
1

2

3

1

Configuration Manual

KrishnaMurthy Kowsik Gelli

X23242817

1 Requirements

1.1 Tools and Software

• Node.js (v18.19.1)
• npm (v9.2.0)
• Python
• AWS CLI and Management Console access
• Web3.js
• MetaMask wallet
• Remix IDE
• Serverless Framework

1.2 Installation Steps

1. Install Node.js and npm:

• Visit https://nodejs.org/en/download/package-manager

• Select your operating system and follow installation instructions

2. Install MetaMask:

• Visit https://metamask.io/

• Install the browser extension

• Create a new wallet and securely store your 12-word seed phrase

3. Install Serverless Framework:

npm i serverless -g

• Clone the repository and switch to feature/V3 branch

• git clone https://github.com/kowsikgelliie/access-control-serverless.git (Private

Repo)

• git checkout feature/V3

• Open the code and check serverles.yml file

https://nodejs.org/en/download/package-manager
https://metamask.io/
https://github.com/kowsikgelliie/access-control-serverless.git

2

2 AWS Services Setup

2.1 S3 Bucket Setup

1. Create a new S3 bucket:

• Name: accesscontrol-bucket-test (or your preferred name)

• Settings:

o Block all public access

o Enable server-side encryption

2. Configure bucket policy:

3

3. To deploy the lambdas just run

sls deploy
4. Configure aws cli with your access and secrets key before deployment.

5. Lambda Functions deployed as seen in above figure

2.2 CloudFront Configuration

1. Create CloudFront Key Pair:

• Navigate to CloudFront → Settings → Key Management

• Generate new key pair

• Save private key (private_key.pem)

4

• Note the Key Pair ID

2. Create CloudFront Distribution:

• Origin Settings:

o Origin Domain: Select your S3 bucket

o Restrict Bucket Access: Yes

o Origin Access Control: Allow Access Only

3. Default Cache Behavior:

a. Viewer Protocol Policy: Redirect HTTP to HTTPS (for secure

communication).

b. Allowed Methods: GET, HEAD (recommended for read-only access).

4. Distribution Settings:

a. Enable logging

b. Restrict viewer access to signed URLs

2.3 AWS Secret Manager Setup

1. Create Application Secrets:

• Type: Other type (Key/value pairs)

• Store:

o Contract ABI

o Contract address

o Other application secrets

2. Create CloudFront Private Key Secret:

• Type: Plain text

• Store the CloudFront private key (private_key.pem)

3 BlockChain Configuration

3.1 Polygon Amoy Testnet Setup

1. Add network to MetaMask:

• Network Name: POLYGON AMOY TESTNET

• RPC URL: https://rpc-amoy.polygon.technology/

• Chain ID: 80002

• Currency Symbol: POL

• Block Explorer: https://www.oklink.com/amoy

https://rpc-amoy.polygon.technology/
https://www.oklink.com/amoy

5

2. Get testnet POL from faucets:

• https://faucet.polygon.technology/

• https://faucets.chain.link/polygon-amoy

• https://learnweb3.io/faucets/polygon_amoy/

3.2 Smart Contract Deployment

1. Clone the contract repository:

bash
git clone https://github.com/kowsikgelliie/access-control-contracts (private repo)

2. Deploy using Remix IDE:

• Visit https://remix.ethereum.org/

• Upload S3AccessControl_v3.sol

https://faucet.polygon.technology/
https://faucets.chain.link/polygon-amoy
https://learnweb3.io/faucets/polygon_amoy/
https://github.com/kowsikgelliie/access-control-contracts
https://remix.ethereum.org/

6

• Compile the contract

• Connect MetaMask (Injected Web3)

• Deploy and sign the transaction

7

• Save the contract address and ABI

• Store these in AWS Secrets Manager

4 Frontend React Setup

1. Clone the repository:

bash
git clone https://github.com/kowsikgelliie/thesis-dapp.git

2. Install dependencies:

bash
npm install

3. Configure environment: Create .env.development.local:

REACT_APP_BACKEND_URL="your-api-gateway-url"

4. Start the application:

bash
npm run start

5. open http://localhost:3000 and connect to metamask. Make sure you are in polygon

amoy testnet

6. Select the account which deployed the contract to access the admin dashboard.

https://github.com/kowsikgelliie/thesis-dapp.git
http://localhost:3000/

8

7. If everything works well, you will see admin dashboard to provide grant access and

revoke access to objects.

Admin Dashboard

8. To access user dashboard, switch to different account in MetaMask which will change

the role to user.

User Dashboard

9. The user can see list of objects and sign the transaction to download the object from

this space.

9

5 Verification Steps

• Admin Dashboard:

o Use the contract deployer account to connect MetaMask.

o Check grant/revoke permissions access

o Grant that a certain user address has access to test

• User Dashboard:

o Now select different MetaMask account.

o Verify object list display

o Download an object with access and test

o Check out how signed URL generation and access is verified.

6 Troubleshooting

• Contract Deployment Issues:

o Try to keep sufficient POL in wallet.

o Check out if your network is connected to Polygon Amoy

• Lambda Function Issues:

o Check CloudWatch logs

o Verify IAM permissions

o Ensure that Secrets Manager access is valid

• Frontend Connection Issues:

o Confirm API Gateway URL

o Check MetaMask network

o Check contract address and contract ABI

