
Impact of containerization in reducing
vendor lock-in

MSc Research Project

Cloud Computing

Ali Hamza
Student ID: x23257164

School of Computing

National College of Ireland

Supervisor: Shreyas Setlur Arun

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Ali Hamza

Student ID: x23257164

Programme: Cloud Computing

Year: 2024

Module: MSc Research Project

Supervisor: Shreyas Setlur Arun

Submission Due Date: 12/12/2024

Project Title: Impact of containerization in reducing vendor lock-in

Word Count: 7654

Page Count: 19

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Ali Hamza

Date: 12/12/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Impact of containerization in reducing vendor lock-in

Ali Hamza
x23257164

Abstract

The adoption of cloud is on an all time rise due to the numerous advantages
it provides. These advantages include pay-as-you-go pricing,flexibility, on demand
resources and scalability. One of the major advantages of cloud is that it relieves
users of managing the hardware infrastructure. Most companies when deploying
their applications use one of the famous providers like AWS, Azure or Google.
By utilizing all services from the same cloud provider and using their easy to use
deploy UI services, they become dependent on that one cloud provider for all their
deployments. ”Vendor lock-in” is the term commonly used for these scenarios, and
with the increase of use in cloud without the proper knowledge and tactics used
by providers to enforce their services increase, this is becoming a challenge for
organization. A potential solution to this issue is the approach of using a multi-
cloud or hybrid cloud strategy to deploy applications but it is not very complex
to implement and not very cost efficient to maintain. This research will explore
the use of Containerization to tackle this challenge by making flexible and portable
cloud deployments by using technologies like Docker. This study will highlight the
performance and cost benefits of deployment containerized applications to cloud as
compared to non-containerized ones and will compare the migration possibilities
across multiple clouds. This will offer many guidelines on how to mitigate vendor
lock-in and optimize deployments to the cloud.

Keywords: vendor lock-in, multi-cloud, Performance, cloud pro-
viders, Docker, cost efficiency, containerization

1 Introduction

In recent years, the IT industry has been revolutionized by the cloud, enabling businesses
to achieve significantly more without the arduous efforts of setting up the resources
themselves. Cloud deployments can be very cost-effective and easy to setup. Several
leading companies like Amazon, Microsoft, and Google offer these cloud services,
including many deployment options, computing resources, storage, to businesses across
the globe. They have services that allow businesses to utilize cloud services in a pay-
as-you-go structure. The advantages that come with these services are flexibility, cost-
effectiveness, and scalability. This provides benefits to startups, who often lack the
capital to invest in buying their own infrastructure. By hosting their applications with
these cloud service providers, they not only lower their cost but can also scale their
applications as per requirement.

1



1.1 Research Background and Context:

While the advantages provided by the cloud are numerous, there are certain disadvantages
that cannot be ignored. The most prominent drawback being vendor lock-in. It happens
when a business becomes entirely dependent upon a cloud service provider or some of
the specific services that they offer, making it difficult to migrate to another provider or
build their own infrastructure from scratch. Moreover, these cloud providers leverage their
easy-to-use UI based services for deployment to keep their customers hooked. If these
services were to change and the customer wanted to move to a different cloud provider,
they would not be able to do so because the same experience or the same service might
not be available with other providers. A case of this can be seen with AWS who have
their own distribution of Linux as the default when you set up an EC2 instance, which
is called Amazon Linux and comes with pre-installed packages that the user might not
be aware of. Hence, with the popularity of cloud increasing, problems like vendor lock-in
can become fatal.

There have been few attempts at solutions to mitigate vendor lock-in, the most pop-
ular being the hybrid cloud approach and also a multi-cloud setup. In these solutions,
organizations deploy their applications using a combination of cloud service providers or
use their own infrastructure along with cloud services. This solution, on the one hand,
does decrease the dependency on one single cloud but, on the other hand, increases the
complexity of application management and often also leads to higher costs due to the use
of several cloud platforms. Another proposed solution is to use tools and technologies
that are compatible across multiple cloud platforms, which makes the process of migra-
tion more feasible. Containerization is one of these technologies which, on the correct use,
mitigates the vendor lock-in and also simplifies the deployment and application hosting
process across various clouds.

Containerization is a technology that packages an application and all its dependencies
into a single, portable unit which can run in various environments. One of the most
popular tool for containerization is Docker. This technology offers powerful tools to
organize containerized applications. Advantages of containerization includes portability,
faster deployment, improved resource utilization along with enabling efficient scaling
on demand basis. Containers facilitate the migration of applications by decoupling the
applications from the infrastructure they run on. Therefore, minimizes the risk associated
with vendor lock-in.

In spite of existence of research body that explores vendor lock-in in depth. most of
these revolve around focusing the solution based on multi-cloud and hybrid cloud setups,
which not only complicates the process extensively but also is costly. The complexities of
multi-cloud solutions are not required by all users, and in most cases a relatively simpler,
efficient cloud usage is required without the risk of vendor lock-in. Moreover, the existing
researches only emphasize containerization with respect to multi-cloud or cloud migration
that can play a key role in improved performance of cloud architectures.

1.2 Research Question:

Can containerization help in mitigating vendor lock-in? and how will it affect
performance and cost efficiency?

The focus of this question is to reach to an answer on how we can use containerization
to mitigate the risks of vendor lock-in associated with deploying to cloud providers while

2



also enhancing the cost effectiveness and performance of the deployments. The signific-
ance of this research is aided by the increase in popularity of cloud and cloud providers
with some of them leading the market, it naturally draws people and organizations to-
wards them which increases the risk of them being stuck with that single cloud provider.
it can not only negatively impact the operational cost but also the organization’s opera-
tional flexibility. Another supporting factor for this question to be asked is that although
containerization has been increasing in popularity and used for isolating applications and
optimize various tasks, its role in mitigating vendor lock-in has not been fully explored.
Helping us understand how containerization can be used to reduce vendor lock-in will
enable them to make more calculated and informed decisions about their cloud usage
& deployments and their cloud provider choices and this may help them optimize and
reform their applications for better results.

This research aims to contribute significantly to the field of cloud computing. It will
deepen the knowledge of containerization by exploring the specific technologies and tools
involved with it, such as Docker. Additionally, the study will analyze the performance
and cost differences between scenarios where containerization is used versus where it is
not. This can also be used as a guideline and recommendations for using containerization
to deploy cloud applications.

2 Related Work

This section will aim to talk in detail about the work that has been done to contribute
towards cloud computing and especially covers the areas like vendor lock-in, container-
ization and cloud migrations. The previous body of work will be critically evaluated
based on three things: their contributions to mitigating vendor lock-in, the advance-
ments in containerization technologies and the performance and cost implication related
to these containerized and non-containerized cloud environments. These discussions will
provide a good basis and understanding of the gaps left by previous body of work and
the contributions that the current research is trying to make in filling some of those gaps.

2.1 Vendor Lock-in & Multi-Cloud Solutions

Vendor lock-in is still one of the major concerns for most organizations that want to adopt
to the cloud. it is the dependency on a single cloud provider’s proprietary technologies
which restricts organizations to move to other clouds. Various solutions to this problem
have been explored in previous studies in which one of the popular approaches is a multi-
cloud or a hybrid cloud setup.

As explored by Weldemicheal and Tesfaldet (2023) in their article “vendor lock-in and
cloud migration challenges”, combining on-premise and cloud infrastructure can provide
a lot of flexibility to users. This also aligns with the current research as It also provides
a solution to get rid of vendor lock-in. In Weldemicheal and Tesfaldet (2023) the authors
discuss how organizations can store their sensitive and critical data locally in on-premise
servers and use cloud providers for only scalable workloads. This is one of the solutions
to avoid data leaks and being dependent on a cloud for all security but it raises issues
like complexity in managing and also it may present operational challenges such as syn-
chronization problems, this approach would require expertise in cloud and also a lot of
capital to cover both the cost of on-premise and off-premise cloud which makes it less
viable for small scale businesses.

3



Multi-Cloud setup is also one of the big approaches used to solve the issues related
to vendor lock-in. It is the approach where organizations deploy their applications across
multiple clouds in order to make sure they are not relying on a single provider and can
scale on whichever cloud that meets their needs and requirements. Pellegrini et al. (2017)
provides a great example of this as they introduced a multi-cloud management system that
works as a central piece to deploying application across multiple cloud providers. So if an
application can communicate with this interoperable cloud system, the same application
will be deployed to multiple clouds using this system. throughout there research the
authors work on a prototype for this type of system with its own architecture and how
it can help be a messenger among different cloud services and the application. Although
this setup mitigates the risk of provider lock-in it still relies on centralized orchestrion
tools like terraform which create a dependency of its own. one of the major flaws of
this research can be considered that by removing one dependency the research poses
another one and this tool may require a lot of customization to address specific needs of
the diverse workloads in different organization which not only complicates the adoption
of this system but also increases the complexities involved in creating one. One other
thing which might be an issue is the overhead this system might add to the cost to
cloud deployment which might not be suitable for small scale organizations. Another
good example is Waseem et al. (2024) which discusses the advantages of multi-cloud
approaches and the analytics behind it. There is no experimentation or case study in
this research but it uses good examples to prove its point. Both researches emphasize
the use of containerization technologies in the process of multi-cloud to make it more
efficient and easy to manage. Pellegrini et al. (2017) uses Kubernetes clusters for their
prototype for all the mongo Db data storing and retrieving. Waseem et al. (2024) also
list the advantages containerization can provide when opting for a multi-cloud approach
as it makes everything much more easier to manage, This aligns directly with research
at hand.

“Addressing Server-less Computing Vendor Lock-In through Cloud Service Abstrac-
tion” Mo et al. (2023) talks about how the recent growth of FaaS (function as a service)
services have increased the risks of vendor lock-in. FaaS provides an easy solution to many
users who want to just deploy small server-less functions to the cloud which are becoming
more and more common because of the popularity of micro-services. These server-less
functions although seem server-less up front but with most cloud providers they rely on
using one of their services known as BaaS (back-end as a service). It is offered by cloud
providers as a way to add consistency to user’s cloud function and make them persistent.
This adds a dependency not controlled by user and it becomes very easy not to realize
that the user has been using this underlying architecture until the user wants to move and
realize he cannot because he is locked in by the underlying architecture of the cloud pro-
vider. The research also works on a solution to this by utilizing middleware abstraction
services to write server-less functions so they know what they are using instead of relying
on the cloud. They specifically work on Apache cloud abstraction library and compare
it with the cloud services for metrics. If the goal is to write serverless functions and
also make them portable the same can also be achieved by docker a containerization tool
which helps packages code in small portable units which can be deployed with essentially
any cloud service.

”A Containerized Template Approach for Vendor-Friendly Smart Home Integration,”
Fleck et al. (2023) works on a solution to the problem that occurs with using smart
home appliances. The issue is that there are a few dozen famous vendors for smart home

4



appliances and with each vendor they have their own set of appliances and an application
that helps use those gadgets. So if a user wants to use a light bulb from one vendor
but a lamp from another he cannot control them together because it will require two
separate apps. Because of this in most cases people get locked in to a single vendor for
all their appliances even if they do not want to do so. The author’s goal is to create a
system that allows users to use different smart appliances but still be able to use them
using a single centralized application which reduces to reliance on a single vendor and
hence opens up options for users. This is the very essence of how Cloud vendor lock-in
works and with this research it can help us better understand how vendors locking us in
with their services is affecting the options that many organizations have when wanting
to deploy applications to the cloud.

2.2 Advancements in Containerization

In the past few years we have seen more and more organization opt into using contain-
erization as a way to navigate their complex architecture. This is beneficial to everyone
because it opens up the floodgates and everyone can use these examples as a way to see
the advantages provided by containerization such as portability and flexibility. Two of
the most famous containerization tools are Docker and Kubernetes. Docker helps cre-
ating these small portable units and Kubernetes is an container orchestration tool that
helps manage these portable units. The article “Study Containerization Technologies
like Docker and Kubernetes and their Role in Modern Cloud Deployments” Agrawal and
Singh (2024) talks about the role these technologies play in modern day cloud deploy-
ments. It talks about how Kubernetes can be used as a service to aid cloud deployments
and Docker can be used with FaaS to allow portable serverless functions to exist. The art-
icle also focuses on the advantages these tools have provided us and how they have made
it easier to work with multi-cloud setups by becoming a backbone of it and removing a
lot of complexities from it.

The research Lohumi et al. (2023) focuses on Cloud to Cloud migrations and how
when migrating a cloud VM to another VM an organization can suffer from losses due
to the downtime. The purpose of this research is to dive deep into C2C migrations and
also get a detailed overview of how everything works when migrating a VM. It’s proposed
solution is a containerized approach which reduces the time it takes to migrate due to
the increased portability which in return decreases the downtime. The same can be seen
with Rovnyagin et al. (2023) which uses Docker as its focus to improve the latency and
overhead it takes to migrate applications between clouds. It uses a Platform as a service
architecture with metrics to showcase the reduction of latency when implementing Docker
with deployments. The same concept will be applied in this research to showcase how
properly configuring docker can not only make it easier to migrate with reduced latency
but also reduce the chances of making your application so complex that it removes the
possibility of being able to migrate due to the overhead it costs.

2.3 Containerization & Cost Reduction

We have discussed previously what vendor lock-in is and what containerization is and
how it used in various ways in cloud and how it effects migrations and multi-cloud setups
and enhances performance but, in this section, I want to talk about the cost side of
containerization and how it effects cost according to previous body of work and what

5



more can be accomplished.
As previously discussed cases of vendor lock-in and how containerization can be used

to make effective changes to the architecture to reduce them. This section can be used
as an example of how containerization can not only help with that but also reduce the
cost of a big application with the right configurations. Dang (2022) talks about how con-
tainerized deployments have a lesser migration costs than normally deployed applications
because of how these tools isolate resources and do not rely on the underlying architec-
ture of it all. This case is supported by Rovnyagin et al. (2023) which talks about the
advantages of using Docker due its open source-ness and self-sufficiency in deploying ap-
plications. The claim of this article is that most organization will eventually shift to using
containerization technologies for their deployments but there is no statistic provided to
backup this claim.The authors Ramesan (2023) work on a solution with maximum cost
efficiency with Kubernetes and showcase how its orchestration ability can help manage
even the most complex architecture but this research lacks in metrics and an actual im-
plementation. The article Anon (n.d.) talks about the advantages and disadvantages of
using different containerization tools and also emphasizes on many ways on how the costs
can be reduced by using some of these tools.

2.4 Research Niche

There are many researches that talk about vendor lock-in scenarios and containerization
but most focus on state of the art and high cost solutions like multi-cloud and hybrid
approaches. Containerization can be used to facilitate these solutions but it can also be
used to mitigate the need to go for that solution in the first place and the potential of that
has still not been fully explored. This research will aim to focus on that area of the cloud
and work with containerization technologies to deploy applications in a way that they
are portable and can be easily migrated to other clouds. I will use the previous body of
work as a stepping stone and inspiration to support the argument that containerization
provides the possibility to create and deploy an application that can be cost effective
and also not be subjected to vendor lock-in. This research will incorporate the use of a
real world case scenario by trying to navigate cloud deployment with a freshly created
application and provide insights and analysis on containerized deployment performed as
compared to a normally deployed application.

3 Methodology

This section will be used to discuss the methodology used for this research and the
plan of steps that will help make sure the research is properly and effectively done. the
main purpose is to explore the impact of containerization in cloud deployments especially
in reducing vendor lock-in. This will involve finding the tools and technologies to be
used and configurations involved with cloud deployments. I will compare many different
approaches to cloud deployment and also use two separate cloud provider to come up
with useful findings and results.

3.1 Research Tools & Technologies

This step will involve identifying the tools and resources necessary to conduct the research
effectively. After reviewing and comparing several tools and data, I will decide on the

6



ones most relevant to the research objectives. Finding the right resources is crucial for
carrying out solid research and experimentation, so this will be the first step. This
involves finding the right tools and technologies to conduct various experiments. After
careful consideration of many tools a few will be selected which are most relevant to
the research at hand. Making sure all the tools are carefully picked is necessary for the
success in finding useful insights from this research. The tools and technologies are as
follows:

• Docker for containerization

• AWS Cloud Watch and Azure monitoring for monitoring

• AWS and Azure as two separate cloud service providers

• Node Js and Express for Back-end and React and Tailwind for Front-end

3.2 Setup and Experimentation

After deciding on the tools and technologies in the next part is deciding on a setup and
the criteria on how to properly conduct these experiments. Deciding on a setup helps
come up the scenarios and the experiments better because it sets a baseline on what
needs to be done in order to perform these experiments and what type of resources are
required. The setup will include:

• Creating a full-stack application with a third party API integration

• Configuring the application on PaaS services on AWS

• Configuring the application on IaaS services on AWS

• Migrating the Application from PaaS to azure and IaaS to Azure

• Setting up proper monitoring tools to get metrics like CloudWatch and Azure mon-
itoring

The experimentation is the most crucial step of this research as it will help us come to
understanding of the results related to the research in question and come up with useful
findings that be used to support the arguments placed in the research.The experimenta-
tion can be divided into three different sections based on the above mentioned scenarios
and their details are as follows:

• Deploy Back-end to Elastic Beanstalk on AWS and setup Front-end on S3 bucket

• Deploy Dockerized Back-end and Front-end on EC2 instances

• Setup RDS for Elastic Beanstalk and Dockerized SQL server with back-end

• Migrate the EC2 instances to Azure VM with help of Docker

7



3.3 Evaluation

This part is the last setup in our research and will include the decision of what findings
need to be focused on to showcase the results and best support the research and the
claims. The decision will be based on multiple factors such as which metrics are available
as common for each of the cloud services and also which metrics are the most useful for
the deployed application. Some of the metrics that will be focused on for insights are as
follows

• metrics like CPU utilization, Network in and Network Out

• Flexibility and Scalability of the containerized application

• Cost evaluation for the Dockerized instances

• Cost evaluation of Elastic Beanstalk and Database setup with it

• Performance and Cost metrics of Azure Virtual Machine after migration

4 Design Specification

This sections provides an overview of the techniques, architecture, frameworks, and de-
ployment strategies used for the implementation of the proposed system. Developed to
support a full-stack web application environment, the system leverages cloud infrastruc-
ture to improve scalability, fault tolerance, and manageability. The design incorporates
streamlined integration and delivery, enabling the smooth development and deployment
cycles. Below, the architecture in two distinct scenarios have been discussed, highlighting
the difference in their interaction with each other and the different components.

4.1 System Architecture Overview

The diagram explains the flow from development till the deployment and showcases the
two distinct architecture scenarios for the full-stack web application. While bother scen-
arios use similar core technologies, they utilize different hosting strategies and deployment
configurations.

The first scenario use Amazon Web Services(AWS) Elastic Beanstalk to deploy the
back-end server, meanwhile storing the front-end application in an S3 bucket. The back-
end server communicates with an Amazon RDS SQL instance to streamline database
operations. The entire application is monitored using AWS Cloud watch.

The second scenarios puts emphasis on containerization using Docker. Instead of
Elastic Beanstalk, multiple EC2 instances have been utilized by the architecture to deploy
the applications, in which each instances is being run as a Docker container. Front-end,
back-end and database(SQL Server) are all hosted in separate Docker containers in this
configuration, Similar to Scenario 1, the monitoring is handled by Cloud Watch.

4.2 Scenario 1: Using Elastic Beanstalk and S3 Architecture

Scenario 1 is a streamlined architecture that utilized AWS-managed services to minimize
operational complexity, This is ideal for the teams that are unable to handle the intricacies
of complex server management.

8



• Front-end: built using React, is stored and served from an S3 bucket. S3 is an
object storage device from AWS which is highly scalable, durable and cost-effective.
Hosting static assets (such as HTML, CSS, and JavaScript) on S3 ensure the delivery
of low-latency content to users.

• Back-end: AWS Elastic Beanstalk is used to deploy the back-end application,
which is a platform-as-a-service (PaaS) solution that eliminates the need to man-
age the underlying infrastructure. Elastic Beanstalk handles the provisioning of
EC2 instances, load balancing, and scaling, allowing developers to deploy their ap-
plication code directly. Due to the asynchronous event-driven architecture, Node.js
is chosen for the back-end, which efficiently handles a large number of requests.
Providing a robust set of features for building web and mobile applications, Ex-
press.js is a flexible and minimal framework of Node.js.

• Database: The architecture uses Amazon RDS for the database layer, which is
a managed relational database service supported by SQL databases. A traditional
SQL based database is assumed in the scenario, i.e. MySQL or PostgreSQL, that are
used for robust data storage. Through automatic backups, multi-AZ deployments,
and automated fail-over, the RDS instance is configured for high availability and
durability,

• Monitoring: AWS CloudWatch monitors the entire architecture, providing in-
sights to the health and performance of the application. CloudWatch automat-
ically reacts to the changes in the environment, collects and tracks metrics, and
set alarms. It can be used to monitor RDS, Elastic Beanstalk and the application
entirely.

4.3 Scenario 2: Dockerized EC2 Instances

In the Second Scenario, the architecture is developed in such a way to provide more
control over the infrastructure using Docker for containerization and EC2 instances to
deploy the application. This scenario is more complex compared to scenario 1 but is ideal
for the team that require specialized infrastructure.

• Front-end: The React application is packaged in a Docker container and is de-
ployed using an EC2 instance rather than hosting the front-end on S3. This ap-
proach utilizes the containerization ability to provide a consistent environment
across development, testing, and production stages, eliminating many problems.
Nginx or any other lightweight web server can be used to serve the containerized
fronted inside the Docker container, delivering static files to the client.

• Back-end: Running a Docker container, the back-end is also containerized and de-
ployed on an EC2 instance separately. Docker ensures the consistent back-end en-
vironment, similar to front-end, from local development to production. This makes
the decoupling of services easy, allowing horizontal scaling where each service(front-
end, back-end, and database) can scale independently.

• Database: Following the same pattern, the database is also containerized and
deployed on a separate EC2 instance. The architecture uses a SQL server, ensuring

9



the compatibility with Docker. SQL Server is run in its own container, making the
sure of the advantages like isolation and compatibility as other components, This
is particularly valuable for the teams that require a self-managed database rather
than using managed services like RDS. Using a Dockerized database, the team
is able to customize the configurations, manage backups, and restored operations
independently of AWS services.

• Monitoring: Similar to Scenario 1, CloudWatch is used to monitor the perform-
ance and health of the EC2 instance and Docker containers running on the them.
CloudWatch is able to track resource utilization(CPU, memory, etc.), container
statuses and the overall performance of the application.

4.4 Comparative Analysis of Both Scenarios

Both scenarios described before differ in terms of flexibility, scalability, and management
overhead. The visual representation of architecture diagram can been seen in Figure 1

• Scenario 1 offers easy management and a simplified process by offloading most
infrastructure responsibilities to AWS. It is the most suitable for the teams focused
on development while outsourcing infrastructure management to a cloud provider.

• Scenario 2 provides detailed insights, which makes it the most compatible for teams
that require control over configurations or desire to self-manage infrastructure. This
scenarios enables them for increased flexibility but comes with the trade-off of more
complexity and management overhead.

Both scenarios are able to efficiently scale, depending on the use case and organiz-
ational requirements. Particularly, Docker-based deployments (Scenario 2) grant more
modularity, with each component (front-end, back-end, database) independently scalable
across multiple instances or clusters. However, Elastic Beanstalk (Scenario 1) removes
much of the complexity and offer auto-scaling and load balancing out of the box.

Figure 1: architecture diagram

10



5 Implementation

The Implementation of the system was carried out according to the architecture defined
in the design specification process. A front-end and a back-end application was made and
integrated with each other with the plan of deploying it to cloud and also monitoring the
outputs to get results. The process involved the use of multiple languages and tools in
order to achieve useful analytics of system functionality , scalability and manageability.

5.1 Front-end

The front-end of the application was constructed using the React JS1 library with the
help of tailwind CSS2 for styling purposes. The application is a Anime listing website in
which the user can see all the available animated movies and series. sort them according
the popularity, search through them, add them to their personal list and also manage the
list. The shows and movies are shown using the The Movie Database TMDB API3 and
tweaking it so it only showcases anime and animated listing. This front-end application
will serve as a website which is used to simulate a generic website with basic CRUD
operations and API usage. The front-end is dockerized with ngnix configurations so it
can be deployed to a virtual machine by just running a few commands and the build files
are also generated so it can be hosted on any static website hosting service provided by
many cloud providers. Table 1 below showcases the front-end implementation in tabular
form.

Table 1: Frontend Details

Aspect Description
Frameworks and Tools React, JavaScript, CSS
Generated Assets Production-ready static files (HTML, CSS, JS)
Deployment Method Stored in S3 with CloudFront for Scenario 1 & Docker-

ized for Scenario 2
Performance Features Error Handling, Lazy loading and caching optimizations

5.2 Back-end & Database

The back-end of the application is constructed with nodeJS4 which is a javascript runtime
popular for creating servers. I have used the ExpressJS5 framework for node to create the
server. User management and List management endpoints were created in this process,
security and efficient communication was also made sure. A big part was also handling
all the errors and checking the inputs in all the endpoints using Validation and User
authentication middle wares. The whole backend was also dockerized so it can be deployed
to any virtual machine using just a few docker commands.Database configuration for both
mysql and Amazon RDS was added for this application In order to store all the user lists

1React: https://react.dev
2Tailwind CSS: https://tailwindcss.com
3TMDB: https://developer.themoviedb.org/reference/intro/getting-started
4NodeJS: https://nodejs.org/en
5ExpressJS: https://expressjs.com

11

https://react.dev
https://tailwindcss.com
https://developer.themoviedb.org/reference/intro/getting-started
https://nodejs.org/en
https://expressjs.com


and also properly simulate a fully functioning backend server. Table 2 showcases the
implementation.

Table 2: Backend and Database Details

Aspect Description
Frameworks and Tools Node.js, Express.js for the backend; Amazon RDS or

Dockerized SQL Server for the database
Generated Outputs RESTful API endpoints for application functionality

and persistent data storage
Deployment Method Backend deployed via AWS Elastic Beanstalk with dock-

erized Mysql for Scenario 1 or Dockerized on EC2 in-
stances with Amazon RDS for Scenario 2

Performance Features Asynchronous handling , optimized middleware usage,
automatic backups, Multi-AZ deployments, and scalable
architecture

5.3 Deployment

The deployment of the application is divided into multiple scenarios. The scenarios will
be compared to come out with an answer to the research question and provide some
analytics and result. Each of the scenario is explained as follows.

5.3.1 Scenario 1

In this scenario the back-end of the application is deployed on an EC2 instance using
docker as the main method of running the code. docker is installed in the instance and
code is cloned from GitHub and deployed using docker commands and the database is
also deployed using docker. The same is done with front-end but in a separate machine
and the integration between the front-end and back-end is verified.

5.3.2 Scenario 2

In this scenario the focus is on the native amazon services like elastic beanstalk and S3
bucket. First the back-end is uploaded to elastic beanstalk environment and after all
the configuration is done and environment health is OK I attached an amazon relational
database (RDS) instance to the environment and deploy the back-end. The front-end
of the application is deployed as a static single page application on S3 bucket and the
integration between back-end and front-end in verified.

5.3.3 Scenario 3

In Scenario 3, the focus is on the migration of the application to another cloud and for
this instance I used azure. I uploaded the application to the azure virtual machine using
docker and also uploaded the front-end on azure static website hosting service but it was
not successful. the purpose was to showcase the flexibility of dockerized applications as
compared to vanilla applications.

All the deployments are maintained and monitored using amazon cloud-watch and
azure monitoring services. Table 3 showcases the deployment details in tabular form.

12



Table 3: Deployment Details

Aspect Description
Deployment Strategies Scenario 1: Backend deployed on AWS Elastic Bean-

stalk; frontend stored in an S3 bucket; database man-
aged using Amazon RDS.
Scenario 2: All components (frontend, backend, and
database) Dockerized and deployed on separate EC2 in-
stances.
Scenario 3: Frontend and backend co-hosted on an
Azure Virtual Machine, with the database hosted on
the same VM or a managed Azure SQL Database.

Monitoring Tools AWS CloudWatch for tracking application performance,
resource utilization (CPU, memory, etc.), and container
health (Scenarios 1 and 2).
Azure Monitor for logging and performance tracking on
the Virtual Machine, including diagnostic metrics and
custom alerts (Scenario 3).

Performance Optimization Automated scaling through Elastic Beanstalk (Scenario
1); manual scaling of EC2 instances (Scenario 2); Azure
Autoscale and proactive monitoring for VM resources in
Scenario 3.

6 Evaluation

This section provides an in-depth analysis of the implementation of the system, its res-
ults and findings. The evaluation done will be focused around the research question and
provides metrics like performance charts, cost analysis and also the benefits of contain-
erization in cloud infrastructure. Visual graphs will be used to demonstrate the findings
and their significance will be discussed.

6.1 Case Study 1: Elastic Beanstalk for Back-end

Elastic Beanstalk was utilized for the back-end of the server and it was evaluated as a
back-end option for a web-based application. The key metrics that were collected and
focused on during the experiment was CPU utilization and Network In/out. These will
be used to highlight the efficiency of the back-end using elastic beanstalk in handling the
back-end server requests.

Figure 2 showcases the CPU utilization, the Network In & Out and also the environ-
ment health. These findings indicate that elastic beanstalk provides a straight forward
managed back-end server. The resource utilization on this server was also the lowest
among all other methods used in this research but there are also some negatives that
come with it. It’s auto scalability might not be cost efficient for high throughput ap-
plications and also it needs a separate service to manage the Database like RDS in this
scenario which has drastic effects on the overall cost of this setup.

13



Figure 2: Amazon Elastic Beanstalk metrics

6.2 Case Study 2: S3 bucket for Front-end

S3 bucket was utilized to deploy a static react single page website to use in combination
with elastic beanstalk. Although no specific metrics were collected for this service but it
proved to be a lightweight solution for applications that do not require any computation
on the front-end. The lack of need for a compute resource like virtual machines make it a
very cost friendly solution for front-end deployment. It can be integrated with Cloud-front
to further enhance performance and reduced latency.

6.3 Case Study 3: Dockerized EC2 instances

This experiment was performed with containerization and cloud migration in mind. using
only services that can easily be available with any other cloud provider and also mitigating
any dependencies on the current provider. One of the EC2 instances were used for
the dockerized back-end and MySQL the other instance was used for front-end of the
application. Both of these were analyzed on metrics like CPU utilization and Network
In/Out.

Figure 3: Amazon EC2 metrics

As shown in Figure 3 this setup had high resource usage especially compared to elastic
beanstalk. However, when the SQL server and the back-end is combined and dockerized
to run independently in the same VM it is hight cost effective. Since it does not rely on
AWS services to run and can be deployed on any cloud provider with a VM architecture
so the potential for migration is increased. In this scenario Containerization allowed

14



for precise resource utilization and allocation and also customization when it comes to
scaling.

6.4 Case Study 4: Migration to Azure

This experiment was done to evaluate the portability of containerized environment in
IaaS models as compared to PaaS models provided by cloud providers. The dockerized
back-end and front-end was fairly easy to just setup and run on the Azure VM and the
same metrics like CPU utilization and network In and Out were analyzed to compare the
difference in performance.

The process of migration showcased that containerization is very effective in enabling a
seamless ”lift-and-shift” deployment. The performance metrics are showcased in Figure 4.
When I tried doing the same thing with the S3 bucket and Elastic beanstalk blockers like
extra cost to store RDS backups locally slowed the process down and made it complex
and less cost efficient. I tried deploying the front end to azure static website hosting
but it was a different process then deploying on S3 bucket which makes it less beginner
friendly and adds extra overhead.

Figure 4: Azure VM metrics

15



6.5 Cost and Performance Analysis

This analysis was conducted to compare the cost when compared to the performance
provided by each of the methods use in this research.

• Elastic Beanstalk: A higher cost for operation but efficient in resource usage,
which emphasizes ease of use and performance over cost efficiency.

• EC2 dockerized instances: Overall the best performance to cost balance provid-
ing a balance between portability and efficiency particularly when considering the
customizations and the cost saved in using one VM to run multiple docker contain-
ers.

• RDS vs Dockerized SQL server: the high cost of RDS cannot be justified with
ease of use especially with applications with high volume of database dependency
and usage. this just reaffirms the advantages of setting up your own SQL server
with help of containerization.

• S3 bucket: Minimal costs and simplicity when deploying static websites makes it
the best option for single page web application.

Figure 5 and Figure 6 showcase the accumulated costs of all services used in this
research to provide the better understanding of the analysis. A detailed cost analysis
could not be retrieved due to the restrictions caused by using AWS academy resources
which restrict accessing AWS cost explorer and with Azure I could only retrieve the usage
of credits they provided with their free tier.

Figure 5: Amazon Billing

16



Figure 6: Azure Virtual Machine billing

6.6 Discussion

The experiments provide valuable insights into the trade offs and comparisons between
provider hosted services and self-managed and containerized solutions like Docker con-
tainers etc. By using the results and findings from the implementation and design process
and also the experiments done it is evident that containerization significantly enhances
the flexibility, cost efficiency and portability of the applications and it also mitigates
the risks involved with vendor lock-in by reducing the usage of PaaS services provided by
many providers and makes the use of IaaS services easier and beginner friendly leveraging
technologies like docker.

6.6.1 Improvements

• The metrics collection could have been extended by also adding memory usage,
disk I/O and response times. It would make for a more comprehensive performance
analysis and help capture the full operational footprint of each deployment.

• Stress testing could’ve been done for a better understanding and comparison between
the auto scaling of cloud services and the custom scaling set in docker containers.
The performance of the systems could’ve been tested better by increasing the load
on the application.

• The experiment could’ve been conducted over a longer period of time to see the
effects on the system with overtime usage of the application.

• Individual breakdowns of the cost would’ve been helpful to provide a more detailed
analysis cost report but it was not possible in this research due to using free trial
credits provided by these cloud providers.

17



7 Conclusion and Future Work

The goal of this research was to explore the deployment of applications to cloud while
mitigating the risk of vendor lock-in. By using containerization as the core technology,
we evaluated its effectiveness in facilitating seamless migrations and reducing depend-
ency on cloud providers’ platform-specific services. Throughout the experiments, we
deployed the application in multiple configurations, including AWS Elastic Beanstalk, S3
Bucket, Dockerized EC2 instances, and an Azure Virtual Machine environment. These
experiments provided valuable insights into cost, performance, and the practicality of
containerized application hosting.

The findings showcased the strength of containerization in enabling portability and
flexibility. Migrating a Dockerized application from AWS EC2 to Azure proved the
simplicity and efficiency of the approach as compared to the challenges of migrating a
PaaS deployed application. Furthermore, hosting the back-end and database in a single
Dockerized environment on EC2 proved to be significantly more cost-effective than using
AWS RDS.

However, the research also identified several limitations. The experiments were con-
ducted with a single application and set of metrics, limiting the scope of the analysis.
Additionally, long-term monitoring and security considerations were not thoroughly eval-
uated.

For future work, several directions can be pursued:

• Conducting experiments with diverse application types and varying workloads to
assess performance under different scenarios.

• Evaluating security measures for containerized environments, including addressing
potential vulnerabilities in Docker containers.

• Exploring additional tools and practices like Kubernetes

In conclusion, this research highlights the potential of containerization as a viable
solution to mitigate vendor lock-in and improve the cost-effectiveness of cloud deploy-
ments. The proposed directions for future work aim to build on these findings and extend
their applicability to broader and more complex use cases.

References

Agrawal, S. and Singh, D. (2024). Study containerization technologies like docker and
kubernetes and their role in modern cloud deployments, 2024 IEEE 9th International
Conference for Convergence in Technology (I2CT), Pune, India, pp. 1–5.

Anon (n.d.). Containerization drives cost optimization in the cloud. [Online].
URL: https://www.softobotics.com/blogs/how-containerization-drives-cost-
optimization-in-the-cloud

Dang, M. (2022). How containerization makes cloud migration services possible at a low
cost. [Online] Trigent.
URL: https://trigent.com/blog/how-containerization-is-reducing-migration-costs

18



Fleck, J., Sorgalla, J., Katzenberg, F. and Sachweh, S. (2023). A containerized template
approach for vendor-friendly smart home integration, 2023 IEEE 12th International
Conference on Intelligent Data Acquisition and Advanced Computing Systems: Tech-
nology and Applications (IDAACS), Dortmund, Germany, pp. 352–355.

Lohumi, Y., Srivastava, P., Gangodkar, D. and Tripathi, V. (2023). Recent trends,
issues and challenges in container and vm migration, 2023 International Conference
on Computer Science and Emerging Technologies (CSET), Bangalore, India, pp. 1–5.

Mo, D. Cordingly, R., Chinn, D. and Lloyd, W. (2023). Addressing serverless computing
vendor lock-in through cloud service abstraction, 2023 IEEE International Conference
on Cloud Computing Technology and Science (CloudCom), Naples, Italy, pp. 193–199.

Pellegrini, R., Rottmann, P. and Strieder, G. (2017). Preventing vendor lock-ins via an
interoperable multi-cloud deployment approach, 2017 12th International Conference
for Internet Technology and Secured Transactions (ICITST), Cambridge, UK, pp. 382–
387.

Ramesan, R. (2023). A guide to kubernetes and cloud migration to cut costs and max-
imize benefits. [Online] CloudControl.
URL: https://www.ecloudcontrol.com/a-guide-to-kubernetes-and-cloud-migration-to-
cut-costs-and-maximize-benefits

Rovnyagin, M. M., Sinelnikov, D. M., Varykhanov, S. S., Magazov, T. R., Kiamov,
A. A. and Shirokikh, T. A. (2023). Intelligent docker container orchestration for low
scheduling latency and fast migration in paas, 2023 Seminar on Information Computing
and Processing (ICP), Saint Petersburg, Russian Federation, pp. 181–185.

Waseem, M., Ahmad, A., Liang, P., Akbar, M., Khan, A., Ahmad, I., Setälä, M. and
Mikkonen, T. (2024). Containerization in multi-cloud environment: Roles, strategies,
challenges, and solutions for effective implementation, arXiv .

Weldemicheal and Tesfaldet (2023). Vendor lock-in and its impact on cloud computing
migration, PhD thesis, Jönköping University.
URL: https://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-62090

19


	Introduction
	Research Background and Context:
	Research Question:

	Related Work
	Vendor Lock-in & Multi-Cloud Solutions
	Advancements in Containerization
	Containerization & Cost Reduction
	Research Niche

	Methodology
	Research Tools & Technologies
	Setup and Experimentation
	Evaluation

	Design Specification
	System Architecture Overview
	Scenario 1: Using Elastic Beanstalk and S3 Architecture
	Scenario 2: Dockerized EC2 Instances
	Comparative Analysis of Both Scenarios

	Implementation
	Front-end
	Back-end & Database
	Deployment
	Scenario 1
	Scenario 2
	Scenario 3


	Evaluation
	Case Study 1: Elastic Beanstalk for Back-end
	Case Study 2: S3 bucket for Front-end
	Case Study 3: Dockerized EC2 instances 
	Case Study 4: Migration to Azure
	Cost and Performance Analysis
	Discussion
	Improvements


	Conclusion and Future Work

