 

limitations restrict their scalability and efficiency when handling large-scale datasets.  

 

Employing cloud machine learning techniques on platforms such as Azure Machine Learning 

Studio provides an effective solution to address these limitations. The scalability, efficiency, 

and performance of heart disease prediction can be enhanced using distributed computing and 

efficient resource management in a cloud-based environment like Azure. 

 

1.3 Research Objectives 

This paper aims to address the gap in the literature by conducting a comparative evaluation of 

on-premise and cloud-based environments for heart disease prediction. The aim of this study 

is to present the practical advantages of the cloud-based platform advantages, in terms of 

shortening training time and improving performance in models. The implementation of this 
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project is expected to benefit clinical decision-making and facilitate the development of new 

solutions in medical artificial intelligence. 

 

This paper aims to answer the primary research question: Does cloud-based machine learning 

significantly reduce training times compared to local implementations in healthcare 

prediction models? This question explores the potential abilities of cloud machine learning in 

the medical industry. By utilizing distributed computing and available resources, Azure 

Machine Learning Studio provides an efficient solution to overcome the challenge in 

modeling that is associated with limitations in computing resources and scalability. The study 

aims to evaluate whether cloud-based modeling can improve processing speed and predictive 

performance as applied to large-size healthcare datasets. 

 

This study compared the performance of logistic regression, random forest, and XGBoost 

models in local and cloud environments, and qualified the impact of cloud computing on 

processing efficiency and performance in modeling through metrics such as training time, 

accuracy, F1- score and recall score. In this context, we tried to present cloud computing has 

its advantages in real-world medical practice. 

1.4 Research Overview 

This study has two limitations. Firstly, the datasets used in the implementation may be not a 

valid representative of the real-world heart disease data, and the generalizability of the 

research results could be affected. The second is the comparability between local and cloud-

based environments. Although efforts are made to maintain hardware consistency in them, 

other external factors such as network latency may cause different results in performance 

metrics. Worthy to note that this study primarily evaluates training time and predictive 

performance of models, while other considerations such as long-term cost efficiency are not 

concluded in its scope. 

 

The remainder of the paper is structured as follows: section 2 presents the related works 

regarding heart disease prediction using machine learning, the challenges of processing 

efficiency and models' performance, and the advantages provided by cloud-based platforms 

in the healthcare industry. Section 3 describes the proposed research design in terms of data 

collection, data preprocessing, data transformation, and training. To ensure the fairness of 

experiments, both environments use the same Azure computing hardware configuration. It 

details the training process by adopting Logistic Regression, Random Forest, and XGBoost 

algorithms in both environments. Distributed computing and automated hyperparameter 

tuning are conducted in cloud-based implementation experiments to boost modeling 

efficiency and performance. Finally, it discusses evaluation metrics used to measure and 

compare results. Section 4 evaluates the performance with comparative environments. 

Section 5 discusses the analysis of the results and concludes the paper. 
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2 Related Work 

2.1 Heart Disease and AI 

Heart disease has been considered a major global health threat long-term as it occupies 

almost one-third of the mortality. The disease commonly includes various diseases such as 

coronary artery disease, heart failure, valve disease, arrhythmia, and stroke. Various studies 

have been conducted on the significant health impact caused by cardiovascular diseases. 

Early works mainly focused on identifying related risk factors in terms of high cholesterol, 

hypertension, obesity, and unhealthy lifestyle. In this research, the authors investigated and 

summarized 10 CVD risk factors that include unhealthful nutrition, physical inactivity, 

dyslipidemia, hyperglycemia, high blood pressure, obesity, thrombosis, kidney dysfunction, 

genetics, and select populations(Bays et al., 2021). With the development of preventive 

cardiology research, related researchers may benefit from risk factors investigations. 

 

Early detection and treatment can significantly mitigate the impact of heart disease, as 

emphasized by a considerable amount of research that highlights the benefits of timely 

interventions. For example, Angeli and co-workers measured that early stain therapy reduced 

the mortality of patients with acute coronary syndrome (ACS) compared to other control 

groups who had not initiated saint treatment on the first day in hospital(Angeli et al., 2012). 

An increase in studies in predictive models becomes a critical tool in the cardiovascular field. 

Simulation results show that Machine Learning(ML) has significant potential to transform 

heart disease risk characterization or biomarker recognition in epidemiology. For example, 

Adler and co-workers compared the AUC results of the boosted decision algorithm training 

group to 2 different external validation groups (Adler et al., 2020). Their experiments showed 

a higher Area Under the Curve(AUC) of 0.88 while others were 0.84 and 0.81. Their findings 

indicate that the use of ML can improve the evaluation of heart failure patients with the 

challenge of the complex relationship of features. These results highlight that ML improves 

early diagnosis and intervention for developing efficient heart disease management. Given 

underlying complex risk factors, adopting ML techniques can boost the accuracy of 

predictions and provide more timely treatment guidance for medical institutions. 

2.2 Modern Machine Learning Applications in Healthcare 

2.2.1 AI-Driven Solutions in Healthcare 

The combination of various data and advanced modeling techniques can improve the 

healthcare system by providing accurate prediction results. For example, the study developed 

an ML model by using AutoPrognosis outperformed traditional cardiovascular risk predictors 

such as walking pace and self-reported health checks including 473 variables. The accuracy 

of ML model has been shown higher accuracy when compared to conventional CVD risk 

factors (Alaa et al., 2019). Google's AI research department initiated the DeepMind Health 

project to improve healthcare services by analyzing medical data. It is worthwhile noting that 

for further exploring deep learning methods with ML, this project collaborated with 

Moorfields Eye Hospital Foundation to carry out eye tests based on the data provided (Mesko, 

2017). 
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Machine learning applications in medical examination imaging have presented significant 

accuracy in disease diagnosis. Peyret and co-workers used an algorithm that combines with a 

convolutional neural network to detect and locate invasive carcinoma on breast whole-slide 

images (Peyret et al., 2023). Their accuracy, recall, and precision results were reported as 

92.1%, 95.0%, and 73.9% for the limited reference dataset. It shows that the AI approach can 

be used to help in pathology practice. Watson for Oncology (WFO) is a clinical-level of 

support system from IBM that provides prompts to cancer specialists and patients with timely 

treatment if they apply. A study conducted a comparative evaluation of the accuracy of 

treatment issued by the WFO and Multidisciplinary Team (MDT). They used RevMan5.3 

Software for mete-analysis on 2,463 patients that involved 9 different researches, and the 

comparative result showed high consistency with an overall concordance rate of 81.52% 

(Zhou, Zhiying and Li, 2021). Various formats of healthcare data range from electronic 

health records (EHR) to medical images and other grouped data. ML plays a critical role by 

integrating different types of medical data to provide insights accordingly. A review study 

conducted an analysis by searching 34 related research and tried to find a research pattern for 

evaluating multimodal fusion in clinical predictions (Farida et al., 2022). In their paper, they 

focused on studies that combine EHR data with medical imaging data to explore the AI 

methods for clinical applications. The result shows that, compared to the traditional single-

modality models used for the control task, multimodality fusion models have better 

performance. It also emphasized that using ML fusion methods improves AD diagnosis. 

 

ML has been widely applied in healthcare, especially, an increasing number of studies 

focused on how to use ML techniques to lower heart disease risks. Compared to conventional 

risk factors, ML models that are applied to cardiovascular diseases have shown significant 

progress in high-risk individual identification. Mohan and co-workers found that a new 

approach to feature selection can largely improve the performance of heart disease modeling 

results (Mohan, Thirumalai, and Srivastava, 2019). This paper begins by introducing the 

Hybrid Random Forest with Linear Model (HRFLM) that combines mixed random forest 

algorithms. The accuracy of this approach reached 88.7%, which highlighted the potential for 

developing new feature selection approaches in ML to obtain a more comprehensive 

understanding of critical features for assisting in making decisions of early detection and 

timely treatment. Several expert systems are used to improve the prediction of early-staged 

heart disease to save more intervention opportunities for patients. A study introduced a 

diagnostic system with an optimized XGBoost algorithm, Bayesian hyper-parameter 

adjustment, and One hot encoding, the accuracy achieved 91.8%. Compared with modeling 

results from random forests and extra trees, the accuracy, sensitivity, specificity, F1- score, 

and AUC value results are improved. Their study showed that ML techniques that they 

proposed are reliable for predicting heart disease in medical institutions (Budholiya, 

Shrivastava, and Sharma, 2022). The progress of deep learning in heart disease prediction 

indicates that hybrid neural network frameworks that integrate various models to enhance 

prediction accuracy are examined to have significant potential. This study proposed a Hybrid 

Deep Neural Networks and achieved a 98.86% accuracy on multiple heart disease datasets 

(Al Reshan et al., 2023). In their study, the approach designed with complex ML techniques 

by adopting an integration with Artificial Neural Networks (ANN), Convolutional Neural 

Networks (CNN), and Long Short-Term Memory (LSTM) models, which present great 

potential to be embedded into healthcare systems to improve heart disease patient care. 
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2.2.2 Heart Disease Prediction Models 

Logistic Regression (LR), Random Forest (RF), and XGBoosting are among the most widely 

used models for heart disease prediction due to their powerful strengths in terms of accuracy, 

interpretability, and scalability. LR is a commonly investigated classification algorithm that 

excels at capturing linear relationships among risky factors and provides a simple 

classification framework for assessing heart disease risk. A study used LR with implementing 

advanced feature selection approaches, and the 87.10% accuracy of the modeling result 

emphasized that the performance of LR modeling could be reliable in providing insights for 

complex heart disease datasets (Ambrish et al., 2022), and it values in providing fast and 

simple prediction insights for health institutions with limited computational resources.  

 

RF excels at identifying critical factors during training by excellently managing relationships 

of input variables in complex datasets. Saikumar and Rajesh found that using an optimized 

RF algorithm can efficiently address the lack of real-time diagnosis for issuing an easy heart 

operation determination procedure. In their study, 98.74% accuracy has been achieved by 

advanced feature extraction approaches (Saikumar and Rajesh, 2020). The nature of this 

algorithm has proven that it is a very robust approach for providing highly accurate diagnose 

in real-time medical diagnosis due to it can aggregate multiple decision trees to dig out the 

key factors in complex medical instance scenarios.  

 

XGBoost algorithm boosted the prediction performance that leveraging iteratively optimizing 

weak learners to decrease errors. It excels at processing high-dimensional datasets with 

variables in non-linear relationships. Yang and Guan introduced a framework that combines 

SMOTE-XGBoost algorithm to predict heart disease risk and obtained a high accuracy of 

94.44% (Yang and Guan, 2022). The improvement shows that XGBoost is effective in 

handling complex and multivariate cardiovascular risk factors during data processing. 

2.3 Challenges in Local Machine Learning Predictions 

Two major challenges in implementing machine learning for predicting heart disease in local 

healthcare environments are limited scalability and inefficient resource utilization. 

Specifically, these limitations affect heart disease prediction performance for healthcare 

institutions with restricted computational resources. 
 

2.3.1 Resource Constraints in Healthcare  

While implementing machine learning solutions for heart disease prediction, healthcare 

institutions such as small clinics or medical centers in resource-restricted areas struggle with 

limited computational power. These disadvantages have grown with the development of big 

data and complex target models, making it difficult to meet the increasing computational 

demands. Additionally, modern healthcare applications also handle various formats of data 

that range from detailed patient records to high-resolution medical imaging that require 

sufficient computing power. Lacey et al., 2016 point out that as the large amount of data 

increases, more advanced complex computing infrastructures are required for facilities with 

deep learning solutions. These limitations not only burden the lack of computing support for 

the institution but lead to underperformance in modeling and prolonged processing time, 

which can cause patients to fail to gain timely medical treatments.  
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2.3.2 Scalability Challenges in Real-time Processing 

Another computing challenge has been brought by the continuous monitoring and real-time 

analysis in healthcare. To date, the popularity of wearable electrocardiogram devices 

provides valuable insights for continuous monitoring and early detection of heart conditions, 

while it increases the computing burden for real-time processing and massive data processing. 

This level of real-time analysis and prediction requires powerful computation support which 

also is the drawback of local implementation environments or institutions. Liu et al., 2018 

developed an IoT-based wearable electrocardiogram system using cloud resources to address 

the computing demands by managing a large-scale electrocardiogram database with the cloud 

machine learning platform. The F1-score of the heart disease prediction in their early 

detection has achieved 99.5% with excellent computing efficiency. Their work shows how 

cloud-based solutions can efficiently address the scalability limitations compared to local 

environments.  

 

These challenges highlight that cloud-based environments perform efficient processing speed 

in real-time, handle the massive data in heart indicators, and maintain predictive accuracy, 

while tailoring to address the increasing demand for scalable computing solutions.  

 

3 Research Methodology 

3.1 Experimental Design 

This study adopts a comparative experimental design to identify and evaluate the efficiency 

and performance improvement of cloud-based machine learning techniques in heart disease 

prediction. The study implemented the cloud-based implementation on the Azure Machine 

Learning Studio while maintaining the same compute instance in the local environment to 

ensure fair comparisons. Configurations are as follows in Table 1: 

Table 1 – Configurations in Both Environments 

Environment Core Libraries/ 

Tools 

Virtual Machine Machine Learning Algorithms 

Local numpy, pandas, 

scikit-learn, Optuna 

Standard_DS3_v2 (4 cores, 14 

GB RAM, 28 GB disk) 

Logistic Regression, Random 

Forest, XGBoost 

Cloud Azure ML SDK v2, 

numpy, pandas, 

scikit-learn, Optuna 

Standard_DS3_v2 (4 cores, 14 

GB RAM, 28 GB disk) 

Logistic Regression, Random 

Forest, XGBoost 

 

The local environment is implemented on a base of Python libraries, while the cloud 

environment is set up with computational specifications that provided by the Azure Machine 

Learning Workplace. Enabling fair comparison, both environments are using the same 

hardware configuration within the same virtual machine that was built in the Azure ML 

studio. Figure 1 below shows the framework of the experimental tasks. This comparative 

framework enables a comprehensive comparison of metrics and maintains the data quality 

and consistency. 
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Figure 1 - The Experimental Design Framework 

3.2 Algorithm Implementation 

This study selected 3 algorithms to implement machine learning in terms of Logistic 

Regression, Random Forest, and XGBoost. The selection principle is they are greatly used 

and proved their effectiveness in modeling tasks of binary classification. The implementation 

phase covers machine learning processes in these 3 algorithms. Additionally, the 

hyperparameter optimization approach is implemented with the Azure ML SDK in the cloud-

based environment. 

3.3 Data Collection and Preprocessing 

The study utilized a comprehensive healthcare dataset obtained from Kaggle's Heart Disease 

Indicator Dataset, which was originally from the CDC behavioral Risk Factors Surveillance 

System survey. This dataset consists of 253,680 survey records with a balanced population 

distribution aged 18 to 65 years old and above. Multiple dimensions of cardiovascular-related 

health indicators are covered in this dataset. Among them, societal factors such as 

demographic indicators include age, education level, gender, and income condition. Clinical 

measurements contain BMI, blood pressure, cholesterol levels, and other commonly captured 

health indicators. Especially, the distribution of hypertension and elevated cholesterol levels 

showed 28.3% and 39.1%, while 13.2% of the cases had diabetes. Lifestyle factors include 

general health and mental health perceptions that provide an overall vision of cardiovascular 

health risk factors. 
 

To ensure the data quality and consistency for implementations in both environments, the 

data preprocessing followed the systematic approach. It utilized binary encoding to handle 

the categorical features and processed the numerical variables with the One-hot encoding 

method for effectively capturing non-linear relationships among features. Standard scaling 

was adopted for all variables' normalization operation, which ensures all variables can 

contribute to the modeling proportionally. To evaluate the benefits of distributed computing 

in a cloud-based environment with datasets in size of 200,000 records can reflect the 

maximum size of heart disease datasets in real-world requirements.  
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3.4 Data Exploration 

Firstly, variables were categorized based on the data types and distribution characteristics in 

terms of dividing the features into binary variables and numerical variables. This approach 

guided the process of classification of data that were required through visualization methods. 

To explore the distribution of binary and categorical variables, bar charts were utilized to 

present the frequency distributions. For numerical variables, it adopted histograms with 

density estimation overlays to explore the continuous distributions. Additionally, a heatmap 

visualization was conducted to analyze the relationships between features. Through a color-

coded matrix with correlation coefficients, the heatmap interpreted the relationships visually. 

Lastly, boxplots and histograms were plotted to show the detailed distribution of numerical 

variables, which enables potential outliers to be identified thoroughly. To ensure the 

subsequent data preprocessing operation proceeds, this exploration process set a solid 

foundation. 

3.5 Performance Measurement 

In the study, Python's time module is imported and used for measuring modeling procedures 

that start from preprocessing in both environments. Additionally, both performance is 

evaluated using accuracy, F1 score, recall score, precision score, and AUC-ROC value. To 

monitor the resource consumption in both environments, the resource utilization is measured 

with CPU usage and memory consumption. In the cloud-based implementation, the study also 

facilitated distributing by assigning processes strategy and hyperparameter tunning strategy 

with Azure Machine Learning Studio. 
 

3.6 Algorithm Selection Rationale 

This research selected LR, RF, and XGBoost in the experimental tasks based on their 

strengths in dealing with healthcare data and the well-discussed effectiveness during heart 

disease prediction. The computing efficiency was effectively compared using them in 

modeling. As the baseline model in healthcare modeling, LR is well known for its 

interpretability by presenting the capability of providing clear interpretations to understand 

the relationship between risky factors and response results. Additionally, both environments 

in this study can benefit from their low requirement in computing which makes it an ideal 

benchmark algorithm. RF was selected for its robust performance in processing complex 

relationships in data due to its integration of multiple decision trees for better capturing the 

non-linear relationship between indicators, which can benefit from the distributed computing 

approach in the cloud-based environment. Enabling significant performance in capturing 

complex feature interactions with the complex essence of the algorithm, XGBoost was 

selected to handle complex scenarios with highly imbalanced data, which is suitable for the 

selected datasets. Unlike the benchmark algorithm, XGBoost requires intense computational 

resources based on its gradient boosting framework, while it also sets the testing boundary for 

better evaluation of the advantages of distributed computing in the cloud-based environment. 

3.7 Experimental Controls 

Enabling fair comparison for all experimental tasks in both environments, all  

implementations were conducted in Azure Machine Learning Studio's Jupyter Notebook 

feature. To eliminate performance results that caused by hardware configurations, the 

Standard_DS3_v2 virtual machines (4 cores, 14 GB RAM, 28 GB disk) were the identical 

instance running for the tasks. Additionally, this study set up a controlled and fair framework 
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for comparing the outcomes of both environments by maintaining a consistent computing 

specification employed in the identical Jupyter Notebook platform. 

 

To maintain a fair environment for evaluating metrics, this study performed consistent 

monitoring in terms of the training time, and the utilization of memory and CPU for each 

training task in both environments. Accurate performance and efficiency comparisons can be 

evaluated between those environments by implementing these standard measurements with 

consistent coding conditions. 
 

4 Design Specification 
 

This section aims to introduce the design specifications to guide the implementation and 

evaluation of machine learning models for heart disease prediction using local and cloud-

based environments. The study explores the performance difference in implementations 

between the local environment and cloud-based methods that use Azure Machine Learning 

Studio. 

 

These design specifications outline the core technology, architecture, algorithms, and 

performance. In the local environment, all procedures used Python's built-in libraries, while 

the cloud-based approach in Azure Machine Learning Studio implemented the identical 

preprocessing phase to ensure consistency and fairness in experiments. Additionally, the 

identical compute instance was used in both implementations. With the support of the Azure 

SDK and integrated features such as Azure Machine learning, the Azure implementation used 

distributed computing and automated hyperparameter tuning to improve the efficiency and 

performance of models. Algorithms selection follows the widely used research for 

classification tasks, this study used Logistic Regression, Random Forest, and XGBoost. A 

range of metrics are used to measure the performance in terms of training time, accuracy, F1 

score, recall score, precision score, AUC-ROC value, and resource consumption. A thorough 

comparison among these metrics enables the effectiveness of local and cloud-based 

implementations while highlighting their advantages and limitations.  

 

4.1 System Architecture Design 

This study implemented a comprehensive system architecture that includes local and cloud-

based environments to develop and evaluate heart disease prediction models. The 

experimental design focused on direct comparison that was introduced with cloud features to 

achieve optimization in models. 

 

4.2 Development Environment 

The process of the development stage employed Jupyter Notebooks as the integrated 

development environment to facilitate the coding and real-time visualization of evaluation 

results. Furthermore, future work can be conducted in this repeatable environment to further 

explore potential benefits for research or practice. 

 

4.3 Local Environment Architecture 

On-premise implementation leveraged the built-in libraries of Python to conduct the data 

mining and model training processing. Both environments utilized pandas to handle the data, 

numpy to process the numerical features and scikit-learn for machine learning. Three widely 
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discussed algorithms were implemented to compare the results based on various advantages 

in terms of LR within class weight balance, RF with ensemble learning function, and 

XGBoost for optimizing the gradient boosting. 

 

4.4 Cloud Architecture 

The Cloud implementation adopted the Azure Machine Learning Studio with integrated 

components: 

(1) Environment Configuration: 

i. Azure compute instance 

ii. Azure Jupyter Notebooks 

iii. GPU-enabled environment within PyTorch 

iv. Distributed training approach for parallel processing 

 

(2) Processing Management: 

i. Azure machine learning workplace 

ii. Credential management 

iii. Data asset management 

 

4.5 Data Pipeline Architecture 

The selected dataset is sourced from the Kaggle, which includes 253,680 survey records. 

Enabling the consistent preprocessing stage in both environments, the dataset was imported 

locally through a local file address. The datasets cover demographic information, heart-

related health indicators, and other lifestyle factors. 

 

A systematic preprocessing pipeline was set for data transformation: 

(1) Pipeline management 

i. consistent implementation in both environments 

ii. persistent preprocessing parameters storage procedure 

iii. Reproducible transformation 

(2) Feature Engineering 

i. Label encoding to handle 17 categorical variables 

ii. One-hot encoding to handle specific features 

iii. Standardization processing for numerical features 

 

The hyperparameter optimization approach was implemented in Azure Machine Learning: 

(1) Parameter Space Exploration: 

i. Optimizing the tree depth 

ii. Learning rate calibration 

iii. optimizing the estimator count 

iv. tuning the child's weight 

(2) Processing Optimization 

i. ROC-AUC value 

ii. 20 trials exploration sequence 

iii. automated parameter selection 

(3) Distributed Computing Framework 

i. distribution based on PyTorch 

ii. Multiple process mechanism 

iii. single node configuration 
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4.6 Model Performance Evaluation Framework 

(1) Model Performance Metrics: 

i. Classification accuracy 

ii. ROC curve value 

iii. training time 

(2) Resource Monitoring 

i. Memory consumption record 

ii. CPU consumption tracking 

4.7 Dual Environment Comparison 

The design specification ensures a systematic configuration and development for heart 

disease prediction in both environments and conducts a fair comparison of performance: 

(1) ensures the consistency of the metric evaluation in both environments 

(2) validates the performance difference statistically 

(3) assesses the model training efficiency 

(4) analysis of the resource utilization 

 

5 Implementation 
 

This section outlines an overview of the final stage of the solution, while it primarily 

introduces the output, adopted tools, and methods that are used during experiments. 

5.1 Data Sampling Strategy 

I created various sub datasets in sizes of 5000, 20000, 100,000, and 200000 from the shuffled 

raw dataset. Figure 2 below shows the data shuffling and splitting process. Enabling rapid 

iterations in training and obtaining an optimized performance with sufficient data, the size of 

20,000 datasets was used in the parameter tuning experiments. Additionally, I used the 

dataset that contains 200,000 samples to effectively evaluate the scalability and efficiency 

across various configurations in different nodes and processes. This strategy ensures the 

requirements for accuracy improvement using parameter tuning methods and the potential 

scalability with cloud computation power. Meanwhile, the data consistency in all experiments 

can be ensured by random sampling during the data sampling stage. 

 

 

Figure 2 - Data Shuffling and Splitting  

 

5.2 Hyperparameter Tuning for Model Performance 

To achieve an enhanced performance in LR, RF, and XGBoost for heart disease modeling, I 

mainly implemented multiple hyperparameter adjustments and compared the results 
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including default parameters, a manual configuration in the local environment, and an 

automated hyperparameter tuning approach using Azure Machine Learning in the cloud-

based environment.   

 

Firstly, the baseline of the comparison was implemented with the Optuna framework 

imported in the local approach. 

 

Figure 3 - Optuna Optimization in the Local Environment 

 

Finally, the cloud-based approach also used the Optuna framework to optimize the 

parameters of the trained models. In addition, it adopted distributed training across 4 compute 

instances that enabled the improvement of model performance by speeding up the training 

processing. The key point of this approach is largely made use of the scalability of cloud 

resources. Figure 4 and Figure 5 show the parameter optimization operation used in the 

cloud-based environments for distributed training. 

 

Figure 4 -  4 Nodes & 1 Process Allocation in the Cloud Approach 

 

Figure 5 -  Optuna Optimization in the Cloud-based Training Script 

5.3 Distributed Computing for Training Efficiency 

In this implementation, various distributed computing approaches for RF modeling were 

examined to improve the computational efficiency by reducing the training time. 
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In the local environment, a baseline benchmark was set up using RF training with default 

configuration. In the cloud-based environment, single-node single-process and single-node 

dual-process configurations were conducted to maintain a consistent configuration 

environment for comparison. To emphasize the different results of training time, dual-nodes 

dual-process was implemented by utilizing Azure's distributed computing power. Figure 6 

and Figure 7 below demonstrate the cloud-based implementations: 

 

 

Figure 6 - Default Configurations in the Azure Implementation 

 
 

  

Figure 7 - Parallel Computing in the Azure Implementation 

 

5.4 Tools 

5.4.1 Programming Language 

Python 

5.4.2 Libraries 

Scikit-learn, Azure Auto ML, PyTorch, Optuna 
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5.4.3 Platforms 

Azure Machine Learning Studio, Azure Virtual Machine instance 
 
 
 

6 Evaluation 
 

This section presents an analysis of heart disease prediction training in both local and cloud-

based environments. It focused on effectively evaluating the impact of cloud resources on 

boosting the efficiency of machine learning models compared with on-promise 

implementation, which lacks the scalability of cloud resources. This evaluation is structured 

into various case studies to form a discussion based on findings of the impacts of cloud 

resources. 

6.1 Experiment Setup and Fairness Assurance 

In this experiment, I used the Azure Machine Learning platform across all model training 

tasks. The fairness of the experiment is ensured by both implementation scenarios were 

conducted on the same hardware configuration, which is the instance in size of 

"Standard_DS3_v2 (4 cores, 14 GB RAM, 28 GB disk)". Additionally, both implementations 

were using the same data preprocessing procedure. This approach ensures a fair experiment 

configuration and focuses on the comparative benefits of cloud resources by removing the 

impact of hardware and data preprocessing changes. 

6.2 Case Study 1: Local & Cloud Environment (1 Node, 1 Process) 
 

In case study 1, I compared the performance of the Random Forest (RF) algorithm in both 

environments with the default configuration, which is 1 node and 1 process. This setup aims 

to establish a benchmark performance for both settings while providing a fundamental 

reference for further experiments. It also shows the baseline performance without distributed 

training. Figure 8 below shows the training time and resource utilization in the 2 

environments that present the efficiency in both environments.  
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Figure 8 - The Experimental Results in Both Environments 

 

Table 2:  Performance Comparison between 2 Environments in Default Configuration 

Metric Local Cloud 

   

Training Time(seconds) 67.47 58.81 

   

CPU Usage (%) 0.00 0.00 

   

Memory Usage (MB) 1838.42 504.55 

   

AUC Score 0.8157  0.8177 

   

Accuracy 0.8930 0.8957 

Resource Efficiency 

(time/resource ratio) 0.0367 0.1165 
Note: No Distributing Computing, 1 Node - 1 Process  

 

As shown in Table 2, to set up a benchmark metric experiment with no distributed practice, 

the cloud implementation reduced training time by 13% and significantly reduced memory 

consumption, while maintaining the same accuracy. 

6.3 Case Study 2 The Cloud Environment (1 Node, 2 Processes) 
 

Based on the result of the previous case, this study adds up 2 processes in the same training 

task to explore whether the modeling efficiency could be impacted by more processes in one 

node. Additionally, the training time and the resource ratio were compared. The results are 

shown in Figure 9 as follows: 
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Figure 9 - The Experimental Result of the Parallel Computing Approach 

Table 3:  Performance Comparison with Different Process in Cloud Practice 

Metric Cloud (1 node – 1 process) Cloud (1 node -2 process) 

   

Training Time(seconds) 58.81 55.29 

   

CPU Usage (%) 0.00 100.20 

   

Memory Usage (MB) 504.55 506.70 

   

AUC Score 0.8177 0.8177 

   

Accuracy 0.8957 0.8957 

Resource Efficiency 

(time/resource ratio) 0.1165 0.1087 

 

Table 3 above compares the metrics with the cloud implementation with 1 node and 1 process. 

The result in Table 3 presents that by adding 1 more process for RF model training, the 100% 

CPU usage indicated that the requirement of computing power has a significant increment 

when demanding dealing with large-scale datasets or more complex algorithms. It reflects 

that cloud platforms can dynamically allocate more resources for computing tasks parallelly 

and the efficiency is relatively reduced by handling extra processes effectively without extra 

memory usage. 

6.4 Case Study 3 The Cloud Environment with Multiple Processes (2 

Nodes, 2 Processes) 
 

In this study, 2 cloud nodes were allocated with 2 processes for each to introduce a more 

efficient distributed practice by parallelization. The comparison consists of different results 

across local environment to cloud-based environments to explore the benefits of effectively 

leveraging of scalability of cloud resources using distributed practices. The results are shown 

in Figure 10 as follows: 
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Figure 10 - The Experimental Result in the Configuration of 2 Node 2 Process 

 

Table 4 below shows a significant outcome in model training time that was set up by 2 nodes 

2 process setup in cloud practice, which reduced the training time from 67.47 seconds to 

16.76 seconds. As shown in Figure 11, the cloud-based approach reduced the training time 

and memory usage by 75.2% and 69.4% compared to the local implementation. The resource 

efficiency was improved by 18.9% measured in the training time to the tracked memory 

usage. With the maintained accuracy result, the improvement in training time and the better 

resource consumption efficiency demonstrate that scalable cloud resources benefit the 

performance of larger size of model prediction effectively. 

 

Figure 11 - Training Time and Memory Usage Comparison 

 

Table 4:  Performance Comparison between 2 Environments 

Metric Local (1 node – 1 process) Cloud (2 node -2 process) 

   

Training Time(seconds) 67.47 16.76 

   

CPU Usage (%) 0.00 378.80 

   

Memory Usage (MB) 1838.42 561.89 

   

AUC Score 0.8157 0.8177 

   

Accuracy 0. 8930 0.8957 

Resource Efficiency 

(time/resource ratio) 0.0367 0.0298 
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6.5 Case Study 4: Hyperparameter Tuning with the Optuna in Both 

Environments 
 

This case study gives a more extended introduction to gaining a better performance by auto 

hyperparameter tuning in both environments. Specifically, the cloud practice set up 

distributed training in a configuration with 4 nodes along with 1 process. It focused more on 

how cloud resources have an impact on the model performance during hyperparameter tuning. 

The Figure shows the result of model performance in the local environment after automatic 

hyperparameter tuning with a single process. 

   

Figure 12 - Optimized Training Results in the Local Environment 

Figure 12 and Figure 13 show the metrics were evaluated in the cloud environment that 

implemented distributed computing with automated hyperparameter tuning. 

 

 
 

 

Figure 13 - Optimized Training Results with Distributing Configuration 

The results show that the overall performance is consistent in both environments. In local 

practice, the accuracy of LR is 0.77 and the ROC AUC value is 0.8347, while the cloud 

implementation obtained a similar performance in terms of 0.76 and 0.83. The accuracies of 

the RF algorithm are maintained at 0.91 in both environments. Worthy notice, the accuracy of 

XGBoost training reached 0.91 similar to RF training. It indicates that complex algorithms 

can largely benefit from distributed implementation with cloud resources. Additionally, in the 
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parameter tuning process of RF training, 287 trees were searched in the distributed cloud 

environment while there are 231 trees in the local practice. It shows that the distributed 

computing provided by available cloud resources allows better optimization in parameter 

tuning that enables more reliable and efficient heart disease prediction in practice, especially 

when implementing automatic hyperparameter tuning in complex algorithms such as 

XGBoost. 

  

 

Figure 14 - Comparisons of Accuracy and AUC Score in Both Environments  

Figure 14 illustrates an overall consistency in predictive performance for both environments, 

which shows that the modelings' integrity was maintained with identical algorithms and 

hyperparameter optimization while it demonstrates computational advantages. 

 

 

Figure 15 - Comparison of Training Time  in Both Environments 

Figure 15 presents the training time comparison across the local environment to the cloud-

based environment. This chart particularly shows the relationship between computing 

efficiency with algorithm complexity. Combined with the training time and the amount of 

decision trees in RF training, extended searching space was conducted via the cloud-based 

environment which represent a significant improvement by implementing RF modeling with 

distributed computing environments. 
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Figure 16 - Comparison of Resource Utilization in Both Environments 

Figure 16 demonstrates that memory utilization was enhanced through the cloud-based 

implementation. The performance pattern of consistent memory consumption with overall 

maintained or improved accuracy offers quantified proof for transiting heart disease 

prediction into cloud-based environments. Specifically, the finding presents that the 

implementation of complex models faces computing constraints due to their restricted 

resources, which is a critical finding for healthcare institutions to obtain a valuable reference. 

6.6 Discussion 
 

Based on the experimental results across all case studies, this section discussed the findings 

in terms of model performance, resource utilization, and scalability in modeling and 

highlighted the potential computing advantages in cloud-based implementation for heart 

disease predictions. 

6.6.1 Efficiency Improvement Through Cloud  

By the implementation results across the development from 1 node to distributed computing 

that integrates multiple nodes and processes, restricted modeling scenarios can benefit from a 

scalable cloud platform as the more efficient resource utilized pattern. The training time 

comparison between default configurations in both local and cloud environments reduced the 

training time by 13%. Significantly, the training time was reduced in distributed computing 

which enables the training time to be shortened from 67.47 seconds in local practice to 16.76 

seconds in cloud environment. This improvement was contributed by the support of scalable 

resources and efficient workload allocation with a parallel strategy from Azure. As expected, 

the experimental result proves that the adoption of cloud machine learning techniques can 

enhance the efficiency in heart disease prediction, while its excellent resource management 

can burden off the demand for costly hardware for healthcare institutions in restricted areas. 

6.6.2 Model Performance Optimization Through Cloud 

In the hyperparameter tuning experiments, a wider parameter searching space with 287 trees 

in cloud approaches and 231 trees in the local environment during RF experimental results 

shows the significant optimization performance by the integration of cloud resources. As the 

impact assessment for the complex algorithm, the improvement in ROC-AUC score during 

XGBoost training presents the computational advantages that are provided by the distributed 

computing adoption in Azure. These findings prove that the value of this study lies in 

efficiently implementing complex heart disease predictions in resource-limited healthcare 
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environments, while it provides improved optimization in modelings instead of requiring 

extra hardware resources in local environments. 
 

6.6.3 Efficiency in Resource Management  

Compared with 1838.42 MB consumed during the single node implementation in the local 

practice, the default configuration in cloud practice utilized 504.55 MB that presents a 

substantial reduction in resource consumption. It shows that the allocation system is more 

efficient in the cloud platform. In addition, the configuration in adding processes 

demonstrates productive parallelism ability through the cloud practice and has efficient CPU 

usage without extra usage of memory. More importantly, the optimal resource efficiency in 

the practice of 2 nodes and 2 processes highlights the potential benefits while conducting 

more complex machine learning in heart disease prediction using cloud computing practice to 

contribute a scalable approach for efficient resource management in healthcare institutions. 
 

6.6.4 Cost-Benefit Analysis for Healthcare Institutions 

This section analyses the economic impact of transitioning heart disease prediction from local 

environments to cloud-based implementation, while it also evaluates costs and long-term 

benefits by scaling the heart disease prediction tasks. 

 

Several significant expenditures in the local implementation range from hardware investment 

to IT personnel. In European countries, 20,000 to 30,000 euros is required for enterprise-level 

servers and other infrastructure that serves as the initial hardware investment. Accordingly, 

5,000 to 8,000 euros is used for annual system maintenance and hardware updates. Moreover, 

the cost of IT personnel requires 30,000 euros for the average annual cost, which is a 

significant portion of expenditure. On the other hand, the flexible cost with various scaling 

requirements for the cloud-based implementation can only require 8,000 to 12,000 euros of 

annual subscription cost for the usage of computing resources. 

 

The comparison results across both environments, show three significant advantages in the 

cloud-based implementation. The reduction of 72.6% in memory consumption and 75.2% in 

training time shows a significant improvement in resource optimization during training. 

Compared to local training development, the cloud-based environment enables dynamic 

resource allocation and can save up to 30% to 40% cost of infrastructure. In addition, the 

extended parameter search function introduced by optimization frameworks can increase the 

amount of searching trees during RF training, which enhances operational efficiency. 

 

A significant economic disparity is shown over a five-year cost analysis. 212,000 euros is 

required for local deployment including 60,000 euros for initial investment and 38,000 euros 

of annual operational cost. On the contrary, 160,000 euros is required for cloud deployment, 

while 32,000 euros is used for annual expenditure. As the comparative result is shown in 

Figure 17, a significant long-term cost-efficient advantage by adopting the cloud-based 

implementations. 
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Figure 17 – The Cumulative Cost Over 5-Year  Economic Analysis 

 
 

7 Conclusion and Future Work 
 

This research investigated the potential advantage in heart disease prediction using cloud 

computing, through comprehensive comparative experimental analysis on implementations 

across a local environment to the cloud-based environment. Models’ performance and 

resource utilization were evaluated in aspects of distributed computing and automated 

hyperparameter tuning. The experimental results demonstrate significant improvements in 

computational efficiency in the cloud implementation, while the training time was reduced by 

75.2% and the memory consumption was reduced by 72.6%. Cloud-based machine learning 

approach expands parameter search space to felicitate enhanced prediction performance in 

Random Forest modeling. 

 

From the economic perspective, an investment return can be achieved within 18-24 months 

through cloud-based implementations, with a 5-year cumulative savings of 52,000 euros 

compared to local deployments. Overall, the cloud-based techniques offer a compelling 

combination of cost-efficient advantages and technological improvements for providing a 

convincing case for adopting cloud in heart disease prediction in resource-restricted medical 

institutions. 

 

Considering the results, cloud machine learning techniques offer efficient solutions for 

addressing the computational resource limitations in healthcare applications. Especially, the 

enhancement of resource utilization demonstrates healthcare institutions can benefit from the 

cloud-based approach to obtain efficient heart disease prediction with increasing demand for 

computing power. 

 

Inevitably, there were some inaccuracies due to the used datasets did not fully represent the 

complexity of features of the real world. Additionally, external factors such as Network 

latency might influence the evaluation in metrics, while the hardware configuration 

consistency was ensured for both environments. 

 

 

Future work should explore further the scalability of cloud-based systems through larger size 

of datasets to validate the efficiency of heart disease prediction in the real world. 
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