
Management of Self-Healing Systems for
Multi-Cloud Deployments on Kubernetes

MSc Research Project

Cloud Computing

Vaishnavi Udayrao Deshpande
Student ID: x23183209

School of Computing

National College of Ireland

Supervisor: Sai Emani

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Vaishnavi Udayrao Deshpande

Student ID: x23183209

Programme: Cloud Computing

Year: 2024

Module: MSc Research Project

Supervisor: Sai Emani

Submission Due Date: 12/12/2024

Project Title: Management of Self-Healing Systems for Multi-Cloud Deploy-
ments on Kubernetes

Word Count: 2025

Page Count: 9

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Vaishnavi Udayrao Deshpande

Date: 12th December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Management of Self-Healing Systems for Multi-Cloud
Deployments on Kubernetes

Vaishnavi Udayrao Deshpande
x23183209

1 Introduction

This Configuration Manual details out the configuration of the software tools and settings
required to replicate the experimental setup used for the project work ’Management of
Self-Healing Systems for Multi-Cloud Deployments on Kubernetes’. This includes the
configurations for Kubernetes, Jenkins, Datadog, AWS, GCP, and Azure along with the
necessary environment setup to ensure successful deployment, monitoring, and manage-
ment of the self-healing framework.

Magalhães and Silva (2013); Pandi et al. (2023); Mfula and Norminen (2018); Pel-
legrini et al. (2017); Samarakoon et al. (2023); Sharma (2022); Ye et al. (2016)

2 System Requirements

The designed system requires some of the tools and software and it is important to make
sure that the following software and Services are available and configured correctly before
starting the setup.

• Operating System: In this research study, AWS EC2 is used which uses : Amazon
Linux 2023.6.20241121
But Ubuntu 20.04 or equivalent Linux distribution can also be configured.

• Cloud Providers: AWS, GCP, Azure accounts with appropriate permissions and
IAM Roles

• Kubernetes: Kubernetes 1.22.1 or later

• Jenkins: Latest stable version

• Datadog: For Monitoring and Observability

• Docker: For Containerization

• Kubectl: Kubernetes Command Line Tool for interacting with Kubernetes

• Cloud Command Line Tools: AWS CLI, GCP CLI, Azure CLI

• Helm: For Kubernetes package management

1

3 Cloud Provider Setup

As the system designed is for multiple clouds, make sure that all of the clouds are set-up
correctly. For this framework, three of the most popular public clouds are used which are
AWS, GCP and Azure. This section provides the detailed configuration for each od the
clouds below.

3.1 AWS Setup

AWS is primarily used in this design work. AWS EKS, ECR and EC2 instnace, are
the services used. Elastic Kubernetes Service is set up along with the Elastic Container
registry which is used for storing the application images. These application images then
pulled by kubernetes cluster to deploy that application.

• IAM Permissions: Create necessary IAM Roles and Policies for seamless inter-
action with EKS and other AWS Resources as well. Following table gives out the
details of required IAM permissions and roles for AWS integration with other tools.

– IAM Permissions: Create necessary IAM Roles and Policies for seamless
interaction with EKS and other AWS resources. The following table outlines
the required IAM permissions and roles for AWS integration.

Cloud Role/Service Ac-
count

Key Permissions/Roles

AWS Jenkins Role eks:DescribeCluster,
ecr:*,
ec2:*,
autoscaling:DescribeAutoScalingGroups

EKS Cluster Role AmazonEKSClusterPolicy

Node Group Role AmazonEKSWorkerNodePolicy,
AmazonEKSCNIP olicy,
AmazonEC2ContainerRegistryReadOnly

Table 1: IAM Roles and Permissions for AWS

• EKS Cluster: Create an EKS Cluster in your AWS project environment using
the AWS management console or AWS CLI.

– Set-up VPC, Subnets as well as Security Groups for Kubernetes nodes

• AWS SSO: For this study, AWS SSO is used and hence, configuration of AWS SSO
authentication is required. AWS accounts will not require AWS SSO configuration
setup.

In this research work, AWS Cloud is used extensively. Resources like EC2, EKS, and
ECR are used with required roles and permissions. EC2 instance is created with t2-
medium for fast processing. Once the instance is ready, it is connected via bash terminal
and Jenkins is installed in the same. Once the Jenkins is installed, it is accessed using
Public IPv4 address

2

Figure 1: EKS Setup

3.2 GCP Setup

For the GCP setup, GCP account is created. For purpose of this study, a sample project
in the GCP account is created and used. As a DevOps best practice, a Service account
is created which is given a ’contributor’ role in the project which makes it easy for GKE
cluster to communicate with Jenkins which is in the EC2.

• GKE Cluster: GKE cluster is created inside the GCP using GCP console. It can
be created through GCP CLI as well. Once the cluster is setup, Kubernetes API
needs to be enabled in the project and it should have all the required appropriate
permissions.

• Service Account: For this study, a specific service account is created which has
required permissions and roles to interact with Jenkins, and GKE Clusters. This
will make sure that the developers and devops engineers won’t have elevated per-
missions individually.

• Google Cloud IAM: Set up Google Cloud IAM roles and permissions to interact
with Kubernetes clusters and other resources for the service account that is created.
Following table shows the roles and policies for GCP:

– IAM Permissions: Create necessary roles and permissions for seamless in-
teraction with GKE and other GCP resources. The following table outlines
the required IAM permissions and roles for GCP integration.

Cloud Role/Service Ac-
count

Key Permissions/Roles

GCP Jenkins Service Ac-
count

roles/container.admin,
roles/storage.admin,
roles/logging.logWriter,
roles/monitoring.metricWriter

GKE Cluster Service
Account

roles/container.clusterViewer,
roles/compute.networkAdmin

Table 2: IAM Roles and Permissions for GCP

3

3.3 Azure Setup

For this project, Azure for Students account is used which provides you free credit of
$100. AKS Cluster, artifact repository, resource group, are the services that are required
to be created. Once the resource group is set up, the IAM permissions which allow the
cluster to be integrated with other resources are given to the group.

• AKS Cluster: A Kubernetes cluster is created using the Azure console in the
AKS with 2 node pools, both having Standard DS2 v2 sizes

– Set up networking, Security Groups, VNet

• Azure IAM: Configure Azure active directory roles and permissions for access-
ing the AKS cluster. Following table gives the idea of required IAM roles and
permissions for this setup:

– IAM Permissions: Create necessary roles and permissions for seamless in-
teraction with AKS and other Azure resources. The following table outlines
the required IAM permissions and roles for Azure integration.

Cloud Role/Service Ac-
count

Key Permissions/Roles

Azure Jenkins Service Prin-
cipal

Contributor,
Azure Kubernetes Service Cluster User Role

AKS Managed Identity Reader,
Azure Kubernetes Service Node Pool Contributor

Table 3: IAM Roles and Permissions for Azure

• Azure Resource Group: The resource group contains the AKS cluster and Net-
working, storage and associated infrastructures. The Jenkins service principle and
Managed identity requires contributor-level access to the resource group to interact
with AKS for deployments.
All components which are required for Kubernetes deployments, such as Virtual
machines, public IPs, loadbalancers, reside within the same resource group for cent-
ralized managements.

4 Kubernetes Configuration

The Kubernetes configuration for this management of self-healing multi-cloud deploy-
ments on Kubernetes project is designed to deploy as well as manage the application
consistently across AWS EKS, GCP GKE, Azure AKS clusters. This section explains
the configurations done for setting up Kubernetes across all three cloud platforms.

• Cluster Configuration: Ensure that the Multi-cloud kubernetes clusters (EKS,
GKE, AKS) are configured to allow the communication between them.

– Define Name-spaces and resource quotas to manage all the deployments.

4

– AWS: use any storage class for persistent volume. Ensure that IAM roles and
policies 1 are properly attached. Along with this, configure security groups
to allow NodePort.

– GCP: Use standard or SSD storage class for persistent volumes. Assign proper
roles as per mentioned in the table 2 to the service account used by Jenkins.
Open the NodePort range (30000-32767) to allow traffic to application.

– Azure: Use Azure disks or Azure files for persistent volumes. Configure
the network security groups (NSG) for the AKS nodes to allow NodePort
access. Ensure that AKS has managed identity with required permissions as
mentioned in the table 3

• Self-Healing Mechanisms: Deploy Kubernetes operators to manage the life-cycle
of the self-healing systems. 2

– Setup the Horizontal Pod Autoscalers (HPA) to manage the pod scaling based
on the resource utilization.

– implement the health checks for automated recovery of failing pods.

Figure 2: PDB & HPA .yaml files

5 CI/CD Configurations

5.1 jenkins Setup

• Jenkins Installation: EC2 instance is set up on AWS which will host the Jenkins.
Once the EC2 is configured and running, connect to the instance using bash terminal
in local system or using tools like Putty. After connecting, install the Jenkins on
instance and start using Jenkins console via Public IPv4 address of EC2. 3

5

Figure 3: Jenkins on EC2

Figure 4: Jenkins Configuration

• Pipeline setup:

Install the required plugins in the Jenkin’s management console and add the keys
and Tokens as well as passwords which are required to integrate Jenkins with AWS,
GCP, Azure, Github, Datadog, etc.

– Using Jenkins console, create a new pipeline and Configure the pipeline for
deploying the application on EKS, GKE, and AKS clusters.

– Make sure to include the steps for building the docker images for application,
pushing them to the respective container registries (ECR, GAR, ACR), and
deploying those to Kubernetes using kubectl and Helm.

– Configure the pipeline to trigger when there is ’push’ event in the GitHub
repository which is has the application files. 4

6

6 Monitoring

6.1 Datadog Integration

Datadog is an open-source platform for monitoring purpose where custom dashboards
for custom metrics can be created. Once the deployment of application is done and the
system is up and ready, install the datadog agents on each of the clusters using bash
terminal. And using the Datadog console, create the custom metrics and dashboards to
visualize the system and kubernetes clusters efficiently.

• Datadog Agent setup: Install the datadog agent on each of the Kubernetes
clusters to collect metrics, logs and traces from infrastructure and applications
deployed. In the EC2 instance, switch to the AWS cluster context and install
datadog agent and deploy it on the EKS. Once done, follow the same steps for
GCP GKE and Azure AKS. 5

Figure 5: Datadog Dashboard

• Dashboards: Create custom datadog dashboards to monitor key metrics such as
pod health, resource utilization (CPU, Memory), and network performance as well.
TO create the dashboards, go to new dashboard and decide the metrics that are
required to be monitored. Once decided, create the metric and datadog will start
monitoring that service or resource. 6

7 Self-Healing System Configuration

• Failure Detection: Make sure to define failure conditions such as pod crashes,
high resource utilization, and network issues. Here, PDB and HPA are configured
using yaml files along with Kubernetes in the Github repository.

• Automated recovery: Set up Kubernetes to automatically recover from failures
such as by restarting pods, scaling services, or shifting workloads between clusters.

7

Figure 6: Datadog metrics

Figure 7: pods recreation

8 Testing Setup

After configuring all the component, test the setup by simulating failure scenarios (e.g.
pod crashes, node failures) and verify that the self-healing mechanisms detect and recover
from the failures.

• Test 1: Simulate a pod failure and encure it restarts automatically.

• Test 2: Simulate high CPU Usage and verify that the HPA scales the pods accord-
ingly.

• Test 3: Simulate a node failure and check the workload is distributed to healthy
nodes.

9 Conclusion

This manual provides the configuration needed to replicate the management of multi-
cloud self-healing processes for deployments on Kubernetes. By following these steps,
researchers should be able to set up a resilient and automated infrastructure which is
capable of recovering from failures in multi-cloud environments.

References

Magalhães, J. P. and Silva, M. L. (2013). A framework for self-healing and self-adaptation
of cloud-hosted web-based applications, IEEE International Conference on Cloud Com-
puting Technology and Science .

8

Mfula, H. and Norminen, K. J. (2018). Self-healing cloud services in private multi-clouds,
2018 International Conference on High Performance Computing Simulation .

Pandi, S. S., Kumar, P. and Suchindhar, R. M. (2023). Integrating jenkins for efficient de-
ployment and orchestration across multi-cloud environments, International Conference
on Innovative Computing, Intelligent Communication and Smart Electrical Systems
(ICSES) .

Pellegrini, R., Rottmann, P. and Strieder, G. (2017). Preventing vendor lock-ins via an
interoperable multi-cloud deployment approach, The 12th International Conference for
Internet Technology and Secured Transactions (ICITST-2017) .

Samarakoon, S., Bandara, S., Jayasanka, N. and Hettiarachchi, C. (2023). Self-healing
and self-adaptive management for iot-edge computing infrastructure, Moratuwa En-
gineering Research Conference (MERCon) .

Sharma, V. (2022). Managing multi-cloud deployments on kubernetes with istio, pro-
metheus and grafana, 8th International Conference on Advanced Computing and Com-
munication Systems (ICACCS) p. 10.

Ye, F., Wu, S., Huang, Q. and Wang, X. A. (2016). The research of enhancing the de-
pendability of cloud services using a self-healing mechanism, International Conference
on Intelligent Networking and Collaborative Systems .

9

	Introduction
	System Requirements
	Cloud Provider Setup
	AWS Setup
	GCP Setup
	Azure Setup

	Kubernetes Configuration
	CI/CD Configurations
	jenkins Setup

	Monitoring
	Datadog Integration

	Self-Healing System Configuration
	Testing Setup
	Conclusion

