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Orchestrating Contextual Bandits Algorithm for 

Resource Scheduling in Kubernetes on Multiple 

Cloud Environments using Linear regression model 

Name: Bramha Theja Gadikota  
X23197994@student.ncirl.ie 
National College of Ireland 

 
Abstract 

Resource allocation in Kubernetes clusters refers to the efficient distribution and management 

of computing resources, such as CPU, memory, and storage to workloads running in the 

cluster. Traditional resource scheduling approaches often struggle with issues like suboptimal 

resource utilization, inability to handle dynamic workloads, and lack of adaptability to 

varying application demands. These problems are addressed in this study by employing the 

Contextual Bandits algorithm, which enables more intelligent and adaptive decision-making 

based on real-time resource usage patterns. The proposed approach uses a Linear Regression 

model within the Contextual Bandits framework to predict the most efficient allocation of 

resources based on historical data and the current context. The algorithm attempts to find a 

balance between maximizing resource efficiency and maintaining application performance. 

The objective of this study is to compare the performance of the proposed Linear Regression-

based scheduling approach between AWS and Azure cloud platforms using Kubernetes, 

which uses a more static and simplistic allocation mechanism. The experimental results 

demonstrated that the proposed approach outperforms the scheduler in terms of resource 

utilization, application responsiveness, and scalability. The findings indicate that Linear 

Regression scheduling with Kubernetes can significantly enhance cloud resource 

management, offering improved performance in handling dynamic and fluctuating workloads 

compared to traditional methods. 

Keywords: Cloud Computing, AWS (Amazon Web Services), Microsoft Azure, 

Kubernetes, Docker Containerization, Cloud 

1. Introduction 
1.1  Introduction 

Resource scheduling in cloud computing means allocating and controlling computing 

resources including CPU, memory, and storage for performing several tasks or for running 

applications (Praveenchandar and Tamilarasi, 2021). It also confirms that the resources have 

been procured in the right quantity and quality that can fulfil the performance demands at the 

least cost possible and resource wastage. Kubernetes, which is an open-source container 

orchestration system, is one of the most popular platforms for managing and deploying 

containerized applications (Miller et al., 2021) for creating automated environments for them 

by offering several tools for deployment, scaling, and management of workloads across sets 

of machines. It allows dynamic resource scheduling and helps in the allocation of containers 

to the nodes depending on the number of resources required and certain policies. Kubernetes 

takes applications to another level of flexibility, scalability and failure support for scaling up 
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or down, load balancing and cluster support. On the other hand, cloud computing is a model 

that provides access to shared computation and storage based on the current need and 

provides services remotely over the internet. It enables organizations to gain computing 

resources, storage, and other services as needed without purchasing the associated hardware. 

When coupled with cloud technologies such as kubernetes, flexible planning of resources 

simplifies application deployment, scaling, and management for optimum use of resources 

and maximum availability. This integration helps businesses to address customer variability 

in their demand and needs while operating at their best efficiency without frequent stoppages. 
 

 

1.2  Aim of the study  
The aim of this study is to solve the resource allocation challenges in kubernetes clusters by 

using a linear regression model within the Contextual Bandits framework. Various problems 

result from the traditional approaches to resource scheduling including poor resource 

utilization, inflexibility, and their inability to handle dynamic loads and changing application 

workloads. These challenges are sought to be addressed in this study by planning for resource 

allocation proactively, that is, decision-making will not just be done based on past 

information but also through running experiments on possibilities of efficient resource use. 

To this end, the recommended approach uses the Linear Regression model to predict the 

optimal number of resources most fitting to the current system environment and its 

performance history to make a smarter and more sophisticated schedule decision. These 

classifications make it possible for the system to proactively adjust resources on the fly, 

increasing the efficiency of both resources and applications.  

 

1.3  Research Questions 

How can the integration of Contextual Bandits algorithms with Kubernetes resource 

scheduling on AWS and Azure optimize cloud infrastructure performance, and when should 

the algorithm dynamically adjust to achieve the most efficient CPU utilization between these 

multiple-cloud environments? 

1.4  Research Objectives 

The research questions for this report are: 

1. How does the performance of the Linear Regression-based resource scheduling 

approach in terms of resource utilization and efficiency on AWS and Azure 

platforms? 

2. What impact does adopting a proactive, data-driven resource allocation strategy, 

based on historical performance data and ongoing exploration, have on the scalability 

and responsiveness of applications in Kubernetes clusters on AWS and Azure? 

1.5 Problem Statement 

Kubernetes clusters struggle to handle efficient resource allocation and scheduling mainly 

because of changing workload patterns and multiple cloud environments. The use of 

conventional scheduling approaches results in poor performance outcomes that produce 

delayed responses and higher failure incidents and underused resources. Network complexity 

becomes more substantial in environments which use AWS alongside Azure because both 

clouds have separate underlying infrastructures which affect application protocols. An 
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analysis of these resource scheduling challenges employs contextual bandits algorithm 

combined with linear regression modeling to enhance resource scheduling operations. The 

evaluation of this algorithm across AWS and Azure cloud platforms helps researchers 

determine which platform offers optimal conditions for producing scalable and reliable 

Kubernetes deployments. 

 

1.6 Motivation 

Significant progress in using containers alongside multi-cloud systems requires reliable 

orchestration systems to achieve enhanced operational competence and dependable system 

performance. Although highly efficient Kubernetes encounters limitations while managing 

resources across changing workload requirements. This research incorporates contextual 

bandits algorithms to boost scheduling efficiency because traditional frameworks required 

improvement. This comparative investigation of AWS and Azure offers tangible findings 

about major cloud platforms which help organizations decide their optimal infrastructure 

selection. Research findings affirm their crucial role in advancing cloud deployments due to 

their ability for performance improvement and scaling benefits. 

 

1.7 Structure of the Report 

This section is going to explain the structure of the report which is as follows: 

Chapter 1 Introduction: Provides an overview of the study, its objectives, and the 

significance of cloud-based resource optimization and load testing. 

Chapter 2 Literature Review (LR): Summarizes previous research on cloud platforms, 

Kubernetes, and resource management strategies to establish the study's context. 

Chapter 3 Methodology: Describes the approach taken, including tools and frameworks like 

Locust, Kubernetes, Prometheus, and Grafana for experimentation. 

Chapter 4 Design Specification: Outlines the system architecture, key components, and 

configurations for resource management and monitoring. 

Chapter 5 Implementation: Details the practical deployment of AWS and Azure platforms, 

Kubernetes clusters, and monitoring setups. 

Chapter 6 Evaluation: Analyzes performance metrics like CPU, memory, and network 

usage under load, comparing AWS and Azure scalability and reliability. 

Chapter 7 Conclusion and Future Works: Summarizes findings, highlighting the strengths 

and weaknesses of both platforms, and discusses the study's contributions and also showing 

future works. 
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2. Literature Review 

2.1 Contextual Bandits Algorithm 

The contextual bandit’s algorithm is more advanced version of reinforcement learning 

which was developed based on the multi-armed bandit problem (Bouneffouf et al., 2020), but 

the context information is considered during the decision-making process. While 

conventional multi-armed bandits are a two-stage technique of maximizing reward that 

combines exploration and exploitation throughout a series of trials, contextual bandits work 

to enhance the capacity to choose the right action from the context of the decision situation. 

This context-aware framework allows algorithm optimization for various situations (Islam et 

al., 2021), which is a major reason why it is optimal for practical uses such as product 

recommendations and dynamic advertising techniques as well as optimization of resource 

utilization in organizations. In each time step, the algorithm measures a certain set of 

contextual features or equivalencies, chooses an action out of a predetermined set and 

receives a score based on the utility of the action selected. In the long run, it acquires a policy 

that takes a context and an action and yields the most reward. It is less sensitive to the choice 

of reward functions and an important feature of contextual bandits that it can work in the 

environment in which reward-to-some context follows a non-stationary distribution. The 

learning process usually includes estimating all the action-value functions for every context; 

some of the plans are linear regression or neural networks. Council nonetheless contextual 

bandits have issues for example; the efficient exploration policies that should be employed to 

prevent bad decisions and computational tractability at circumstances with many features 

(Bietti et al., 2021).  

There are some recent advanced which have seen algorithms such as LinUCB, or Linear 

Upper Confidence Bound that helps in easing the exploration-exploitation conundrum and 

increases efficiency. In the field of decision making about resource allocation, contextual 

bandits are a promising solution for making resource schedules depending on workloads and 

system status. They facilitate control decisions in data environments within distributed 

systems such as Kubernetes, where context includes systems like CPU consumption, memory 

requirements, and latency. When using contextual bandits, resource scheduling processes are 

made intelligent, leading to less resource wastage and increased resource utilization. 

Additionally, it shows that learning from other models such as linear regression can improve 

contextual bandits’ understanding of those context feature, which in turn will lead to more 

better and specific decisions. That is why contextual bandits have a very high application 

potential in multi-cloud environments where resources and network conditions may vary 

significantly, and therefore require reliable and smart scheduling. In general, contextual 

bandits can be considered as a promising and highly universal formalism that unifies theory 

and practice of dynamic decision making with the usage of contextual information. 

2.2 Kubernetes and Resource Scheduling 

2.2.1 Kubernetes Overview 

Kubernetes, a container orchestration software, is now an industry standard for managing 

applications based on containers across a variety of contexts (Casalicchio and Iannucci, 

2020). Initially built by Google and later open-sourced and handed over to the Cloud Native 

Computing Foundation (CNCF) (Vano et al., 2023), Kubernetes is an orchestration tool 

meant to manage containers. It offers a strong foundation for the administration of clusters of 

virtual machines and also meeting server app demands. Fundamentally, Kubernetes 
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introduces a declarative model by which users can define the applications, allowing the 

system to consistently maintain the given state. Components of Kubernetes are the master 

node involved in control plane tasks like scheduling or resource allocation and the worker 

nodes: containers within pods— the most basic executable structures in Kubernetes. The 

kube scheduler is another element of the control plane and is responsible for deciding which 

node should be utilized to run new pods (Qunaibi, 2023) in regard of aspects such as resource 

availability, policies and affinity. Another advantage of Kubernetes is its flexibility which lets 

developers create their scheduling algorithms and integrate third-party programmes for 

certain applications. Besides this, the ability to perform service discovery, load balancing and 

self-healing also makes it a good system to manage complex distributed systems. Concerning 

cloud computing as the type of computing that has recently emerged. 

Pave the way to multi-cloud and hybrid-cloud arrangement of the application, Kubernetes 

has a strength where the underlying infrastructure is hidden from other applications, hence, 

prepare the way for portability by avoiding product lock-in (Schumann, 2024). This 

capability is especially useful in high volume situations, where traffic needs to be divided 

across several providers of cloud computing services. The possibility of scaling applications 

both up and out guarantees the optimal use of the resources thus keeping the operating costs 

low. Though, the starting scheduling algorithms are most efficient and fair, and do the best 

optimizing the resource usage they do not always cope with real-time and/or nonlinear 

requirements that can appear in multi-cloud environment. Such limitations point to the 

necessity of incorporating contextual bandits, as higher-level machine learning procedures in 

the scheduling of resources. Such innovations can be easily implemented on the platform due 

to the built-in APIs and plugins support, making it the best base for modern efficient resource 

management approaches. A large number of applications and services along with a support 

community makes Kubernetes dynamic and able to adapt to the constantly changing 

environment of cloud computing. Due to the ability to hide infrastructure details and provide 

a straightforward way to manage container packaging and distribution, Kubernetes helps now 

organizations to focus on respective application and services, unleashing process and thus 

innovation potential. 

2.2.2 Existing Scheduling Algorithms 

There is first study which is given by (Carrion, 2022) who has done extensive work on 

analyzing the Kubernetes scheduling techniques, especially considering the physical 

resources assignment to containers normally know as Scheduling Policies of Quality of 

Service (QoS) such as response time, energy efficiency, and resource consumption. The work 

introduces a novel classification schema for Kubernetes scheduling and systematically 

reviews the prior empirical findings in this area to find the shortcoming and prospect for 

future advancement. To this end, the proposed approach describes the current scheduling 

methods in a systematic way and inform future advancements on Kubernetes orchestration. 

However, the study also encountered difficulties in achieving the scheduling strategies 

agglomeration because of the multiple approaches combined with the high variance of QoS 

parameters as well as the working in the containerized environments. The outcomes are 

useful in supporting the notion that increasingly sophisticated and pragmatic scheduling 

schedules are necessary for addressing compensation and resource utilization overheads. 

Although the study is effective in interpreting what exists and what the consequences of these 

methodologies are, the reliance in empirical data restricts the degree of empirically based 

testing and application of proposed solutions. To overcome these limitations of the current 

study, the future research could include the real-life testing of the proposed solution and 
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could also investigate the possibility of the synergy between Kubernetes scheduling and other 

strategies. 

(Menouer, 2021) has developed a Kubernetes Container Scheduling Strategy (KCSS) 

which will enable the scheduler to meet the user goal of minimizing makespan while at the 

same time ensuring the cloud provider goal of low power consumption is achieved. Unlike 

existing single-criterion scheduling strategies, KCSS adopts a multi-criteria approach using 

six key metrics: It includes CPU usage, memory usage, disk usage, total power consumption 

of the hardware, number of total running containers, time taken for image transmission. 

Based on the fundamental concept of the TOPSIS algorithm, KCSS consolidates these 

criteria to identify an optimal node for a newly arrived container. Since KCSS is 

implemented in the Go language and required few modifications to the Kubernetes 

framework, it exhibits better performance than traditional approaches in multiple situations. 

However, the approach has its shortcomings as far as scalability of multiple-criteria decision-

making computations and flexibility to work in a changing cloud environment with 

fluctuating workloads. Despite the contribution of the study and the improvement in 

scheduling performance, the limitation with the approach lies in the fact that it is based on 

predefined criteria and the fact that the integration of KCSS with other Kubernetes updates 

may be cumbersome especially in complex cloud infrastructures or more diverse 

infrastructures. With regards to this study’s future work, the selection criteria could be 

refined further and the workload and infrastructure conditions under which the strategy is 

tested can be expanded. 

Based on Kubernetes, (Lovenvald, 2021) presented a serverless distributed deep learning 

job handler using Kubernetes to compare the default scheduler, and a gang-like custom 

scheduler in terms of job time. The purpose of this study was, therefore, to assess the 

suitability of these schedulers in managing the distribution of computing resources for 

training the deep learning models. From the experimented set up involving distinct deep 

learning models, resource numbers, and parallel jobs, it is evident that job run times were not 

altered exponentially. However, the gang scheduler demonstrated two notable benefits: In 

particular, it reduces the so-called resource deadlock, where resources are claimed but no jobs 

can begin; it also lessens epoch stragglers, where one or more jobs with a limited number of 

workers delays the completion of epochs and blocks other jobs’ use of the resources. Thus, 

despite the revealed benefits, the study encountered difficulties in comparing performance 

based on the limited number of given scenarios, and it might not be applicable for greater and 

more composite working loads. The outcomes indicate that the proposed gang scheduler 

increases resource utilisation and that further studies should be carried out to evaluate the 

effectiveness of the gang scheduling in other cloud platforms and tasks. 

(Rejiba and Chamanara, 2022) also used a survey to systematically review and categorize 

the existing works on custom Kubernetes Schedulers towards highlight the new age 

application areas such as AI-ML-DL and edge computing tasks. It has sought to present a 

mapping of scheduling objectives, workload kinds, and environmental settings targeted in the 

literature, so that prospective researchers may identify key scholarship in different areas and 

organize a diverse variety of scheduling goals and objectives. That said, the survey aimed at 

filling existing knowledge gaps to make informed recommendations for further research and 

development in Kubernetes scheduling. The results presented various approaches developed 

specifically to cover weaknesses in the default Kubernetes scheduler, which cannot perform 

well in handling complex workloads. The first difficulty was the integration of a wide-

ranging categorisation due to different nature of scheduling needs and approaches in the 

studies. A major weakness of the survey approach is that it lacks the ability to unveil new and 

unpublished trends and opportunities in the field. Furthermore, because Kubernetes’ services 
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and their ecosystems are still growing it can be challenging to keep survey and its results up 

to date. 

Finally (Forre, 2022), has been put forward with the Resource-Optimized-Software-Testing 

(ROST) algorithm resulting in optimization of resource usage in continuous integration 

systems through bin packing strategy for scheduling of jobs. This work considered worst-fit, 

best-fit, next-fit and first-fit bin-packing algorithms and combined them with the ROST 

method that selects the packing strategy depending on bin capacity. This approach integrates 

the principle of scheduling the best job into the lot together with worst-fit and best-fit 

algorithms in an attempt to overcome complexities that characterize testing phases of 

software development. The experiments indicated that ROST produces less interrupts than 

traditional methods and is substantially more effective than the most prevalent approaches to 

CI scheduling. However, the algorithm design and its deployment were hampered by a trade-

off between complexity and efficiency, especially with respect to dynamic load adaptability. 

As depicted in the results, ROST outperformed other schemes in tested scenarios but the 

observed results are conditioned by certain workload patterns and ought to be further checked 

in different software testing environments and large-scale systems. 

This study presented by (Hanna et al., 2023) on the stochastic contextual linear bandit 

problem in which the objective is to develop algorithms capable of playing nearly optimally 

in spite of changing contexts where actions are varying and their associated rewards are 

random variables drawn according to the inner product of the action and an unknown 

parameter. The contextual problem introduces more difficulty than the classic and singular 

linear bandit problem due to stochastic nature of the contexts. To solve these problems the 

authors present a new reduction approach that relies on the given context distribution in order 

to reduce the stochastic contextual linear bandit problems into instances of linear bandit 

problems. Otherwise for the unknown context distributions they propose an algorithm that 

transform the learning problem into a sequence of first-order linear bandit instances with 

minimal error in the projections and by doing so, they move to the next stratum in addressing 

open challenges with high probability regret bound. Their approach shows promising 

enhancements of remorse restrain for distinct applications; in batch arrangements, completely 

misspecified contexts, spare parameters, and adversarial contamination. Nevertheless, there 

are certain drawbacks of the approach: The first one is that the context distribution is 

supposed to be known or approximate, which might not be true in many real-life cases. 

However, the proposed framework serves as a nice framework for overcoming stochastic 

contextual bandit issues and can be useful for inferring how regret bounds can be optimized 

under such settings. 

Table 1: Comparison Table 

Author 

(Year) 

Key Features Strengths Weaknesses Proposed 

Algorithm/Approach 

(Carrion, 

2022) 

Focus on 

Kubernetes 

scheduling for 

containerized 

workloads. 

Introduces a 

new taxonomy 

for Kubernetes 

scheduling. 

Provides a 

structured 

understanding 

of scheduling 

techniques, 

highlights gaps 

and 

opportunities for 

future research. 

Limited 

experimental 

validation and 

real-world 

testing. 

New taxonomy for 

Kubernetes scheduling, 

empirical study of 

existing techniques. 
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(Menouer, 

2021) 

Introduces a 

multi-criteria 

container 

scheduling 

strategy 

(KCSS) for 

Kubernetes 

using TOPSIS. 

Improves 

scheduling 

performance, 

reduces power 

consumption 

and optimizes 

resource 

allocation. 

Computational 

overhead of 

multi-criteria 

decision-

making; 

challenges in 

integration with 

diverse 

workloads. 

Kubernetes Container 

Scheduling Strategy 

(KCSS) using TOPSIS 

algorithm. 

(Lovenvald, 

2021) 

Comparison of 

default 

Kubernetes 

scheduler with 

a gang-like 

custom 

scheduler for 

distributed 

deep learning 

jobs. 

Identified 

benefits of the 

gang scheduler: 

prevents 

resource 

deadlocks and 

reduces epoch 

straggling. 

No significant 

difference in job 

completion 

times; limited 

test scenarios. 

Serverless distributed 

deep learning job 

handler using 

Kubernetes and custom 

gang scheduler. 

(Rejiba and 

Chamanara, 

2022) 

Survey on 

custom 

Kubernetes 

schedulers for 

emerging 

applications 

(e.g., machine 

learning, edge 

computing). 

Provides a 

taxonomy of 

scheduling 

objectives and 

workload 

types. 

Comprehensive 

classification of 

scheduling 

methods, 

highlights 

research gaps. 

Limited by 

existing 

literature; 

rapidly evolving 

Kubernetes 

ecosystem may 

make findings 

outdated. 

Survey of custom 

Kubernetes schedulers 

and taxonomy of 

approaches. 

(Forre, 

2022) 

Development 

of ROST 

(Resource-

Optimized-

Software-

Testing) 

algorithm 

combining 

bin-packing 

and optimal 

job 

scheduling. 

Hybrid 

approach 

improves 

resource 

utilization in 

continuous 

integration 

systems; 

performs better 

than common 

approaches. 

Complexity in 

balancing 

efficiency with 

dynamic 

workloads; 

limited 

generalizability 

across 

environments. 

Resource-Optimized-

Software-Testing 

(ROST) algorithm for 

software testing in 

continuous integration. 

(Hanna et 

al., 2023) 

Stochastic 

contextual 

linear bandit 

problem. 

 Reduction of 

stochastic 

contextual 

bandits to linear 

Assumes known 

or easily 

estimable 

context 

Reduction framework 

converting stochastic 

contextual bandit 

problems to linear 
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Context-

dependent 

actions with 

rewards as 

inner product 

of actions and 

unknown 

parameters- 

Novel 

reduction 

framework 

bandits. distributions 

may face 

challenges in 

real-world 

scenarios with 

complex, 

unknown 

distributions 

bandit instances 

algorithm for handling 

unknown context 

distributions with 

minimal 

misspecifications 

 

3. Research Methodology 
This research methodology for proactive resource scheduling in Kubernetes is going to 

focus on optimizing resource allocation for achieving good use of CPU and memory which 

will minimize underutilization as well as overutilization. The first step in this methodology is 

based on the assessment of load metrics of various applications, launched in Kubernetes. This 

includes the process of determining a number of resources needed at per container or pod by 

checking on factors such as CPU usage, memory usage or the amount of input/output that the 

containers require. Based on this data, we deploy a forecasting model anchored on linear 

regression that estimates the resource consumption profile of each workload in the long run. 

These have historical CPU utilization data used to train the model to predict future resource 

requirements in the CPU. To achieve greater scalability and flexibility the model is wrapped 

into docker containers so it could be easily deployed on different environments. The 

deployment of this environment uses Amazon Web Service (AWS) with Elastic Container 

Registry (ECR) for pushing docker images for centralized image management and Elastic 

Kubernetes Service (EKS) for deploying the application to an EKS cluster. Whereas for 

Azure deployment, Azure Container Registry (ACR) is used to push the docker image and 

Azure Kubernetes Service (AKS) for deploying application to EKS cluster. This is done with 

the help of the outputs of the predictive model, which identifies the necessary updates in the 

resource and prevents them from becoming underutilized and overused when they are not 

needed. To improve on the usage of resources within the applications, Kubernetes horizontal 

pod autoscaling and resource quotas are used for the tuning of distribution. For the 

monitoring and visualization of the resource usage of containers, Prometheus and Grafana 

take care of collecting resources such as CPU in real-time informing the performance of the 

system. This makes it possible to effectively manage and allocate resources, minimize 

resource utilization and to guarantee that workloads in dynamic cloud-native settings will run 

optimally. 

3.1 Contextual Bandits Algorithm for Resource Scheduling 

The Contextual Bandits Algorithm has turned out to be reliable in the challenging 

circumstances of resource scheduling in Kubernetes environments that function across 

multiple clouds while prioritizing efficiency, scalability, and improved cost control. Due to 

its linear regression model, there is a clear reduction of the number of policy options for a 

given set of contextual states thus facilitating a quick assessment of the likely course of 

action. The inclusion of this approach in Kubernetes, a container orchestration platform 

increases the system’s ability to efficiently balance tasks across dissimilar cloud structures, 

reduce latency, and optimize resource utilization. As opposed to systems of fixed scheduling 
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or rule-based systems, the Contextual Bandits Algorithm learns from feedback hence suitable 

for dynamic and unpredictable cloud workloads. Its capability to explore (search for better 

scheduling techniques) and to exploit (implement known good scheduling strategies) brings a 

nearly optimal distribution of computational resources. This flexibility translates to lower 

operations expenses when picking cost-effective nodes in multi-cloud settings, 

notwithstanding high performance. Furthermore, scalable is another requirement of the 

current cloud-native applications that the algorithm satisfies since it provides resources to the 

pods depending on the priority, resource request, and throughput. This is even the case in 

Kubernetes where applications run across multiple cloud providers and each provider charges 

differently and offers different performance.  

The linear regression model serves as a computational corpus for determining the 

consequences of scheduling decisions which makes it efficient in replacing the overhead 

usually implicated by more diversified machine learning algorithms. This methodological 

choice allows keeping the algorithm itself minimally invasive to Kubernetes, thus preserving 

the complexity factor inherent to the platform while not hindering its efficiency. The 

orchestration of the Contextual Bandits Algorithm, it presents the idea of achieving a higher 

level of efficiency at lower cost, reduced latency and scalability of resources to help 

organizations attain significantly higher levels of performance to get the most out of their 

cloud applications. The approach makes resource allocation to solve multi-cloud strategic 

objectives, making it a revolutionary solution in cloud computing. 

 

Figure 1: Contextual Bandits Algorithm by (https://cloud.google.com/blog/products/ai-

machine-learning/how-to-build-better-contextual-bandits-machine-learning-models)  

3.2 Research Methodology Flowchart 

This project aims at deploying a fully functional and cost optimize solution using Amazon 

AWS services including EKS and an EC2. To accomplish the system’s predictive modelling 

technique and for the decision making, flask framework and numpy python library were used 

to implement linear regression algorithm. everything was containerized by using docker, the 

docker image was being created and deployed into a containerized environment through 

docker commands within the EKS cluster so that it remains portable. Originally, a custom 

controller was incorporated into working application from which application performance 

could be controlled and monitored easily. To monitor the resource usage and system 

performance, Prometheus, open-source monitoring solution was used to gather the real time 

https://cloud.google.com/blog/products/ai-machine-learning/how-to-build-better-contextual-bandits-machine-learning-models
https://cloud.google.com/blog/products/ai-machine-learning/how-to-build-better-contextual-bandits-machine-learning-models
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metrics like memory and CPU usage from deployed instances. The collected metric was then 

analyzed using grafana the leading visualization tool which gave an insight of the metric 

through custom queries in graph format. Such visualization allowed us to look at important 

measurements in detail and to compare them before and after some changes were made to 

make sure that the systems are being used efficiently and that they would maintain their 

performance whether they were under load or not. The solution adopted AWS cloud 

infrastructure, containerization of the algorithm and data, and real-time monitoring tools and 

visualizations leading to a well-constructed, solution with scalability to support the 

deployment and performance monitoring of the linear regression algorithm that leveraged the 

resource effective nature of the cloud native core. 

 

 

Figure 2: Proposed Workflow of research 

The above workflow shown in Figure 2 can be proposed to start with development of cloud 

application services on AWS and Azure. We then use it to generate a Kubernetes cluster for 

the orchestration of containerised applications for example, prometheus for monitoring and 

grafana for data visualization. The containerized service runs on Kubernetes cluster, and the 

auto-scaling based on linear regression model is used to optimize and adjust the number of 

pods. A load generator is used to load the service and the load is sometimes taken off the 

service. This work flow is showing like how to achieve a process of deploying the application 

in a scalable manner in a container environment having monitoring and data analysing factors 

for proficient usage of resources as well as dynamism to the varying loads. 

Table 2: Technologies and Tools Used in the Research 

Category Technologies/Tools 

Cloud Services for AWS Elastic Kubernetes Service (EKS) and Elastic Container Registry 

(ECR) 

Cloud Services for Azure Azure Kubernetes Service (AKS) and Azure Container Registry 

(ACR) 

Programming Language Python 

Frameworks Flask 

Libraries Numpy 

Containerization Docker 

Monitoring Prometheus 

Visualization Grafana 

Custom Management Custom Controller 
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Deployment Tools Docker Commands, Kubernetes (kubectl) 

Development 

Environment 

Visual Studio Code (VS Code) 

 

4. Design Specification 
4.1 Required System Specifications 

In this study, container deployment and operation are managed by orchestration services, 

specifically Elastic Kubernetes Service (EKS) on AWS and Azure Kubernetes Service (AKS) 

on Azure. Both platforms utilize Kubernetes to manage containers within the clusters, 

ensuring efficient scaling, load balancing, and resource allocation. Docker containers are 

employed to encapsulate the application code along with its dependencies, providing a 

consistent and portable environment for execution. By using Kubernetes and Docker, the 

system ensures seamless container orchestration, optimizing performance, scalability, and 

reliability across both cloud platforms, AWS and Azure. 

 

 

 

 

Architecture Diagram:    
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Table 3: Required System Specifications 

Category AWS Specifications Azure Specifications 

Cloud Service Amazon Web Services (AWS) Microsoft Azure 

Instance Type AWS t3.medium Azure Standard_DS3_v2 

Operating System Ubuntu 22.04 LTS (Latest Stable 

Version) 

Ubuntu 22.04 LTS (Latest Stable Version) 

Kubernetes 

Version 

Kubernetes 1.25 (Latest Stable 

Version) 

Kubernetes 1.25 (Latest Stable Version) 

Container Engine Docker 20.10 (Latest Stable 

Version) 

Docker 20.10 (Latest Stable Version) 

Orchestration 

Tool 

Kubernetes 1.25 (Latest Stable 

Version) 

Azure Kubernetes Service (AKS) - 

Kubernetes 1.25 

} 

5. Implementation 
 

5.1 Implementation of Linear Regression Algorithm 

Python was used in the implementation of linear regression algorithm for this study, and 

the flask web application framework was used to structure the web application. The basic 

operations of the linear regression model were done with the help of a python library known 

as numpy, which is specially designed for handling of large mathematical calculations. As it 

has been claimed, this model was intended for outcome forecast with linear dependency on 

the proposed input variables and the target variable. The implementation used a build, 

measure, learn cycle where the first step was data preparation where normalization and 

management of missing values were done. When the data was prepared the numpy library 

was used to calculate the coefficients of the linear regression model using the Ordinary Least 

Squares method which provided the best fit for this model. After that, several datasets were 

applied in the test to ensure its usability in prediction as well as confidence of the model. The 

whole application such as the implementation of linear regression was containerized with 

Docker used. This approach helped in packaging all the code as well as its dependencies in a 

single Docker capable image so that we can use it in any environment. Then the Docker 

container was deployed to an EKS and AKS cluster which could optimally scale in response 

to various computational heavy demands. Moreover, for the proper cycle of functioning of 

the application, a customized controller was created for proper control of the system flow. 

Prometheus was incorporated into the system to enable real-time average CPU usage and 

memory consumption measurements, all of which were visualized with grafana, which can 

present these values on dynamic, interactive dashboards. This offered useful information on 

how the linear regression model performed in the real world so that the usage of resources in 

the production system could be closely supervised and improved where necessary. These 

technologies made it possible to deploy this linear regression algorithm in this study in a very 

robust, efficient, scalable manner. 
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Figure 3: Architecture of Linear Regression by (Sarkar and Kashikar, 2023) 

Algorithm: Linear Regression 

Require: Dataset (X, y), Learning Rate (α), Epochs (E) 

Ensure: Optimized Weights (θ) 

1: Initialize θ, b to zero 

2: for each epoch in 1 to E do 

3:   predictions ← X.dot(θ) + b 

4:   cost ← (1/m) * Σ (predictions - y) ² 

5:   gradients ← (1/m) * X.T.dot (predictions - y) 

6:   θ ← θ - α * gradients 

7:   b ← b - α * Σ (predictions - y) / m 

8: end for 

9: return θ, b 

5.1 Cloud Deployment on Azure Using Docker 

As indicated by figure 4, application deployment using docker alongside ACR appears on 

the Azure portal. The image illustrates the “cpuloadgenflask” the repository location within 

the “cpuloadgenacr” container registry that forms part of the cloud deployment environment. 

This information about the deployment is contained in the repository details. The last concept 

called the ‘latest’ image tag puts the latest version of the application and its related metadata 

like the digest – it is a unique handle to the image, last modified. This information helps to 

update the state of the deployed application by making a backup snapshot which can be rolled 

back to if necessary. From the navigation pane, a single customizable representation of the 

repository is available through the Azure portal interface to control features such as managing 

deleted artifacts, access control, health, and utilization of the container registry. At the same 

time, the given model helps to organize the centralized management of a containerized 

application, which leads to the provision of a highly reliable and scalable cloud infrastructure. 
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Figure 4: Cloud Deployment on Azure Using Docker and ACR (Azure Container 

Registry) 

Figure 5 shows how the Azure portal looks for node pools as part of an Azure Kubernetes 

Service (AKS) cluster. Node pools in this context depict the virtual machines; that host the 

application workloads, in the given Kubernetes architecture model. The image shows a 

pattern similar to a table with sections that indicate the node pools configured for the AKS 

cluster. In the table, each row refers to a node pool and gives all the specification, including 

all related resources and their usage. Its field “Node” contains exact names of the node pools, 

which helps to find and work with particular node groups in a proper way. The field “Status” 

shows the state of nodes, so the administrator can immediately notice the state of readiness 

for container deployment. Moreover, in the “Pods” column, each node pool describes the 

number of pods being run, and “Kubernetes version” column indicates the Kubernetes 

version to help with version control and update. 

 

 

Figure 5: AKS (Azure Kubernetes Service) 

5.2 Cloud Deployment on AWS Using Docker 

Figure 6 illustrates the user interfaces of the Amazon ECR in the AWS Management console 

in terms of the specification and details of a docker image hosted in the registry. The figure 

highlights the view of the deployed artifact to give details and metadata of the particular 
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artifact. The “Details” option displays the key information about the image: the tags, the 

digest, which is the image’s unique identifier when it is uploaded and the URI for calling the 

image. The "General information" section adds even more value with regard to the 

deployment, identifying the artifact type as an “Image,” repository as “cpuloadgenacr,” and 

the time that image was registered. In the figure above, one of the most valuable features 

presented under the figure is called “Scanning and vulnerabilities” which gives information 

of the security level of the image being deployed. It shows if present day threats have been 

identified, and thus helping the administrator prevent or mitigate a potential risk to the 

security of the container-based application and its general soundness.  

 

Figure 6: Cloud Deployment on AWS Using Docker and ECR (Amazon Elastic 

Container Registry) 

Figure 7 illustrates the interface of Amazon ECR within the AWS Management Console, the 

screenshot is evidencing the details of a docker image in the registry. It offers information on 

the artifact deployed, its basic information that includes the metadata. In the present case, the 

“Details” section of the component brings into focus the pertinent details of the image like 

the image tags, the digest identifier as well as the URI for referencing the image. This is so 

because by deploying the cloud through the AWS ECR the whole process is made more 

secure and efficient. The container registry centralizes Docker image management; that 

allows implementing versioning, access control, to integrate with other AWS services like 

ECS or EKS for containerized applications management. 
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Figure 7: EKS (Amazon Elastic Kubernetes Service) 

 

6. Evaluation 
6.1 Case Study 1: AWS load testing  

The load testing using the locust platform is a real-life case study that can be used to 

explain the use of a distributed load testing framework for measuring the performance and 

scalability of an application hosted in Amazon web services. The graph shows that the system 

was initially stable and handles the increasing load and user numbers quite well whereas the 

number of users are also increasing as load increases and the failure rate is also low. 

However, as the load increased at a certain time the response and the efficiency of the system 

began to decline. The failure rate went up high, which showed that the system was not 

capable of handling the number of requests tendered to it. The response times also soared 

high, indicating there was an inherent delay as the system was struggling. This goes to show 

that the ability of the system was exceeded, it could not accommodate the growth hence 

missing the point of expansion. 
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Figure 8: AWS Load Testing Case Study 

6.2 Case Study 2: Azure load testing 

This study presents load testing of Azure using locust as a case study to show how a 

distributed load testing framework can be applied in testing an application deployed on the 

Microsoft Azure cloud platform. The total requests per second graph contains information on 

the RPS and failure. Initially, the RPS starts in the range of 15-20 with a low failure rate 

which represents that the system is well capable of managing the load. However, as the load 

increases with time, the RPS increases sharply up to a point of about 22 requests per second. 

At the same time, there is a rapid worsening of the failure rate, which indicates that the 

system is too loaded and can no longer deal with the requests coming in. 
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Figure 9: Azure Load Testing Case Study 

Table: Comparison Table 

Aspect AWS Azure 

Platform Utilized Amazon Web Services (AWS) Microsoft Azure 

Requests Per Second (RPS) 247.9 16.1 

Failure Rate 100% 94% 
 

6.3 Case Study 3: Experimentation of Load Testing on AWS and Azure 

6.3.1 Comparison of CPU Utilization Between AWS and Azure Infrastructures 

The below Figures represent CPU usage comparison of AWS and Azure infrastructure. 

Figure 10 displays the CPU utilization percentage for the AWS infrastructure, which 

fluctuates significantly over time, reaching a peak of around 75%. On the other hand, we see 

more consistent picture of the CPU load for the Azure infrastructure graphically presented in 

Figure 11 having mostly fluctuated between the 40 and 80 percent mark within the entirety of 

the considered timeframe. The characteristics of the two cloud providers are revealed through 

understanding their approach to handling and allocation of resources as well as the 

scalability. The trends enjoy high variance between the spikes and valleys of CPU use which 

may suggest a more reactive structure of AWS. On the other hand, from statistics of the 

Azure infrastructure, the CPU usage is much more consistent and calculated, thus meaning 

that the resource management is very well planned. 
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Figure 10: AWS CPU Utilization (%) 

 

Figure 11: Azure CPU Utilization (%) 

6.3.2 Comparison of Network (in Bytes) Between AWS and Azure Infrastructures 

The images below compare the network traffic analysis traffic in the types of network 

inbound bytes in AWS and Azure infrastructures. Figure 12 depicts the network inbound 

traffic for the AWS infrastructure, which exhibits a significant spike around the 17:25 time 

mark peak to over 3GB. This implies that the AWS infrastructure activities involved in the 

network went higher at one point, probably due to data processing and or communication 

with the outside world. On the other hand, the figure below presents the network inbound 

traffic of Azure structures showing that it has a stable, steady pattern in contrast to frequent 

fluctuation. The network traffic does not rise significantly it stays in the range of 2MB-6MB 

during the time shown under the network column. In this case, the two cloud providers show 

differences in network traffic which can be suggestive of the divergence in workload 

characteristics, allocation of resources and most importantly the networking services forming 

the cloud.  
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Figure 12: AWS Network In (Bytes) 

 

Figure 13: Azure Network In (Bytes) 

6.3.3 Comparison of Network (Out Bytes) Between AWS and Azure Infrastructures 

The following images illustrate the network outbound traffic for the AWS and Azure 

infrastructures entered in this study. Figure 14 shows the network outbound bytes for the 

AWS infrastructure, which exhibits a significant spike around the 17:35 time mark. Out 

bound traffic increases with a maximum of 600k bytes, meaning that at some given instance 

there is increased traffic out of the AWS environment. This was most probably caused by 

surge on data transfer/communication on the AWS infrastructure with external services 

during this period. On the other hand, the Azure network outbound traffic has shown more 

consistent and more stable in figure 15. While there is a noticeable spike, reaching 100k 

bytes, overall, the Azure total out traffic stays quite low but with some spikes, it mostly 

alternating between 40k to 80k bytes with an average of 69.5k bytes. The dissimilarities in 

cases of network outbound traffic revealed slight variations in the workloads, resource 

utilization, and network preferences between the two leading cloud providers. These 

observations might suggest that the network usage for the AWS environment is more bursty, 

or has more daily fluctuations than the relatively stable showing of the Azure infrastructure. 



22 
 

 

 

Figure 14: AWS Network Out (Bytes) 

 

 

 

Figure 15: Azure Network Out (Bytes) 

6.3.4 AZURE node CPU & node memory utilization  

From the above comparisons, it is understood that over resource utilization of Azure 

outperforms AWS. Figure 16 shows the CPU and memory utilization for nodes in the Azure 

infrastructure over time. The CPU utilization graph displays an average utilization of 46.10%, 

with a maximum utilization of 99.97%. This indicates that the CPU usage on the Azure nodes 

fluctuates significantly, with periods of high demand that reach near-maximum capacity. The 

memory utilization graph, on the other hand, shows a more stable pattern. The average 

memory utilization is 30.34%, with a maximum of 36.03%. This suggests that the Azure 

nodes have sufficient memory resources to handle the workloads, with the memory usage 

remaining within a comfortable range throughout the period. The difference between the 

CPU and memory utilization patterns suggests that the Azure infrastructure may be more 

constrained by CPU resources than memory resources. This could be an important 

consideration when scaling or optimizing the infrastructure to meet changing demand. 



23 
 

 

 

Figure 16: AZURE node CPU & node memory utilization in % 

 

6.4 Discussion 

Through the study we evaluate how the application performs between AWS and Azure 

infrastructure platforms when Kubernetes orchestration handles their management. The 

findings reveal substantial variations exist between platform scalability and reliability 

capabilities. The RPS performance of AWS reached 257.9 while Azure managed 16.1 but 

both systems encountered failures at 100% and 94% respectively. Kubernetes cluster resource 

allocation and scheduling algorithms encounter significant difficulties when-founded on 

cluster resources. This behavior becomes worse as workload intensity increases. Advanced 

resource scheduling methods demonstrate their effectiveness through implementation of 

contextual bandits combined with linear regression models. The technique finds equilibrium 

between detection of new opportunities and the current resource distribution to maximize 

utilization efficiency while maintaining stability and avoidance of system breaks. What drives 

the AWS RPS to higher levels is either better resource capacity configurations or improved 

resource availability yet the observed failure rates point to the necessity of enhancing both 

load management and resource scalability for effective optimization. Monitoring platforms 

Prometheus and Grafana provided essential capabilities for metric visualization so users 

could detect system bottlenecks. Although both AWS and Azure provide suitable platforms 

for Kubernetes-based deployment AWS delivers slightly better results yet none of these 

platforms operate flawlessly during periods of heavy load which highlights ongoing 

requirements to enhance resource performance strategies. 

 

 

7. Conclusion and Future Works 
 

7.1 Conclusion 

This study was able to show how a cloud-based system using modern technology can be 

implemented and deployed to effectively schedule, monitor and optimize resources. Using 

two major cloud-based solutions, Amazon Web Services (AWS) and Microsoft Azure, key 

cloud platforms, the system was stressed tested to simulate load conditions. Used code for 

linear regression brought out the prospect of applying machine learning in resource 

management and the best/next-use problems. Containerization using Docker in combination 

with Kubernetes allowed for proper resources management and unproblematic applications’ 

deployment. Prometheus and Grafana were well capable in monitoring aspects such as CPU 
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and memory utilization which were important evaluating the performance of the system. 

Stress testing the system with Locust provided information about the performance of the 

application under increasing loads of users; understanding system constraints was crucial. As 

the analysis revealed AWS achieved higher RPS but with more failure rate as compared to 

Azure showing a clear correlation enhanced for future practical application. In aggregate, the 

project emphasized the importance of cloud technologies, monitoring tools and load testing 

frameworks as the key instruments for creating effective and fully-scaled applications with 

high performance. 
 

7.2 Future Works 

Further work can be directed towards improving the stability, expandability and resource 

utilisation of the computing system. The use of contextual bandits in machine learning to 

make dynamic decisions regarding the resources in Kubernetes will lead to better decisions 

and better performance. Including elevation of AWS and Azure resources into one network 

infrastructure, and thereby it could increase the level of redundancy and flexibility for the 

company. Adding more advanced monitoring tools of system usage and probable failure with 

AI may help to more efficiently utilize the resources. The integration of edge computing with 

cloud resource could decrease latency for real time application. Further improvement to load 

testing is possible by emulating more complicated user interactions and incorporating fault 

injection tests which yield a better understanding of application performance under pressure. 

Moreover, lots of updates can be easily implemented with CI/CD tools of the deployment 

pipeline and would minimize downtime. In order to increase failure rates, particularly on 

AWS, future measures, including load balancers, autoscaling and database indexes, must be 

examined. For Azure, the future enhancements could be in form of moderating latency and 

enhancing RPS through better caching. Last but not the least, the main model can extend 

future work by adopting sustainability measures such as carbon-aware scheduling of 

resources to promote environmentally sustainable practices without compromising 

performance or scalability. 
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