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Management of Self-Healing Systems for Multi-Cloud
Deployments on Kubernetes

Vaishnavi Udayrao Deshpande
X23183209

Abstract

In the growing world of Cloud Computing, multi-cloud architectures have gained

significant popularity as the organizations are looking to enhance the flexibility,
resilience, as well as performance by leveraging the services from multiple cloud
providers. However, management of system failures in such complex environments
remains a crucial challenge. This research study aims to explores the Integration
and management of self-healing mechanisms within multi-cloud deployments on
Kubernetes and automating the failure detection and recovery processes to minim-
izer downtime and ensure continuous availability.
Utilizing Kubernetes Operators, Datadog for real time monitoring, and Jenkins for
the CI/CD automation, the study is focused on developing a deployable framework
to enhance performance, security, and resilience in multi-cloud environments. Some
of the Key failure points across cloud providers including AWS, GCP and Azure
are identified, and various tools are tested to evaluate their scalability and effi-
ciency. The results show that the self-healing system significantly reduces recovery
time, optimizes resource usage, and maintains high availability, even in the event
of failures. This designed framework provides valuable insights for cloud DevOps
Engineers, which offers practical solutions for automated failure recovery and im-
proving the overall management of multi-cloud services. This research work also
discusses potential improvements including refining failure detection and recovery
workflows, and suggests future directions for advancing autonomous, cloud-native
systems.

1 Introduction

Cloud technology is growing rapidly. In modern cloud computing, multi-cloud architec-
tures are increasingly becoming popular as organizations leverage the services of multiple
cloud providers to optimize their infrastructure. This approach enhances flexibility, per-
formance as well as resilience by avoiding vendor lock-in and distributing the workloads
more efficiently (Sharma, 2022). However, the complex nature of multi-cloud deployments
presents several challenges, particularly around managing system failures while ensuring
seamless operations and maintaining high availability at the same time. Self-healing
mechanisms are crucial to addressing these challenges, which helps enabling automated
detection and recovery from failures to minimize downtime (Ye, et al., 2016).

This research study aims to explore how self-healing mechanisms, enabled through Kuber-
netes operators along with supporting tools like Datadog, can be effectively integrated to



enhance the performance, security and resilience of multi-cloud environments. The study
also aims to identify key failure points in such environments, providing practical solutions
through automation and real-time monitoring which can be considered highly valuable
for Cloud DevOps Engineers. Furthermore, it also consists of testing and comparing
various tools, offering insights into their scalability and performance in multiple cloud
architectures. The ultimate goal of the study is to develop a deployable framework for
DevOps engineers, which helps enhance automated failure recovery processes and simpli-
fying the management and deployments of multi-cloud services. In summary this study
is important in cloud computing as it addresses the essential needs for resilience, auto-
mation, efficiency, security as well as sustainability in multi-cloud environments. These
contributions not only solve current challenges but also set the stage for future advance-
ments in autonomous, cloud-native systems.

This research paper is comprised of multiple sections. This section includes the introduc-
tion to the tools and technologies used in this study. Further moving on, the flow of the
paper is as:

Literature review Section which delves into some of the past research work done in this
field. The Methodology and Implementation sections are dedicated for the detailed
implementation for development of the framework for management of self-healing sys-
tems for multi-cloud deployments on Kubernetes. To outline the outcomes of the study,
the results and outputs derived from various metrics considered are shown and discussed
in the Results and Discussion section. The paper also provides the conclusion of the
study and further scope for research in the same area in Conclusion and Future scope
part. Finally, References section provides the bibliography, and the references used to
carry out this research work.

2 Literature Review

This section is the extract of the related work done in the past in this field. It is com-
prised of three sections which are 1) Multi-Cloud Deployment and management , 2)
Self-Healing and Self-Adaptive Systems and 3) Private Multi-Cloud and Advanced
Techniques [2.3]

2.1 Multi-Cloud Deployment and management

Managing multi-cloud Deployments on Kubernetes with Istio, Prometheus and Grafana
(Sharma 2022, pp. 1-10), is the key research work for this study, where the author
has addressed the popularity of multi-cloud architectures and the effective management
of deployments in this multi-cloud environment using Kubernetes, integrating it with
Istio, Prometheus and Grafana as well. The Author identified several challenges in man-
aging multi-cloud deployments such as Vendor lock-in, network latency, security policies
across different platforms and proposed a multi-cloud architecture using Kubernetes, Is-
tio, Grafana and Prometheus to mitigate them. Kubernetes is a widely used container
orchestration platform which offers a robust solution for scaling and maintaining applica-
tions across the cloud providers. This study by |Sharma| (2022) emphasizes the abilities of
Kubernetes to handle multi-cloud setups by providing consistent management layer. Istio
is the tool that helps in managing multi-cloud traffic by providing a service mesh which
decouples service, traffic management and security from application itself. Monitoring
in multi-cloud environments is crucial for maintaining system health, detecting failures,



and ensuring optimal performance and author has explained the role of Prometheus as
a powerful management system which is suitable for Kubernetes environments Sharma
(2022). The integration of Prometheus with Kubernetes provides visibility and helps in
detecting anomalies. The other tool used by Sharma in study is Grafana for the metrics
visualization which also offers customizable dashboards. In multi-cloud environments,
Grafana’s ability to collect and display data from multiple sources is important for en-
suring the reliability of applications running across different clouds. Overall, the work
by Sharma provides valuable insights into how integration of multiple tools including
Kubernetes, Istio, Prometheus and Grafana can be leveraged to effective management
of multi-cloud deployments. This study by Sharma is valuable reference study which
motivated the use of Kubernetes and other tools for current study.

In the research ‘Preventing Vendor lock-ins via an interoperable multi-cloud deployment
approach’[Pellegrini et al.| (2017) have addressed an important issue in cloud computing
which is Vendor lock-in. Vendor lock-in is where organizations become dependent on
single cloud provider’s services which make it difficult and expensive to switch between
providers and to integrate with others. As a solution to this, authors proposed an in-
teroperable multi-cloud deployment approach which would allow the applications to be
deployed seamlessly across multiple clouds. The proposed interoperable approach by
authors makes use of open-source cloud agnostic tools such as Kubernetes, terraform
and other multi-cloud management platform tools including Juju Charms and Conjure-
up. These tools allow organizations to manage resources across cloud platforms using
a consistent interface which helps reduce the complexities in multi-cloud management.
Moreover, in the paper, Pellegrini et al.| (2017)) also explain the adoption of cloud native
practices which make applications more flexible. The authors also have highlighted that
multi-cloud strategy not only helps preventing vendor lock-in but also has multiple other
advantages in terms of cost optimization, scalability as well as disaster recovery. The
paper by Pellegrini et al.| (2017)) contributes crucially to the discussion regarding vendor
lock-ins and multi-cloud strategies cloud computing which can be further explored in
detail.

The study ‘Integrating Jenkins for Efficient Deployment and Orchestration across Multi-
Cloud Environments’ by authors |Pandi et al| (2023)) is focused on the Integration of
Jenkins which is a popular Continuous Integration Continuous Deployment (CI/CD)
tool, to enable efficient deployment and orchestration in multi-cloud environments. In
the paper, authors have proposed Jenkin’s role to serve as a tool for multi-cloud orches-
tration where it is integrated with several cloud-native services to manage different cloud
providers which includes AWS, Azure as well as GCP Pandi et al.| (2023)). Along with
this, the authors have discussed the role of Jenkins in managing containerized applica-
tions using Docker and deploying those containers across cloud-based Kubernetes clusters
which enabled cloud-based deployments. The work by authors Pandi et al. highlights
Jenkin’s ability to define and manage deployment workflow as a code which improves
the reproducibility of deployments. The authours also emphasizes Jenkin’s support for
Infrastructure as a Code practices (IaC) where Terraform in integrated, which enables
the version controlling of resources which enhances scalability and reliability. The study
by [Pandi et al.| (2023)) discusses Jenkin’s integration with orchestration tools such as
Kubernetes and Service Mesh tools which for the management of traffic between services
running on different clouds and integration of these tools allow applications to be managed
and scaled across cloud platforms. In conclusion, Pandi et al.| (2023) have highlighted



the importance of automation in multi-cloud deployments with Jenkins in creating scal-
able and reliable CI/CD workflows via integration of multiple other tools as well which
motivated to leverage Jenkins for the current study for the creation of CI/CD pipeline.

2.2 Self-Healing and Self-Adaptive Systems

Samarakoon et al. (2023) in work ‘Self-Healing and Self-adaptive Management for IoT-
Edge Computing Infrastructure’ have proposed a self-healing and self-adaptive framework
for loT-Edge computing infrastructure. The rapid expansion of IoT devices has driven
adoption of Edge computing, where the computing resources are placed closer to the data
resources to reduce the latency and improve performance [Samarakoon et al.| (2023). The
paper proposes a model-driven framework that combines self-healing and self-adaptive
techniques using containerized services and orchestration tools like Kubernetes. This
framework is capable of managing resources dynamically, balancing the load and recover
from failures and is based on the idea that aims to detect system failures automatic-
ally, resolve them and recover from the faults and adapt resource allocation. Self-healing
mechanism includes automated recovery which is based on the diagnosis where Al and
Machine Learning play a significant role where these mechanisms are crucial for main-
taining the health of large scale loT-Edge systems where manual interventions would be
too slow |Samarakoon et al.| (2023). Alongside self-healing Samarakoon, S. et al. have
also emphasized the role of self-adaptive management where the system dynamically
adjusts its behavior based on system changes including network congestion, resource
availability and application demand. Self-adaptive systems are specifically important in
multi-cloud environments where the workloads can fluctuate unpredictably. This research
by Samarakoon et al.| (2023)) focuses on IoT-Edge environments, many of the techniques
can be applied to multi-cloud environments where systems also require self-healing and
self-adaptive infrastructure to maintain performance and resilience. The use of tools
such as Kubernetes, Datadog in multi-cloud environments shares resemblance with the
approaches explained by authors which can be further leveraged for public multi-cloud
deployments of applications.

Cloud services operate on highly complex and distributed infrastructures, which makes
them liable to failures that can disrupt services. |Ye et al. (2016) in their work, high-
lighted that dependability, which includes reliability, availability and maintainability is
a major issue in cloud computing. The paper has discussed challenges such as hardware
failures, network outages, and software bugs which fall under common causes of down-
time in cloud environments. In the work, authors proposed a self-healing mechanism as
a solution to address the issue and to enhance dependability by detecting, diagnosing
and recovering from the failures in real-time. Self-healing systems are designed to handle
predictable as well as unpredictable faults without any human invasion which helps ser-
vices to be uninterrupted. The approach for self-healing discussed by Ye et al.| (2016]) .
is centered around Automation. Through automated monitoring systems, cloud services
can continuously collect and analyze the data from system performance, resource util-
ization and error rates as well to detect the anomalies. Authors |Ye et al| (2016 have
proposed the use of machine learning algorithms to enhance failure prediction, which
will help the systems to proactively address the issues before they impact the end-users.
Automated recovery actions including restarting process or redistribution of workloads
help maintaining service dependability and at the same time, minimize the downtime.



Overall study by |Ye et al.| (2016) demonstrated the value of self-healing mechanisms in
improving the dependability of cloud services and that by automating the fault detection
and recovery, cloud providers can achieve increased reliability, scalability and efficiency
as well.

In the paper ‘A framework for self-healing and self-adaptation of Cloud-hosted web-
based applications’ by Magalhaes and Silva Magalhaes and Silva (2013) have proposed
the framework which will enhance the self-healing and self-adaption capabilities of cloud-
hosted web-based applications. Cloud-hosted web-based applications often experience
fluctuations in workload and require a high degree of reliability and availability as well
Magalhaes and Silval (2013). The proposed self-healing and self-adaption framework by
is designed to detect and respond to the failures and changing conditions in cloud-hosted
applications automatically which is built to monitor application performance, diagnose
the issues and trigger automated recovery and adaption actions whenever necessary. The
framework uses real-time monitoring tools to collect performance metrics which are then
analyzed to detect deviations from normal behavior and through this, the system can
recognize faults early and trigger pre-configured recovery processes. Authors Magalhaes
and Silval (2013) presented and claimed that the proposed framework’s self-healing abilit-
ies notably improve application reliability and resilience by reducing the impact of faults
on end-users which further helps enhancing overall service quality and meeting Service-
Level Agreements (SLAs) more efficiently.

2.3 Private Multi-Cloud and Advanced Techniques

Likewise public multi-clouds, Private multi-cloud infrastructures enable organizations to
combine resources from various private clouds, which helps enhance flexibility and re-
silience. However, maintaining service continuity and reliability across multiple private
clouds can be challenging due to issues like network inconsistencies, resource fragment-
ation, and system failures which are addressed in the work by authors Mfula and Nur-
minen’s (2018) Mfula and Norminen| (2018) titled ‘self-healing cloud services in private
multi-clouds’. In their work, authors have discussed on the application of self-healing
mechanisms within private multi-cloud environments, which aims to enhance the reliab-
ility, availability of cloud services. The authors have highlighted the use of self-healing
mechanisms to manage failures automatically in which, self-healing involves monitoring
of the services in real time, identifying faults, and taking actions to correct them and
restore the system stability (Mfula & Norminen, 2018). The key techniques include fail-
ure detection, automatic resource allocation and recovery workflows, which allow services
to maintain workflow without human intervention. The authors Mfula and Norminen
(2018) propose a self-healing framework designed for private multi-cloud setups, high-
lighting automation in fault-recovery and workload management. To enhance failure
prediction and resource allocation the proposed framework integrates machine learning
algorithms which allow the system to adapt dynamic workloads and changing conditions
within the private multi-cloud setup. The authors Mfula and Nurminen’s have offered
important insights into development of self-healing mechanisms as well as the import-
ance of monitoring and automation tools in private multi-cloud environments and the
strategies discussed by them can be leveraged in public multi-cloud architectures as well.



3 Methodology

This work aims to provide a comprehensive framework for the management of multi-
cloud deployments which includes the integration of multiple clouds, an orchestration
tool Kubernetes and monitoring tools. This methodology section follows a systematic
approach which comprises of parts: (1) Requirements identification [3.Ihnd (2) Architec-
ture design and Workflow.

3.1 Requirements Identification:

Identifying the requirements for this research involves good understanding of the crit-
ical components needed to design, implement, and evaluate a self-healing multi-cloud
framework.

e Multi-cloud domains: It is important for this system to support multi-cloud
deployments across leading cloud providers. The popular public cloud AWS, GCP
and Azure are ideal for a self-healing, multi-cloud Kubernetes due to their multiple
advantages such as high availability and fault tolerance across the world, strong
multi-cloud and compatibility with Kubernetes and service mesh solutions, native
monitoring tools which ensure secure and reliable performance. Along with these,
these clouds provide robust CI/CD tools like AWS CodePipeline, Google Cloud
Build and Azure DevOps and also support external tools like Jenkins, Bitbucket,
etc.

e Orchestration and Self-healing: Kubernetes is the best choice for orchestration

and self-healing in this study. First of all, it is an open-source tool which integ-
rates seamlessly with all of the clouds. It provides automation, scalability, and
fault-tolerant capabilities. It also simplifies multi-cloud deployments by automat-
ing workload distribution, scaling, and resource optimization across AWS, GCP and
Azure.
Kubernetes’ native self-healing mechanisms such as health monitoring, automated
pod restarts, and fault isolation, ensure system stability and resilience. Its integra-
tion with monitoring tools like Datadog enhances inter-cloud communication and
real-time performance tracking. In addition to this, its declarative configuration
model and strong ecosystem support make it ideal for managing complex, reliable,
and scalable multi-cloud architectures.

e CI/CD for Deployment: Implementing CI/CD pipelines and automating the

deployment processes are crucial for the DevOps Engineers. In this framework
design, Jenkins and Git are used. Jenkins [Project (2024) and Git SCM]| (2024)) are
ideal CI/CD tools for this study as these provide flexibility, automation capabilities,
and seamless integration with Kubernetes and all cloud environments.
Jenkins enables highly customizable pipelines, automated deployments and dynamic
scalability through Kubernetes integration. Whereas Git provides reliable version
control, collaborative workflows and branching strategies to ensure code consistency
and minimize errors. Jenkins and Git together support cross-platform compatibility
across AWS. GCP and Azure, while integrating effectively with the and monitoring
tools as well. These tools are cost-effective and adaptable which ensures efficient
and reliable CI/CD workflows for this project.
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e Monitoring: Monitoring is critical for this system to work as expected, as monit-
oring will provide the continuous feedback if there is any failure in the system which
can be recovered in time. Datadog [Monitoring (2024)) is one of the most popular
monitoring tools which provides deep insights into the system health, application
performance, and resource utilization. It integrates seamlessly with multi-cloud
environments and Kubernetes as well. Datadog’s ability to automate failure detec-
tion, trigger alerts and offer anomaly detection ensures that self-healing systems
can respond quickly to issues, which helps minimizing down-times. Its scalability,
security monitoring, and collaboration tools further enhance its suitability for com-
plex, large-scale cloud architectures, which makes it a powerful tool for maintaining
resilient, efficient, and secure multi-cloud systems.

3.2 Architecture Design and Workflow:

Figure Figure 2| Shows the high-level overview of proposed system architecture diagram.
As shown in figure Figure Application is deployed using CI/CD tools
like GitHub and Jenkins. GitHub provides easier way to version control the source code
and Jenkins is used to create a pipeline which consists of the steps like containerizing the
application using the dockerfile provided along with an application in GitHub and creating
an image for the same. Once the image is created, that is pushed to the container registries
of all the clouds where the application image can be saved and pulled from by Kubernetes
clusters. Using that image, the application is then deployed on the Kubernetes clusters
in each cloud platform.

The architecture leverages the Kubernetes-native self-healing mechanisms across mul-
tiple cloud providers. Figure Figure |3| shows the Components of self-healing system
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architecture which are as follows:

e Application pods: Application pods are managed by Kubernetes Deployment
that ensures a specific number of replicas are always running which includes Liveness
probe to check if pods are alive. Whereas Readiness Probes ensure only healthy
pods serve traffic.

e Service: Service mechanism abstracts the pods and provide a stable endpoint for
external as well as internal traffic. Service routes the traffic only to pods in ‘Ready’
state.

e Horizontal Pod Autoscaler (HPA): HPA mechanism in Kubernetes Native
dynamically scales the number of pods based on resource usage such as CPU util-
1zation.

e Pod Disruption Budget (PDB): PDB endures that at least a minimum number
of pods are always available during maintenance or any kind of disruption for service
availability.

For this proposed system to work as expected, monitoring plays a very crucial role.
Datadog is an open-source platform which makes it possible to monitor as well as visualize
the metrics and gives out alerts in real time if any failure occurs. It is very useful
in monitoring and managing Kubernetes clusters, applications and cloud infrastructure.
Datadog’s integration with Kubernetes provides insights into health, performance, and
resource usage of the clusters on multi-cloud. In this design, as shown in Figure Figure [3|
datadog is set up to monitor node health in terms of CPU, Memory and Storage usage
of nodes, tracking pod status during deployments, and provides cluster metrics like total
nodes, pods, and deployments as well.

4 Implementation

The Implementation of management of self-healing framework for multi-cloud deploy-
ments on Kubernetes involves multiple stages, focusing on integration of various tools
and technologies to achieve better management of automated failure recovery, resilience
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and real-time monitoring. The following steps outline the process considered to develop
this proposed framework:

1. Multi-Cloud Deployment Set-Up: The proposed self-healing system is de-
veloped and deployed on a multi-cloud Infrastructure including AWS, GCP and
Azure. The deployment is configured using Kubernetes clusters in each providers,
which ensures high availability and fault tolerance which included following steps:

e Cluster Configuration: Each of the cloud provider’s Kubernetes service i.e
AWS EKS | (AWS), GCP GKE | (GCP), Azure EKS | (AWS) are configured
for this design. These clusters are set up for efficient routing and management
of traffic between cloud environments. These Kubernetes clusters are created
in AWS EKS, GCP GKE, and Azure AKS using console of respective cloud
platforms which can be done using CLI as well. While creating the clusters,
the minimum nodes are set up to 2. Using the CI/CD pipeline via Jenkins,
the application is deployed

e CI/CD Pipeline Integration: For the Continuous Integration and Continuous
Deployment, Jenkins is configured. This helps to automate the application
deployment process across all three clouds. To host the Jenkins, AWS EC2
instance is used For more information on cloud services, see the official AWS
documentation | (AWS). This EC2 instance is configured with t2-medium ma-
chine type and enough volume mounts of memory, which helps Jenkins to work
faster and seamless. Once the Jenkins is set up, the pipeline is created which
includes the steps as follows:

— Authentication: In this step, Jenkins try to authenticate all three cloud
platforms and checks whether all the required permissions and security
keys are in place to deploy the application.

— Code Check-Out: Once the authentication is done, it goes on and checks
out the code from GIT repository, and grabs the required files for applic-
ation deployment. (eg. Deployment.yaml, service.yaml, dockerfile)
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— Docker Image: Once the files are in place, it goes on and build the docker
image for the application using the dockerfile in repository.

— Image push: The created docker image is then pushed to the container
registeries of all the respective clouds which include AWS ECR, GCP
GCR (Artifact registry) and Azure ACR, from where Kubernetes pulls
the image.

— Deployment: The image is pulled by Kubernetes cluster, and deployed as
well as exposed externally on the NodePort which is mentioned in ser-
vice.yaml file. (This can be changed as per the requirement Eg. LoadBal-
ancer, Ingress)

Once the steps are configured, this pipeline is set up to trigger using the github
push action i.e when any changes are pushed in Git Repository related to the
pipeline, it will trigger the pipeline and latest version of the application will
be deployed. As shown in Figure,Figure [ this Jenkins pipeline is set up to
deploy the ‘simple-app-application’ in each cloud’s Kubernetes cluster.

?_ Jenkins Q  Search (CTRL+K) @ L0 ® @ vaishnavi v [ logout

Dashboard > multicloud > Stages

Build multicloud > Build Configure
id pipeline
Start  Setup and Chec... Loginto AWS vi... Build Docker Im... Push Image to A... Deploy to AWS .. Push Image to G... Deploy to GCP ... PushImage to A... Deployto Azure..  PostActions  End
#28 © © @ © © © © © @ ©
Start  Setup and Chec... Loginto AWS vi... Build Docker Im... Push Image to A.. Deployto AWS .. Push Image to G... Deploy to GCP ... PushImage to A... Deploy to Azure..  Post Actions End
#27 © © © © © © © © © ©
Start  Setup and Chec... Login to AWS vi... Build Docker Im... Push Image to A... Deploy to AWS ... Push Image to G... Deploy to GCP ... PushImage to A... Deploy to Azure..  PostActions  End
#256 © @ @ © ® ©

Figure 4: Jenkins Pipeline

e NodePort Configuration: Considering the scope of this work, external exposure
of the application was not required, hence NodePort services are used to expose
the application internally within clusters. This approach helped to minimize
security risks and also ensured that the services are only accessible within the
private cloud networks.

2. Kubernetes Clusters and Operators Setup: To automate the failure recov-
ery within the multi-cloud environment, multiple Kubernetes operators are used.
These operators extends the Kubernetes API to manage the life-cycle applications
and resources automatically. The operators were configured to monitor the ap-
plication states, detect anomalies and initiate the recovery process as well when
required. These operators are set up as .yaml files along with the deployment.yaml
and service.yaml files in the repository. Following mentioned steps were taken to
implement the operators:

e Custom Resource Definitions (CRDs): To manage the health of the deployed
application, Custom resource was defined. This provides a declarative way

10



to specify the desired state and life-cycle of the application. In this setup,
PDB.yaml and HPA.yaml are used as CRDs.

— PDB.yaml: Pod Distribution Budget is the Kubernetes operator which
makes sure that there will be at least two pods always running even if
other pods crash or fail due to any issues.Figure

Pip package updater v = 2

Figure 5: PDB.yaml & HPA.yaml

— HPA.yaml: Horizontal Pod Autoscaler is the operator used to scale up
and scale down the number of pods according to the application demand
and workload.Figure

e Operator Logic: Using the Go Programming Language, operators logic is im-
plemented. This helps to watch for the pod failure events, resource exhaustion
or even connectivity issues and take automated actions to recover from these.
Considering, if one pod or node is deleted or crashed, the new pod is created
automatically and takes up the workload.

e Deployment Strategy:These operators are deployed as a pod in all of the
Kubernetes clusters and configured to work using shared Helm-charts for con-
sistency across multi-cloud clusters.

. Datadog Integration: To monitor the system health, detect failures in real-time,
and provide observability across the multi-cloud deployment, Datadog is integrated
into the framework which are explained in following steps:

e Datadog Agent Setup: The Datadog Agent is deployed on each of the Kuber-
netes clusters. While dealing with multi-cloud clusters in a single instance, con-
texts are switched and datadog is installed in each of the Kubernetes clusters.
To be precise, Datadog’s API key and Application key are used to integrate
clusters and datadog with each other. These agents collect metrics, logs and
traces from the applications and infrastructure components and send them to
the Datadog Platform. Figure [0]

e Custom Metrics Dashboards: Datadog has advantage that we can create our
own metrics dashboards and choose our own Custom Metrics. Some of such
metrics are created to track specific application and infrastructure health indic-
ators. These metrics include pod health, CPU utilization, pod restarts count,

11
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running containers and etc. This Datadog dashboard is configured to provide
a real-time insights into these mentioned metrics, which allows DevOps team
to identify potential failures. Figure [7]

Automated Failure Recovery Mechanisms: The core component of this frame-
work is the automated failure recovery system, Following are the failure recovery
methods implemented:

e Pod Auto-Scaling: Kubernetes’ Horizontal Pod Autoscaler (HPA) is configured
to scale up and down the application pods based on resource utilization met-
rics including CPY and Memory usage. This ensures that the system adapts
to the changing workloads.In case of any pod failures, Kubernetes operator
automatically triggers the pod restarts to restore the service

e Pod Restarts: In case of any pod failures, Kubernetes operator automatically
triggers the pod restarts to restore the service. Figure

e Self-Healing workflow: If a critical failure such as a Node failure or a Network
issue occurs and detected by Datadog, Kubernetes operators automatically
initiate a sequence of actions, which includes scaling up additional pods, re-
starting the failed nodes and services or shifting workloads between different
clusters to ensure the continuous availability.

12



5. Testing and Validation: Once the system is deployed, comprehensive testing
was conducted to validate its functionality:

e Failure simulation: To ensure the self-healing mechanisms work as expec-
ted, controlled failure scenarios were simulated, such as node shutdowns, Pod
crashes, and network issues. The system’s ability to detect from failures is
measured. Figure

[ec2-user@ip-172-31-39-6 ~]$ kubectl get pods —o wide —n default

NAME READY  STATUS RESTARTS  AGE NODE NOMINATED NODE  READINESS GATES
datadog-agent-lnqcw 3/3 Running 0 u46h .32.0. gke-gcp-multicloud-default-pool-691607e2-v8bb  <none> <none>
datadog-agent-nr8rv 3/3 Running 0 u46h : : gke-gcp-multicloud-default-pool-691607e2-qt@j  <none> <none>
simple-app-deployment-5b6bc6fbu6-77bld  1/1 Running 0 115s . gke-gcp-multicloud-default-pool-691607e2-v8bb  <none> <none>
simple-app-deployment-5b6bc6fb46-jvlpy  1/1 Running 0 12h gke-gcp-multicloud-default-pool-691607e2-qt@j  <none> <none>
[ec2-user@ip-172-31-39-6 ~]$ kubectl delete pod simple-app-deployment-5b6bc6fbu46-jvipv —n default

pod "simple-app-deployment-5b6bc6bu6—jvlpv" deleted

[ec2-user@ip-172-31-39-6 ~]$ kubectl get pods -o wide -n default

NAME READY  STATUS RESTARTS  AGE 1P NODE NOMINATED NODE  READINESS GATE
5

datadog-agent-lnqcw 3/3 Running
datadog-agent-nr8rv 3/3 Running
simple-app-deployment-5b6bc6fbu6-4zk72  0/1 Pending
simple-app-deployment-5b6bc6fb46-77bld  1/1 Running

46h 10.32.0.32  gke-gcp-multicloud-default-pool-691607e2-v8bb  <none> <none>
46h 10.32.1.51  gke-gcp-multicloud-default-pool-691607e2-qt@j  <none> <none>
Us <none> <none> <none> <none>
3m25s  10.32.0.39  gke-gcp-multicloud-default-pool-691607e2-v8bb  <none> <none>

Figure 8: Pods Recreation

e Performance Metrics: The performance of the multi-cloud system was mon-
itored using the custom metrics created in the Datadog. Metrics such as
resource utilization, downtime, are analyzed to assess the system’s resilience
and efficiency as well.

e Scalability Testing: The system’s ability to scale automatically in response
to increased traffic or workload was tested by simulating a high load scenario
across all three clouds. Figure [J]

[ec2-user@ip-172-31-39-6 ~1$ hey -z 1m —c 10 http://34.38.132.164:30574

Summary :
Total: 60.0161 secs
Slowest: 0.0490 secs
Fastest: ©.0174 secs
Average: 0.0196 secs
Requests/sec: 510.1295

Total data: 31626328 bytes
Size/request: 1033 bytes

Response time histogram:
0.017 [1] |

.021 [27261]
.024 [2616] |
.027 [216] |
.030 [195]1 |
.033 [158] |
.036 [75] |
.ou0 [49] |
.ou3 [34] |
.ou6 [9] |
.ou9 [2] |

Latency distribution:
10% in ©.0184

25% in 0.0188
50% in 0.8192
75% in ©.0198
90% in 0.0206
95% in 0.0213
99% in 0.0304

Details (average, fastest, slowest):
DNS+dialup: .0000 secs, 0.0174
DNS-lookup: .0000 secs, 0.0000
req write: .0000 secs, 0.0000
resp wait: .0195 secs, 0.0173
resp read: .0001 secs, 0.0000

Status code distribution:
[200] 30616 responses

Figure 9: Workload Testing
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Recovery Time Across Failure Types and Cloud Providers
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Figure 10: Recovery Time across Cloud Providers

5 Results

The implementation of self-healing framework for multi-cloud deployments on Kuber-
netes is evaluated based on several key factors which includes system availability, failure
recovery time, scalability, and resource utilization. This section discusses the outcomes
of the study, and explores the implications of the findings in the context of multi-cloud
environments and self-healing systems.

e In all simulated failure scenarios, the system demonstrated the high availability.
The Kubernetes operators effectively detect failures and trigger recovery actions,
such as restarting failed pods or scaling services.

e The automated recovery mechanisms significantly minimizes downtime, with most
of the failures being recovered automatically within few seconds depending on the
complexity of failures.

e The average recovery time for failures was between 30 Seconds to 1 Minute, de-
pending on the cloud provider and failure type.

e For node failures, recovery time was longer, taking up to 5 minutes to initiate the
recovery by scaling application to a healthy node.

e The system successfully scaled the application based on the CPU and Memory
utilization metrics, using Kubernetes Horizontal Pod Autoscaler (HPA)

e When system is under high load, it automatically adds up more replicas of applic-
ation pods. Similarly, during the periods of low demand, unnecessary replicas are
scaled down to save the costs and resources.

e The automated CI/CD pipeline successfully deploys application on multi-cloud
Kubernetes clusters at once without any manual intervention except the authentic-
ation process.

e The system is able to detect the issues during deployment and automatically roll
back changes when its necessary.
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e The management of complex multi-cloud systems is easier when this framework is
in place as the deployment of an application is handled through a single platform
and the monitoring provides better insights into the system which makes it easy for
DevOps engineers to work on the failures quickly.

In Figure Figure Bar graph describes the recovery times for different failure types.
This shows a quick comparison between pod failures, node failures, and network failures
across included cloud providers.

6 Evaluation and Discussion

The Evaluation of Self-Healing management Framework for Multi-Cloud deployments on
Kubernetes primarily focuses on its effectiveness in achieving high availability, resilience,
and automated failure recovery in a multi-cloud environment. The Evaluation process
involves several key metrics:

1. System Availability: The framework designed maintains high availability across all
of the simulated failures. Automatic recovery ensures that the system maintains
the operational state with minimal downtime.

2. Failure Recover Time: The system demonstrates solid scalability, and it automat-
ically adjusts to increasing demand by adding replicas of the application pods.
However, network delays and communication issues between clouds were observed
during scaling process which can be addressed by improving the cross-cloud com-
munication strategies.

3. Resource Utilization: The system efficiently utilizes resources, with only temporary
increases during recovery phases. Datadog’s monitoring allows for better manage-
ment of resources, which ensures that the system do not over-position resources

unnecessarily. Although, during the large-scale recovery, resource optimization can
still be improved.
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4. Integration and Automation: Integration of Kubernetes Operators, Datadog and

6.1

7
7.1

Jenkins streamlines the deployment process, automates the failure recovery, as well
as provides the real-time monitoring. This enhances the overall reliability of the
system. In future, improvements can include automating more granular failure
response.

Challenges and Limitations:

The system’s recovery can sometimes be slower during large-scale infrastructures
such as node failures shows longer recovery times.

The complexity of managing self-healing mechanisms across multiple cloud environ-
ments increases with scale, which suggests the need for more efficient orchestration
in larger deployments.

Cross-cloud communication can be challenging and needs to be tested thoroughly.

Conclusion and Future Work

Conclusion

This study is focused on developing and management of the developed simple and deploy-
able framework for the applications deployed on kubernetes in multiple cloud clusters.
Considering the motive and objectives of this study, following conclusions can be derived:

e The implementation of the self-healing techniques in a multi-cloud environment

using kubernetes operators, Datadog, and Jenkins is successfully done. The system
proposed demonstrated high availability, automated failure recovery as well as the
ability to scale dynamically based on the workloads of the application demands.
The integration of these various tools allows for enhanced reliability, performance
and resource optimization as well.

However, while handling the complex failure scenarios and optimizing recovery
times for node failures. Despite these challenges, the system performed very well
and proved to be a robust solution for maintaining high availability
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Failure Recovery Success Rate

Failed Recovery

Successful Recovery

Figure 13: Failure Recovery Success Rate

e Management of multi-cloud deployments is easier when this framework is used as
deployment processes are handled in a single framework and monitoring which is
crucial is handled in separate and easy to use platform.

7.2 Future Work

This research has a lot of scope for future work for multiple enhancements. To improve
the recovery times for node failures, future research can be focused on refining failure
detection mechanisms and exploring more advanced failure recovery strategies. Further
research into optimizing communication between clouds in a multi-cloud environment can
address latency and network issues during scaling and recovery operations.
Implementing machine learning models to predict potential failures and automate re-
sponse strategies can significantly improve the effectiveness of the self-healing framework.
Exploring the integration of additional service mesh technologies, such as Istio can fur-
ther enhance cross-cloud communications and improve system resilience.

The TaC i.e Infrastructure as a Code technology can be used while creating the cloud
infrastructure using Terraform and other [aC tools which is considered as one of the best
practices in DevOps Automation.
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