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Adaptive Serverless FaaS Dataflow Framework for
Real-Time IoT Analytics across the Cloud-Edge
Continuum

Pradnya Deshmukh
X23149604

Abstract

Robust cloud-to-edge communication infrastructure is now available due to pro-
liferation of 5G networks and IoT devices. Existing IoT systems, however, do not
have efficient mechanisms for workflow orchestration or adaptation to dynamic en-
vironments. This research introduces an adaptive serverless framework for real
time IoT analytics across the cloud edge continuum and uses intelligent workflow
placement to improve the responsiveness of these workloads. The framework real-
izes a new machine learning based anomaly detection, time series prediction, and
reinforcement learning approach to processing location determination. An autoen-
coder based anomaly detection model that identifies patterns which require special
processing, LSTM networks for prediction of processing requirements and a Deep Q
network for dynamic placement decision in the edge, hybrid and cloud environments
are employed by the system. This framework has been implemented on AWS infra-
structure and show results up to 13x superior placement efficiency than traditional
rule based approaches with single request latencies of 63.92ms versus 832ms, and
consistent performance up to large loads of 80k concurrent users. Its ML-driven
decision making improves placement accuracy and adaptation to changing condi-
tions significantly, according to evaluation. Specifically, this research advances the
state of the art in the realm of IoT analytics by enabling a flexible orchestration
mechanism that can adapt to a number of real world scenarios encountered in smart
city, healthcare system, and other IoT applications.

1 Introduction

1.1 Research Problem and Background

With the exponential growth of internet of things (IoT) devices and 5G networks, it is
possible to have seamless cloud to edge communication with massive amounts of data
being generated, where real time processing and analytics are needed (Geldenhuys et al.;
2021)). Nevertheless, current IoT systems suffer from inability to accommodate dynamic
environments and distributed data processing resulting in suboptimal system performance
and resource utilization (Bhatia et al.; 2022). Machine learning (ML) models have become
critical for real time data processing and predictive analytics, but do so at the expense
of complexity with regard to model deployment and data management across the cloud
edge continuum (Bhadula et al.; 2024).



Recent serverless computing which uses Function-as-a-service (FaaS) with cloud backend
system has been proposed to overcome the aforementioned drawbacks, providing a scal-
able and event driven platform for applications execution without (Patil et al.; |2021)).
Addressing latency sensitive applications, intermittent connectivity, and network band-
width limitations (Kong et al.;[2022)), edge computing has also become popular. Serverless
computing, edge processing and ML models collectively offer new opportunities for ultra
adaptive, efficient and intelligent IoT systems. While also presenting challenges in data
control, model deployment and system orchestration across the cloud edge continuum
(Benomar et al.f 2020) (Murshed et al.; 2021)).

However, advanced orchestration mechanisms of existing frameworks for dynamic
mapping of workflows over heterogeneous cloud-edge devices hinder their workflow place-
ment optimization, resource utilization, and Quality of Service (QoS) efficiencies in IoT
scenarios (Laso et al; 2022). Hence, a new approach is required to combine the ad-
aptive serverless computation with effective carrying out of ML model deployment and
dynamic workflow orchestration balancing the low latency bottlenecks at the edge as well
as complex cloud computations.

1.2 Motivation

This research is motivated by the large gap between the promise of serverless computing
and the realities of cloud edge continuum in IoT scenarios. Current [oT systems have
suboptimal performance and resource utilization due to inability to adapt to changing
environments and QoS requirements. To make real time IoT analytics possible with
changing workloads and network conditions, we need to develop an adaptive serverless
FaaS dataflow framework.

By integrating ML models into this framework, we have an opportunity to improve
decision making processes, optimise resource allocation and to increase overall system
performance. Serverless computing and edge processing blended together makes it pos-
sible to bring responsiveness, efficiency, and scalability to IoT applications across different
domains such as smart cities, healthcare, and Internet of Things.

1.3 Research Question

In what manner does the proposed adaptive serverless dataflow framework integrates
ML approaches for real-time IoT analytics to make informed decisions on dynamic work-
flow placement, resource utilization, while meeting QoS requirements and maintaining
stateless application integrity 7

1.4 Research Objective

The purpose of this research is to formulate an adaptive serverless FaaS analysis dataflow
framework with cloud edge continuum real-time IoT analytics. In edge environments, the
framework integrates machine learning for dynamic workflow decomposition, placement
and relocation under latency, resource constraints as well as heterogeneity. the real-world
IoT scenarios will be used to evaluate the framework and metrics would include latency
reduction, QoS improvement and scalability.



1.5 Research Contributions

e Design and implementation of an adaptive serverless FaaS dataflow framework for
[oT analytics across the cloud-edge continuum. This framework integrates edge
computing, serverless functions, and cloud processing, coordinated by an intelligent
orchestration engine. It addresses the challenges of distributed data processing and
adaptation to dynamic environments in IoT systems.

e Development of ML-based orchestration mechanisms for dynamic workflow decom-
position, placement, and relocation across heterogeneous computing resources. This
includes the integration of machine learning models for predicting resource needs,
identifying optimal function placements, and improving overall system performance.
The orchestration engine uses both historical data patterns and real-time metrics
to make informed decisions.

e Efficient pipelines in data processing and ML model deployment strategies that can
be deployed on resource constrained edge device. The solution to that is to pre
process everything at the edge to reduce the load on later stages and increase the
speed at which time sensitive operations can run.

e Specification and implementation of elastic provisioning and handling mechanisms
for serverless functions to respond to dynamically changing workloads. This works
to allow the system to respond instantly to changes in workload or over time,
addressing modern problems in IoT ecosystems.

e Real world IoT scenarios are used to provide comprehensive evaluation of the pro-
posed framework based on latency reduction, QoS improvements and scalability. It
includes a comparison of our work to traditional cloud based IoT architectures as
well as existing serverless platforms for IoT analytics.

1.6 Thesis Organization

The thesis presents the adaptive serverless FaaS dataflow real time IoT analytics across
the cloud-edge continuum as proposed. An introductory section discusses the research
problem, background, motivation, question and objectives, and starts with the introduc-
tion. In the second section an extensive literature is reviewed concerning the most recent
developments in the cloud edge computing, serverless workflows, loT data analytics, and
orchestration frameworks. The methodology section outlines the research approach by
describing a framework design, choosing AWS services, data collection methods and eval-
uation strategies. The proposed framework’s architecture, functional components, and
operational mechanisms are presented in section 4. The implementation section presents
the practical realization of the framework, including setting up the AWS services, devel-
oping serverless functions, integrating ML models, and deployment from the cloud to the
edge continuum. The results and discussions section reports the results from the system
evaluation, including performance analysis, comparative studies and the ability of the
system in different [oT scenarios. The thesis ends with a discussion of the main findings,
research implications, and suggestions for further work.



2 Related Work

In this literature review, we study the recent developments on cloud edge computing,
serverless workflow, IoT data analytics and orchestration frameworks. The research cov-
ers a broad spectrum of topics related to distributed computing ranging from function
deployment to data processing and application management throughout the cloud-to-edge
continuum.

2.1 Cloud-Edge Continuum

Sicari et al. (2022) propose OpenWolf, an open-source serverless workflow engine for
applications by federating the cloud-fog-edge tiers into a single continuum environment.
They define a custom workflow manifest DSL to describe function interactions and imple-
ment an agent that can deploy architecture-independent functions and coordinate them
according to the manifest. This tackles issues of existing Function as a Service (FaaS)
approaches, namely the need of a cloud broker to orchestrate functions and the inabil-
ity to run arbitrary jobs with multiple inputs. Various deployment scenarios are tested
to validate the proposed approach using scalability, latency, and performance metrics.
OpenWolf compares to existing literature since it addresses the requirement to reengin-
eer applications to work well in the new heterogeneous cloud-edge environment. On a
more reactive note, this work extends earlier serverless computing and cloud-edge con-
tinuum by introducing a proactive process placement across continuum nodes. The results
indicate the success of OpenWolf to deploy and organize functions over the continuum
while decreasing development speed, cost of service deployment, and ease of deployment.

This systematic mapping study investigates platforms for FaaS in the Cloud-to-Thing
continuum from the deployment, placement, orchestration and execution angle of cloud
to edge devices (Oliveira et al.; 2023). The publication trends, platform architecture
and runtime capabilities for the FaaS programming model are reviewed using 33 primary
studies found from four major online publication databases, observing a growing use
of FaaS in the Cloud-to-Thing continuum, with most research focused on deployment
and placement strategies for Cloud and Fog layers. However, as few of the platforms
cover the Thing layer and rather many of them support function deployment to Cloud
and Fog infrastructures, it was found lacking on research coverage of the Things layer.
The traditional isolation to isolate other resource consumers is normally achieved by
means of virtualization techniques like Docker containers and WebAssembly, but they
do not provide sharing of resources at Fog and Thing layers in a satisfactory way. The
authors then conclude that, while FaaS has advanced for the Cloud-to-Thing continuum,
there remain numerous challenges, including insufficient support of the Things layer and
insufficient flexibility in deploying and customizing supporting services.

In (Koukis et al.; 2024), the CODECO experimentation framework is introduced,
an open-source solution for rapid deployments of Kubernetes-based edge cloud. The
framework provides holistic experiment configuration, new abstractions and automation
for various experiments on the edge cloud continuum. The resulting system adopts
microservice-based architecture, provides novel abstractions for deployment of Kuber-
netes cluster, declarative cross-layer experimentation configuration, and automation fea-
tures. It is lightweight, supports additional edge capabilities, and has automation fea-
tures, when compared to existing solutions such as ClusterSlice. The authors demonstrate
the framework’s capabilities through three proof-of-concept experiments by analyzing the



performance of various network fabrics on different edge-oriented Kubernetes distribu-
tions, the automation of deployment of EdgeNet (an edge cloud orchestration system),
and anomaly detection workflows for edge environment. The results demonstrate the
automation and full cluster, app and experiment deployment provided by the framework.

In their work, (Farahani et al.; |[2024]) performed a mini survey of serverless workflow
management systems (WMS) opportunities and challenges on the computing continuum.
One important aspect of the study aimed to understand how the serverless paradigm can
be used to optimize the service level objectives (SLOs), energy efficiency and economic
costs. Based on that, the authors categorize the state-of-the-art WMS into cloud-based,
edge-cloud continuum-based, and simulation-based WMS. Advantages like scalability and
stateless cloud-native infrastructure, auto-scaling, and pay-per-use cost models were high-
lighted. But they also pointed out issues in designing serverless WMSs like inconveniences
related to stream-processing WMS workflow, latency issues, data distribution and storage
management challenges, and resource inefficiencies. It was concluded that academia and
industry will need to join forces to overcome these challenges and realize the full potential
of serverless WMSs on the computing continuum.

This literature studies different approaches to managing serverless workflow in the
cloud-edge computing environment. The function orchestration enabled by OpenWolf
is a notable solution for deploying and orchestrating functions across the cloud-fog-edge
continuum, and the presented custom DSL for functions interactions. Nevertheless, these
systems have some significant limitations.

The main drawbacks are lack of a comprehensive support to the Things side of the
Cloud-Thing continuum: most of the platforms are oriented only to Cloud and Fog
layers. Despite the containerization technologies, resource sharing at Thing and Fog
layer is inadequate. However, stream processing workflows, latency optimization, and
data distribution are still challenging problems for existing solutions. Frameworks such
as CODECO strive to automate deployment and experimentation, but the space remains
unfulfilled for dealing with complex workflows across diverse environments. Optimizing
service level objectives, energy efficiency and economic costs in serverless architectures
are still significant challenges to be tackled jointly by academia and industry.

2.2 Faas Workflow Models

In this paper, (Li et al. [2022) introduce FaaSFlow, an efficient serverless workflow sys-
tem that attempts to address the shortcomings of existing master-worker based workflow
execution architectures in serverless computing environments. Quick data transfer and
limited reliance on database are the key features of this system which aims to mitigate
the scheduling and data movement overhead that are usual to serverless workflows by
means of offloading data scheduling to each worker node. FaaStore library is used for dy-
namic memory allocation and efficient data storage and FaaSFlow has a workflow graph
scheduler on the master node and the per-worker workflow engine on each worker node.
Experimental results demonstrate that average FaaSFlow mitigates workflow schedul-
ing overhead by 74.6%, and data transmission overhead by up to 95%. Furthermore,
FaaSFlow-FaaStore reduced the throughput degradation of 23.0 percent when network
bandwidth fluctuation and multiplied the network bandwidth utilization by 1.5X - 4X.
In (Paraskevoulakou and Kyriazis; [2023)), the new approach to deploy ML pipelines via
serverless computing is introduced, called Machine Learning FaaS (ML-FaaS) intended to
use serverless architectures to perform efficient and scalable execution of data analytics



and ML/DL workflows. In this work, the authors propose to enable extension of server-
less functions through added containers to address code size constraints. The ML-FaaS
pipeline is designed in two phases: The data preparation and model training are held
offline, and inference on new data is held online. Challenges like imbalanced datasets,
cold start issues are addressed on the serverless platforms, and an Al-based ”Function
Regulator” is introduced to automate the finding of the optimal number of functions
required in creating the serverless application. They show that function chaining can
be used to solve complex ML tasks with stateless serverless functions. On the fraud
detection task, the MLP model reached 84% recall and warm serverless executions had
acceptable latency. It was also found that the ML-FaaS approach needs approximately
only 50% of the development time of traditional cloud deployments.

Process-as-a-Service (PraaS) is a novel cloud abstraction building on top of FaaS to
overcome its flaws while preserving its strength of elasticity and scalability. To overcome
infrastructure and lack of sufficient control-flow orchestration capabilities of the exist-
ing control-flow based systems, DataFlower, a novel scheme for orchestrating serverless
workflows based on data-flow paradigm was presented in (Li et al. [2023). It decouples
function computation logic from data transmission logic inside containers creating an
asynchronous data transmission and computation communication overlap. DataFlower is
implemented by redesigning serverless programming and execution model, rearchitecting
workflow orchestration to support decentralization, data availability driven function trig-
gering, and designing an efficient inter-function data transfer mechanism by using host
container collaborative communication. The pressure-aware function scale mechanism is
key, as are data sinks on each host node to cache input data before function triggering.
Experimental results demonstrate that DataFlower reduces the 99th percentile latency by
up to 35.4%, the peak throughput by up to 3.8 times, and reduces the container memory
usage of up to 19.1 percent to 69.3 percent of FaaSFlow. The system is extremely effective
at dealing with bursty workloads as well as different workflow structures and input sizes.

A comprehensive benchmarking framework named XFBench is presented in (Kulkarni
et al.; 2024) to evaluate Function-as-a-Service (FaaS) workflow platforms on multiple
cloud providers. It addresses the lack of standardized benchmark for FaaS workflows,
that are becoming increasingly important in serverless computing. XFBench provides
extensible workflow and function benchmarks, cloud service provider agnostic framework
and configurable zero touch benchmarking capabilities. In this case, it works with the
open-source XFaaS multi-cloud platform and can be deployed on FaaS workflow plat-
forms, including Azure Durable Functions and AWS Step Functions. This includes thirty
diverse, application focused functions for application workflows and two micro benchmark
workflows spanning the breadth of computational patterns and resource needs. What sets
XFBench apart is workflows, multi cloud provider support, and increased functionality
and configurability in the workloads. Finally, the authors validated XFBench by deploy-
ing a spate of diverse workflows and workloads on platforms in Amazon Web Services
(AWS) and Microsoft Azure in different global regions and found that performance and
scaling behavior vastly differ across platforms.

The discussed literature provides a number of promising advancements of serverless
computing and Function as a Service (FaaS) frameworks. Moreover, Dyninka, FaaSFlow,
ML-FaaS, DataFlower, PraaS and XFBench attempt to cope with limitations of existing
serverless architectures. These are solutions addressing the efficiency, overhead reduction,
data transfer improvement, complexity workflow support. However, though they improve
dramatically in latency, throughput and scalability, these solutions are also lacking. Yet



a lot of these frameworks tend to only work for certain use cases or cloud providers
and don’t have widespread usefulness. The solutions often require major modification to
the existing architectures of serverless. Further, ML-FaaS continues to lack some of the
cold start issues or provide addressing, and respectively, the stateless nature of serverless
functions. As it is, benchmarks of the field are not standardized, leading to difficulty
in assessing both relative performance and suitability of various solutions for different
applications.

2.3 10T Data Analytics

In (Escobar et al.; [2023), an innovative IoT framework for building dataflow applications
in the Cloud to Edge Continuum is proposed. To tackle the challenges of the new IoT
context, and take advantage of intelligence at all levels, the framework employs resources
that are available in massive IoT scenarios. For lightweight services along the Cloud
to Edge infrastructure, the design employs decentralized Pub/Sub communication with
Zenoh technology and its serverless nanoservice architecture on top of WebAssembly.
Technologies like Zenoh and WebAssembly are incorporated into this framework to have
a decentralized, lightweight and efficient IoT architecture. On the basis of technical and
functional requirements such as lightweight applications, mobility, scalability, data ori-
ented processing, fluid computing, and trust and execution environments, the design de-
cisions are justified. It brings decentralized Pub/Sub communication, dataflow program-
ming, lightweight virtualization, and orchestration together. This architecture supports
the development of advanced IoT applications for efficient data processing at the right
level of the network, taking advantage of disaggregated resources securely and correctly.

Donati et al.| (2024)) propose a simulation and analysis framework of event driven Al
workflows in serverless computing environments to process and decide on real time data
processes. It’s serverless functions, machine learning models, workflow orchestration for
continuous data streams. It uses serverless functions, AI components, and workflows
coordinated through cloud-based platforms. Impact of study is studied on key perform-
ance metrics such as latency, throughput and resource utilization. The observed tradeoff
of latency versus throughput is measured, with average processing latency typically in-
creasing with event rates and average throughput increasing. The use of different event
rates has limited effect on resource utilization. In contrast to past studies, the study
offers holistic solutions that combine disparate event driven architecture and serverless
components. They conclude with a discussion of the strengths and weaknesses of their ap-
proach, and a consideration of how it can be used to optimally resource allocate strategies
and to identify performance bottlenecks.

Lopez Escobar et al.| (2024)) proposed an innovative dataflow framework for building
Cloud-to-Edge Continuum applications to address the emerging computing and commu-
nication trends such as Edge Computing, 5G, and IIoT. To enable lightweight services
across the Cloud to Edge infrastructure, in data centric environments and manage in-
telligently, the framework relies on decentralized publish subscribe communication using
Zenoh and serverless nanoservice architecture with WebAssembly. Using Zenoh, the pro-
posed decentralized approach is compared to the classical centralized MQTT choices in
terms of performance under Mist, Fog-Mist, and Cloud-Fog-Mist network topologies.
Results are consistent across different scenarios and payload sizes, proving that the de-
centralized Zenoh approach using MQTT consistently outperforms it in latency. It also
discusses possible use cases such as mobile eHealth monitoring with smart ambulances,



and emergency emergency rescue with UAV swarms. The authors argue that the decent-
ralization in Cloud-to-Edge architectures provides some additional advantages in terms
of latency and scalability over the centralized ones.

Oliveira et al.| (2024) present IoTDeploy, a solution for the deployment of IoT smart
applications across the continuum of computing; The work presented attempts to address
service orchestration and DevOps strategies for heterogeneous distributed environments.
[oTDeploy has a CI/CD comprising a tool plugin that supports dynamic service migra-
tion. To build a pipeline model, the authors used technology such as GitHub, Docker,
Kubernetes and Jenkins. Using a case study involving smart irrigation in agriculture,
they assessed IoTDeploy. However, the experiment has shown deployment into the IoT
distributed environment is reliable and resilient and migrates without interruption or
data loss. IoTDeploy tackles the automatic service deployment gap in the context of
[oT applications hybrid deployed over a geographical and computing continuum while
inheriting the current CI/CD approaches but implementing dynamic service migration
among stages.

Frameworks and architectures for elastic data analytics in IoT environments are the
main focus of discussion in the literature, but these come with some limitations. Often,
these frameworks tend to consider theoretical architectures lacking the actual implement-
ation data or performance benchmarks, are not secured adequately nor do they address
the challenges related to heterogeneous IoT devices and protocols. QoS parameters and
resource optimization is discussed in some work, but does not present any concrete solu-
tions for network instability and bandwidth restrictions. While superficial, the integra-
tion of AI/ML is not logged as much as there are documented methods on how to carry
them out. Error handling and data integrity and consistency are handled poorly in most
frameworks.

2.4 Dataflow Orchestration Techniques

Grigoropoulos and Lalis (2022)) introduce Fractus, an orchestration framework for auto-
mated deployment of distributed applications along the drone-edge-cloud continuum.
With Druxus and an integrated drone, edge, cloud platform, Fractus intends to offer a
structured approach for developing and deploying next generation drone applications that
utilize drone, edge and cloud resources as needed in a safe and privacyle compliant man-
ner. The two placement and communication requirements are specified using structured
descriptions and a mission aware deployment strategy that takes the area of operation
of the drone into account and provides the components with connectivity without any
transparency. Policy based access enforces safety and privacy constraints for mobility
and sensor resources. Fractus is an effort to take the orchestration and management of
drones a step further, enabling end to end deployment of applications which utilize edge
and cloud resources in a transparent fashion. The results from a real drone and simula-
tion setup demonstrated that Fractus provided the required functionality with a reduced
development effort and a moderately high overhead.

Bocci et al.| (2023) propose a new declarative methodology to securely place Function
as a service (FaaS) orchestrations on Cloud Edge infrastructures, and make sure they sat-
isfy functional and non functional requirements. It employs information flow analysis and
padding techniques to thwart side channel data leaks. The methodology is implemented
in a Prolog based prototype called SecFaaS2Fog. The authors identify three potential
data leaks: service data leaks, weak node leaks, and control-flow leaks. To achieve these,



the security labels and the padding of conditional branches in the orchestration are used.
Unlike prior work, SecFaaS2Fog takes information flow security (or infrastructure secur-
ity) countermeasures into account when inserting latency-aware placement of the FaaS
orchestrations. Experimental evaluations using FogSim simulator demonstrate that Sec-
FaaS2Fog is able to successfully find eligible placements for execution times from 6 ms
to 31 ms, driven by Parasol pre-periodic placements. However, SecFaaS2Fog is a feasible
approach to safely deploy FaaS orchestrations in Cloud-Edge spaces.

XFaaS is a cross platform orchestration framework presented in (Khochare et al.; 2023)
that leverages FaaS to automate continuous, cross cloud workflow for hybrid clouds. The
goal is to break the vendor lock-in, portability and performance optimisation of FaaS work
flows on top of multiple cloud providers. It also provides the capability of 'zero touch’
function and workflow deployment across Amazon Web Services (AWS) and Microsoft
Azure by automatically generating code wrappers, cloud queues, and managing FaaS
engines natively. Through detailed benchmarks on FaaS workflow executions on Azure
and AWS, the authors build performance models. To enable latency and cost reductions
in hybrid cloud, they propose both intelligent workflow partitioning and function fusion
techniques. Unlike single function portability solutions, XFaaS offers better cost modeling
than prior fusions. Empirical results show that, in the placement and fusion space, the
fusion technique employed by XFaaS can reduce latency by up to 75%, and cost by 57%;
and placement techniques can further reduce the latency by up to 24% vs baselines. In
addition, the fusion approach also finds less expensive and less latency configurations.

Pheromone, a scalable serverless platform based on function orchestration using data,
is introduced by (Yu et al.; [2023). The platform offers fine grained exchange of data
between functions decoupled from function flows. Through a two tier distributed schedul-
ing hierarchy it exploits data locality and has high scalability. Using an on-node shared-
memory object store for zero copy data exchange between local functions and direct
inter node data transfer lowers the data sharing overhead, optimizes sharing, which is
then scheduled in parallel by the operator. Pheromone overfits well established com-
mercial and open source serverless platforms in terms of Invocation Latency and Data
Exchange efficiency. The resulting evaluation indicates that Pheromone achieves between
10x and 450x better function invocation latency than Cloudburst and AWS Step Func-
tions, respectively. Second, it scales well to large workflows with only millisecond scale
orchestration overhead. With its rich expressiveness, high usability, wide applicability, we
argue Pheromone is appropriate in both latency sensitive and data intensive applications.

There exist various orchestration frameworks for cloud based edge computing featured
in the literature; but at the same time these frameworks have their limitations. But,
Fractus improves edge invocation delay by 33%, while it lacks comprehensive security
measures and advanced resource allocation optimization techniques. Though performance
tradeoffs exist, SecFAs2Fog provides security aware FaaS placement. XFaaS solves the
vendor lock-in and cross cloud deployment problem but only works on AWS and Azure
platforms. Data centric performance improvements are provided by Pheromone but it
does not provide broader orchestration features. Limitations common to current solutions
include a lack of integration of security, performance and resource optimization in a single
solution, and that real time adaptation to changing network conditions and workload
patterns is hampered by maintaining guarantees on security and performance.



2.5 Ciritical Analysis

The review of literature brings out the significant advancements in the cloud edge com-
puting, serverless workflows and IoT data analytics, and orchestration frameworks. There
are, however, several research gaps. Most existing solutions provide limited functionality
at edge and IoT device level and do not adequately support the entire cloud to thing
continuum. Due to complex workflows across a heterogeneous environment that often re-
quire optimization of latency, utilization of resources, and minimizing cost effectiveness,
current frameworks often struggle to successfully address such workflows. Most solutions
also fail to address for security measures and real time adaptation to changing network
conditions.

To overcome these limitations, the proposed approach brings an adaptive serverless
FaaS dataflow framework to support IoT analytics across the cloud—edge continuum. At
an edge computing, serverless functions and cloud processing level, this framework integ-
rates an intelligent orchestration engine and edge computing. It addresses the problems of
distributed data processing and adaptability to dynamic environments in the [oT system.
The solution also employs ML based orchestration mechanisms for dynamic workflow de-
composition, placement and relocation across heterogeneous computing resources. The
framework seeks to reduce latency, improve QoS, and scale by deploying efficient data
processing pipelines and ML models on resource constrained edge devices. We propose
a comprehensive approach that addresses the gaps in the current solutions and achieves
more robust, adaptive and efficient [oT analytics in the cloud-edge continuum.

3 Methodology

The research methodology is designed to yield an adaptive serverless framework for real
time IoT analytics on the cloud edge continuum through a systematic approach. This
approach is structured into five distinct layers: each part of overall research framework
dedicated for data collection, Lambda functions, MLL model deployment, processing loc-
ation determination, and evaluation as presented in Figure 1.

3.1 Research Approach

To develop and evaluate the ML-driven workflow orchestration framework for IoT ana-
lytics, a systematic research methodology is followed based on the workflow patterns and
stages. The methodology is structured into four distinct phases: data collection and
analysis, model development, framework implementation, and evaluation.

The first phase after data collection and analysis methods starts with getting IoT
sensor data from air quality monitoring devices. In this phase, the aim is to understand
data patterns to identify critical features that are related to workflow placement decision,
and system requirements analysis. The available historical data patterns are used to
determine the processing demand characteristics and baseline metrics for performance
evaluation. The measured data is PM2.5, PM10, temperature, humidity, CO2, TVOC,
NO2.

The implementation of three specialized machine learning models forms the model
development phase. We develop an autoencoder for detection of anomalies in the IoT
data using PyTorch to determine the unusual pattern and, if necessary, upload their
job to a specific processing location. We then explore LSTM networks for time-series
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Figure 1: Proposed Research Methodology

prediction that allow us to predict processing requirements and workflow characteristics.
Finally, we develop a Deep Q-Network reinforcement learning model by combining inputs
from both the previous models such that optimal workflow placement decisions can be
made. The implementation of these models is integrated with AWS SageMaker and the
workflow orchestration system as defined. The data inputs are standardized and relevant
features are extracted from other data using scikit-learn to implement the preprocessing
pipeline. Anomaly detection and LSTM models are deployed for real time inference
using SageMaker. The implementation is a SageMaker processing job that serves as
a reinforcement learning orchestrator, deciding where to place workflow (across edge,
hybrid, or cloud environments).

The effectiveness of the framework is evaluated with comprehensive performance ana-
lysis and comparative studies. The evaluation metrics focus on three key aspects: place-
ment accuracy, processing latency, and adaptation effectiveness. We then evaluate the
performance of the framework under different workload conditions, how the placement
decisions compare to baseline approaches, and how response times change. The compar-
ative analysis is made by comparing our ML driven approach with traditional rule-based
systems highlighting latency reduction and placement optimization.

We are focused on the research objectives of optimizing workflow placement and im-
proving processing efficiency in IoT analytics throughout all phases. To that end, the
methodology is constantly validated through real world testing scenarios, guaranteeing
that our findings make a meaningful contribution to the distributed IoT analytics field.
Each phase is built upon previous work to craft a coherent research approach dealing
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with workflow orchestration in cloud edge environments.

4 Design Specification

The adaptive serverless FaaS dataflow framework is designed to achieve efficient [oT ana-
lytics across the cloud edge continuum by intelligent workflow orchestration and machine
learning integration. We describe the architectural components of the system, orches-
tration mechanisms, and the underlying ML models that power the decision making
processes.

4.1 System Architecture

The framework presented in Figure 2 deploys a layered architecture that allows easy
flow of data from IoT devices to processing end points, while being able to handle any
unforeseen conditions. At its core, the architecture comprises three primary layers: —
the Data Ingestion Layer, ML Orchestration Layer, and Execution Layer. With this
organization, we achieve clear separation of component blocks, and efficient component
coordination.
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Figure 2: System Architecture

We use AWS IoT Core for device management and communication for the entry point
layer for the incoming IoT sensor data, known as the Data Ingestion Layer. The device
shadows, a component of AWS IoT core Things hold the latest state of each IoT device
and allows for asynchronous communication making them an up to date source of IoT
device metrics. The built-in features of the layer provide a basic capability to preprocess
the incoming data, standardizing its format, along with initial filtering of the data before
sending it through the ML models for orchestration.

The intelligent core of the system, implemented within Amazon SageMaker is the ML
Orchestration Layer. This layer houses three critical machine learning models: anomaly
detection for the detection of unusual patterns in IoT sensor data; time series prediction
for forecasting resource requirement, and reinforcement learning for orchestration decision
making. Every model pipeline works independently but communicates the learnings to
the end user through disparate decision stages. The execution layer is a processing infra-
structure implementation in the edge devices, hybrid environments, and cloud resources.
This layer has no states per se, it relies on the orchestration layer decisions for placement
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of workflow. The three tier execution model allows flexible resource utilization dependent
to the workload characteristics and system conditions.

4.2 Machine Learning Integration Framework

The approach facilitated here is to implement three specialized models together in an
ML integration framework to make intelligent decisions (Figure 3). The purpose of each
model is unique in the orchestration process, yet the data that fuels the models is common.
An autoencoder based architecture is used to detect the anomalous patterns in the IoT
sensor data as part of the Anomaly Detection Pipeline. Standardized sensor readings from
temperature, humidity, particulate matter and more environmental metrics are processed
by the model. Latent space representation obtained from the autoencoder helps detect
small deviations from operating normality that affect placement decisions. Retraining is
automated and occurs as new data patterns emerge, so the model is continually trained
using real, recent, actual data.

An LSTM network for predicting resource requirements across different placement
options is implemented by the Time Series Prediction model. The model predicts fu-
ture resource needs, based on current system metrics in combination with the patterns
of historical resource utilization. This results in the ability to forecast such that pro-
active resource allocation can prevent performance degradation resulting from resource
constraints.
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Figure 3: ML Model Framework

An anomaly detection and time series prediction pipeline inputs are used to drive
the Orchestration model that implements a reinforcement learning technique to make
final placement decisions. The model’s state space encompasses current system metrics,
predicted resource requirements, and anomaly scores, while its action space covers the
three possible placement decisions: hybrid or cloud processing, or edge.
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4.3 Orchestration Mechanism

The machine learning predictions are combined with system constraints in a sophisticated
workflow placement decision making process that is implemented via an orchestration
building block presented as process diagram in Figure 4. The mechanism continually
evaluates new data and system conditions to adapt placement decisions real time. The
AWS IoT Core ingests the [oT sensor data, which starts the orchestration process. Initial
preprocessing transforms the data to standard formats and extractions of pertinent data
features. At the same time, the preprocessed data feeds into both anomaly detection
and time series prediction pipelines. The anomaly detection model uses current sensor
readings and compares them to normal pattern that has been learned, leading to an
anomaly score indicating a possible anomaly that need attention.

loT Data Stream Preprocessor Anomaly Detector Resource Predictor Orchestrator Execution Engine

Placement t Decision

Execute Workflow

10T Data Stream Preprocessor Anomaly Detector Resource Predictor Orchestrator Execution Engine

Figure 4: Orchestration Process Diagram

At the same time, the LSTM predictor utilizes historical patterns and current trends
to forecast required resources for different placement options. They are forecasts based
on the processing latency, the memory utilization and the network bandwidth required.
These inputs are combined with the learned policy of the reinforcement learning orches-
trator to make placement decisions that achieve system performance optimization subject
to application requirements.

4.4 Execution Framework

The execution framework implements three distinct processing environments: edge, hy-
brid, and cloud. The different environments are built to accommodate particular kinds
of workloads with consistent deployment and monitoring workflow interfaces. The frame-
work facilitates error free execution irrespective of placement decisions and minimizes
resource usage among the environments. On resource constrained devices that reside
near data sources, edge processing is performed. This environment benefits from low
latency processing in time critical use cases and data preprocessing for bandwidth reduc-
tion of downstream processing. However, the edge environment itself can include locally
caching mechanisms, and fallback policies are in place for connectivity issues. Workflow
distribution over edge and cloud components can be enabled by hybrid processing, which
is capable of managing complex data routing and synchronization. Workflows that ex-
ploit parallel processing, or have components with different resource requirements, are
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well suited to this environment. Hybrid implementation consists of methods to handle
data consistency and treating partial failure. AWS leverages its own Infrastructure for
Cloud processing like Compute intensive workloads or for operation requiring access huge
amount of dataset. This environment follows the principle that elastic resource alloca-
tion and resource access to specialized hardware can be accessed whenever necessary.
The mechanisms for the optimization of cost efficiency while preserving the performance
requirement are among the features of the cloud implementation.

5 Implementation

The practical implementation of each component and integration into a cohesive system
is described in this section, with the adaptive dataflow framework. The implementation
includes cloud infrastructure setup, machine learning model implementation and deploy-
ment, orchestration implementation and optimization.

5.1 Data Ingestion

AWS IoT Core is used as the main entry point for IoT device data for the data ingestion.
Communication with the device is done via MQTT protocols with Quality of Service
(QoS) level 1, that is automaticly provided in AWS with minimum latency and reliable
message delivery. A unique thing name and device shadow for each IoT device is being
registered using the AWS IoT Device Shadow service. Reported states are defined to
contain current sensor readings and device metrics, and have intended to keep the shadow
document structure to maintain such desired paths. In the preprocessing module, the
data is validated, normalized, and the features are engineered. It involves range checks
for air quality sensor readings, verification of timestamp of the reading and detection of
missing values. Different types of sensor measurement are normalized to consistent scales
(to make the numbers comparable across the different features), and derived metrics are
computed for the ML models (feature engineering). Data manipulation is done using
pandas and numpy libraries and operations are left vectorised for better performance.

5.2 Machine Learning Implementation

It has three components of the machine learning pipeline created using different frame-
works depending on the conditions it needs to fulfill. When deployed separately, each
model is called and deployed for model inference from the saved models.

5.2.1 Anomaly Detection Model

We implement the anomaly detection model in PyTorch using an autoencoder architecture
that is optimal for classifying unusual patterns in sensor data. An encoder which reduces
input dimensionality using three dense layers (64, 32, 16 units) with ReL.U activation
functions and progressively reduces input dimensionality is employed. The structures of
the decoder match that of the input, to reconstruct the input. Loss function used is mean
square error (MSE) and for optimization the Adam optimizer is used. Standardization
using StandardScaler with scaling parameter saved for inference time is used for training
data preprocessing. Its model uses a batch processing to maximize GPU usage during
training, with batch size selected based on memory available.

17



5.2.2 Time Series Prediction Model

With a 24-time step sequence, the LSTM predictor captures temporal patterns using
TensorFlow and Keras. An input layer, two LSTM layers with dropout for regulariz-
ation, followed by a dense prediction of resource requirement is included. The model
training is accomplished by using TensorFlow’s windowing and batching utilities so to
avoid overfittering, using data windowing and early stopping.

5.2.3 Reinforcement Learning Orchestrator

The Reinforcement Learning Orchestration Model (RL) implements an intelligent de-
cision making mechanism that learns the optimal placement strategies overtime. A Deep
Q-Network (DQN) model enhanced with experience replay and target network features is
used, to assure stable learning and convergence to a good policy. Three key components
make up the state space, enabling construction with IoT Device Metrics, anomaly de-
tection outputs and resource requirement predictions. The action space consists of three
discrete placement decisions: (action=0 — for Edge Processing, action=1 — for Cloud
Processing, and action=2 — for Hybrid Processing). The reward function is designed to
optimize multiple objectives: Dynamically weighted attribute metrics are latency score
(end-to-end processing time according to target SLA), resource efficiency (identifying
optimal resource utilization with available infrastructure), processing quality (accuracy
metrics, completion status), and wl, w2, w3 weights adjusted per the system priority.

State Collection Deep Q-Network Experience Memory Target Network Environment

Current State

Generate Q-Values

Select Action

Execute Action

Store Experience

>

loop [Training]

Sample Batch

Get Next State Values

Return Values

<

Update Weights

loop [Every N steps]

Update Target Network

State Collection Deep Q-Network Experience Memory Target Network Environment

Figure 5: Reinforcement Learning Training Process

A sophisticated decision-making process is implemented in the orchestration pipeline,
which collects the current state from all sources of inputs and passes the state vector
through DQN to get the Q values in each action, puts forward an action with highest Q
value, executes through the decision and collects the performance metrics, keeps updating
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experience replay buffer by putting (state, action, reward, next state) tuple and period-
ically trains the network using samples from experience buffer as in figure 5. The model
is continually refined through the reinforcement learning loop updating itself against
changing conditions and improving its decision-making based on what happened after
each of these decisions. The action selection uses epsilon-greedy exploration with decay.
The reward function considers multiple factors, with a return of (0.4 * latency score +
0.3 * resource score + 0.3 * quality score). The state space implementation includes
normalization layers for each input type.

With historical data (and real time interactions), the DQN is first trained and then
continues to learn. Several well-known optimization techniques are used during the
training process, such as Experience Replay, Target Network, and Adaptive Learning
Rate. This comprehensive implementation demonstrates how the RL orchestration model
can learn how to make the best placement decisions under ever changing system conditions
and workload characteristics. As the model acquires more exposure with various scenarios
and ensuing outcomes, its performance continues to get better.

5.3 Orchestration Engine Implementation

A SageMaker processing job orchestrating workflow placement decisions and interactions
between ML models is called an orchestration engine as represented in Figure 6. The
service integration is made through the AWS SDK for Python (Boto3), while model
inference is handled in custom ways. Efficient state collection and preprocessing are
handled by the State Manager, while the Inference Manager coordinates model predictions
to provide a balanced inference and ultimately improves throughput and tolerance to
faults. The final placement logic is implemented in the Decision Manager, including the
application of RL model output to policy, constraint validation and log decisions.

~ AWS Lambda Orchestration

ML Models -
1
Anomaly Detection Model ﬁ LSTM Model "/‘ RL Model

Figure 6: Orchestration Workflow Engine

5.4 AWS Processing Environment Implementation

Figure 7 shows the use of the framework to integrate workflows based on efficient IoT ana-
lytics and ML based orchestration using AWS services. For each component it is employed
with Processing environments specifically designed for the different execution patterns
and a consistent interface and uses specific AWS services per component. More specific-
ally, these environments include Edge Processing (the lightweight container runtime, local
data buffering, and auto failover capabilities) Hybrid Processing (dynamic partitioning
of workload based on resource availability) and Cloud Processing (the auto resources al-
location, single unit of work data distribution and parallel execution). This is an AWS
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service implementation that makes IoT analytics both scalable, reliable, and efficient,
while reducing operational overhead while keeping system’s flexibility and performance
intact.

T

Edge Processing

ML Model loT

Extracted Development Orchestration —

Features »{ Hybrid Processing

Sensor Data

Air Quality Sensors AWS |oT Core loT Analytics SageMaker AWS Lambda —
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Figure 7: AWS Framework

6 Evaluation

The Adaptive dataflow framework is evaluated in that regards from individual model
performance to the system behavior in general under multiple conditions. This section
examines with very high fidelity the results produced by the first experimental results,
and explains their relevance to real world IoT analytics applications.

6.1 Model Performance Evaluation

From the training loss curve in Figure 8, we see that the autoencoder-based anomaly
detection model converges much better in training over time. On the first 25 epochs, the
loss drops quickly from 1.0 to 0.4, and more slowly to around 0.2 at epoch 75. In the
end, the final loss value of the model is approximately equal 0.05, which proves indeed
the model’s ability to accurately reconstruct input data, which is required for anomaly
detection.
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Figure 8: AWS Framework

The evaluation of the LSTM model’s performance is carried out using the loss metrics
and prediction accuracies for different measurements by sensors as shown in Figure 9.
In addition, the model performs well at predicting different environmental parameters,
which have near consistent convergence in training and validation loss curves. The MAE
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plot is stable from 0.105 training and from 0.101 validation which serves as an indicative
for the acceptable prediction accuracy. Predicted temperature and humidity values are
in strong alignment with actual values, and volatile measurements such as PM2.5 and
PM10 have higher variance, but reasonable prediction capabilities for trend.

Model Loss Model MAE

0.026 0.125 4

0.024 0.120 4

0.022 0.115 4
o

MAE

0.020 0.110 4

0.018 0.105 4

0.016 T T T T T T 0.100 1

Figure 9: LSTM Model Training

Three metrics (training loss, average reward, exploration rate) are used to assess the
performance of the RL orchestrator. We see the rapid decrease of training loss (efficient
policy learning). The exploration rate is equal to 0.01 and the average reward stabilizes,
indicating a consistent decision making process.
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Figure 10: RL Model Training

6.2 System Performance Analysis
6.2.1 Latency Analysis Across Concurrent Requests

Different placement strategies turn out to have varying system performance under vary-
ing concurrency load as shown in Figure 11. Across a low range of concurrency (1-20
requests), response times under 700ms were consistent in all strategies (edge, cloud, hy-
brid). For single requests, edge processing has slightly better performance: 63.92 ms of
average latency. However, in spite of increases in concurrency, the response time is linear
up to 40 concurrent requests. Placement on edge and hybrid is stable at 1400ms, whereas
cloud placement shows higher latency variation with a peak of around 1700ms. At high
concurrency, however, all three strategies converge to similar performance levels, with the
variance greater for cloud placement.
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Figure 11: Latency Analysis Across Concurrent Requests

6.2.2 Impact of Payload Size on Performance

We show that different payload sizes exhibit distinct performance patterns across different
placement strategies. The average response times for all three strategies remain same for
small payloads (100-200KB), with the average response time in the range of 1000ms to
1200ms. Out of the two strategies, as payload size increases the cloud placement strategy
is the most stable performing with response times increasing gradually from 1000ms
at 100KB to approximately 11000ms at 500KB. For smaller payloads, edge placement
shows better performance but sees higher variance for larger ones. The performance
of the hybrid placement strategy is the most variable, with response times ranging in
time from 600ms to 1600ms, which indicates that the orchestration system dynamically
changes placement decisions depending on size of the payload and the state of the system.
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Figure 12: Payload Size Impact on Performance

6.2.3 Placement Distribution Analysis

The results indicate that payload size and concurrent load affect the process by which
the orchestrator places workloads. Edge placement is preferred for small payloads and
low concurrency (45%), cloud placement (35%) and hybrid placement (20%). Cloud
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placement dominates choices for medium payloads with moderate concurrency (40 to
60 requests) (55% decisions). Hybrid placement becomes more frequent as payloads get
larger and use more concurrency (40% of decisions). We show that the system’s adaptive
behavior is most significant at transitions, notably at around 200KB of payload size and
at sustainably over 60 concurrent requests.

6.3 Comparative Discussion with Baseline

A comparison is made between the performance characteristics and also the optimization
approaches of the framework proposed by (Sicari et al., 2023). The two frameworks pursue
the ambitious goal of efficient [oT data processing across the cloud-edge continuum while
utilizing different workload placement and resource optimization strategies. The proposed
framework’s latency characteristics are clearly superior for both single and concurrent
requests, with single requests at the edge responding with (on average) 63.92ms versus
832ms for (the average of) their latencies at the core. And in the second case, ML
model can help orchestration improve its placement decisions based on past performance
patterns, and current state of the system bringing substantial improvements.

Aspect Proposed Framework Sicari et al. Framework
Request  Time | 63.92ms (single), 1439.97ms | 832ms (single), 2845ms (100
(RT) - Edge (100 concurrent) concurrent)

Request  Time | 56.23ms (single), 1428.88ms | 2845ms (100 concurrent)
(RT) - Cloud (100 concurrent)

Scaling Behavior | Linear degradation up to 40 | Exponential  degradation
- Edge requests, then stabilizes beyond 40 requests
Payload Size Im- | More consistent perform- | Significant performance

pact

ance across sizes

variation with size

Decision Making

ML-based orchestration

Rule-based orchestration

Edge Processing
Priority

Dynamic based on ML pre-
dictions

Static based on payload size

Resource Utiliz-
ation

Adaptive based on real-time
metrics

Fixed allocation based on
zone

Table 1: Comparison of Proposed vs Baseline Framework

In regards to scalability, the proposed framework degrades more gracefully under high
load, sustaining more consistent response times up to 40 concurrent requests with signi-
ficantly fewer impact than previous MongoDB systems. The response time shows earlier
performance degradation, much more rapidly over 20 concurrent requests, especially at
the edge. The payload size impact analysis reveals another key difference. In contrast,
our framework sees more consistent performance over a range of payload sizes (100KB
to 500KB) with performance variance in between 30%. We find base framework to ex-
hibit performance variations; primarily for edge processing, in that for more significant
payloads performance can drop up to 300%. These comparative results show the benefits
of using machine learning in orchestration, and points to the remaining cases where rule
based approaches may still be effective. Further work can also involve combining the
strength of both approaches to develop more efficient and adaptive cloudedge processing
frameworks.
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7 Conclusion and Future Work

This work describes an adaptive dataflow framework that integrates machine learning
methods for IoT analytics optimization along the continuum of cloud edge. We show
that the framework’s ML based orchestration significantly outperforms traditional rule
based approaches with request times being as much as 13x lower than the best rule based
approach, with the same being true for single (63.92ms vs 832ms) and concurrent requests
(1439.97ms vs 2845ms). LSTM predictions are implemented for resource forecasting
and anomaly detection for data quality assessment to more intelligently place resources,
thereby achieving better resource utilization and more stable scaling behavior.
Future work will focus on extending the framework in several directions:

e Development of multi objective optimization methodologies to strike the balance
between competing performance metrics.

e Translation of transfer learning capabilities to adapt to new IoT devices and new
data patterns

e Towards investigation of privacy preserving techniques for sensitive IoT data pro-
cessing.
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