

Analysis of hybrid encryption in cloud
environments for privatization of health data

MSc Research Project

Cloud Computing

Anay Desai
Student ID: X23210125

School of Computing

National College of Ireland

Supervisor: Jorge Mario Cortes Mendoza

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Anay Desai

Student ID: X23210125
Programme: Cloud Computing

Year: 2024

Module: MSc Research Project

Supervisor: Jorge Mario Cortes Mendoza

Submission Due Date: 29/01/2025

Project Title: Analysis of hybrid encryption in cloud environments for privat-
ization of health data

Word Count: 7121

Page Count: 22

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 29 January, 2025

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □

Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

3

Analysis of hybrid encryption in cloud environments
for privatization of health data

Anay Desai

X23210125

Abstract

Times have revolutionized the cloud domain with its data storing
capabilities and hosting services. This incentivizes the concept of remote
storage for total user accessibility. However, this data is not secured and is
put to risk for data misuse. This often leads to exposure of user data and
breaches the integrity of the system. Moreover, since cloud is an open-source
platform; simultaneous services to users often leads to data leaks. To
avoid such scenarios; it has become crucial to secure data repositories from
third party usage to be protected on the cloud. Therefore, the proposed
research thesis aims to maintain the security and confidentiality of the system
while deploying a healthcare app on various cloud platforms and leverage
Cloud Service Providers(CSPs). A hybrid encryption mechanism is created
from a novel approach using Advanced Encryption Standards(AES) and
Advanced Encryption with Associated Data (AEAD). Additionally, Amazon
Web Services(AWS) along with Continuous Integration and Continuous
Delivery(CI/CD) Pipeline is also integrated into the project to ensure
security and data integrity such as CodeRun, CodeDeploy and CodeBuild.
The time metrics of the text conversion is evaluated, furthermore through case
studies and Avalanche score is generated to indicate the strength of the
algorithm with results reaching up to 93.8%. MySQL is used in the back
end to manage the database and monitor user uploads. The healthcare
app is finally deployed on cloud using the multi cloud technique using
Microsoft Azure and Elastic Beanstalk.

1 Introduction

Cloud computing is one of the advanced technologies that is primarily used to share
resources on a public platform so that user demands could be met efficiently. It is a way
of pooling computing resources in such a way that various businesses and application
infrastructure tends to come together. This enhances its functionality to store information
of multiple users in the cloud environment through a secured manner. High levels of
security and confidentiality is maintained so that sensitive information can be stored.

In scenarios of storing patient sensitive data in the domain of healthcare, it is very
crucial and important to select the right algorithm whose service could match with the
needs of the web application. A commonly used and a recommended practice for the
same, is the adoption of encryption techniques. This key in particular is further used to
scramble user sensitive data and therefore make it unreadable. This unreadable data is then
uploaded on cloud and a decryption key is required to make the data readable. This process

4

of generating an encryption and decryption key can be done through various methods
such as user access controls, Multi-Factor Authentication (MFA) based access control.
Both the key can however be generated and accessed only to authorized users. Despite
the presence of various encryption algorithms, the developed web app is still
vulnerable.

1.1 Research question

The aim of the study is to implement a hybrid encryption mechanism, involving two
algorithms that could execute the generation of the hashed key while securing user data
on cloud. Therefore, it is necessary that both the algorithms (AES and ChaCha20Ply
1305) are in sync with each other. To fulfill this purpose, AWS Services are integrated with
the conceptual working of Continuous Integration and Continuous Delivery Pipeline to
ensure a seamless execution of encryption can result in an uninterrupted process of
user interaction. Furthermore, the healthcare app is expected to be deployed through a
multi cloud environment using MS Azure and Elastic Beanstalk. This leads to the
primary research question of the thesis

• What are the modern AES techniques to Enhancing Confidentiality and Data
Protection in Multi-Cloud Deployments Using Hybrid Encryption for the healthcare
industry

Additionally, a test case scenario is also built by making some changes in the plain
text (input) and further converting it into cipher text. This is done to check the strength
of the algorithms thus used which eventually leads to the next focus area of the thesis:
What impact would the project system undergo in terms of changes being made in the
input data and how will that change affect the overall performance of the project?

1.2 Research objectives

Following are the research objectives of the study: a) To evaluate a novel framework by
combining a hybrid encryption framework along with AWS services in accordance with
the CI/CD Pipeline. b) To deploy the framework using MS Azure and Elastic Beanstalk
while maintaining the confidentiality and the integrity of the system.

1.3 Motivation

The motivating factor for the developed project comes from the very fact that there is a
need to deploy an automated yet robust system that can pace with the growing evolution of
cyber-attacks. Due to its property of being an open-source platform, monitoring a
healthcare web app deployed on cloud is mandatory to secure since it is exposed to
unauthorized access. While traditional methods to secure patient data are growing; it still
faces limitations where complex transactions are involved. In such a scenario, implementing
a hybrid model by combining two encryption algorithms with variably small key size appears
to be a decent solution. Therefore, adopting this strategy the performance as well as the
scalability of the project system is likely to improve in an overall manner. Hence, a
combination of two encryption algorithms amalgamated with AWS Services and executed in
parallel with CI/CD Pipeline can set a new yet innovative standard to protect patient data on
the healthcare web app.

5

2 Related Work

The process of encryption enables the protection of user data from unauthorized users
and is further performed using two types of keys; symmetric key and asymmetric key.
The encryption method of an asymmetric key is accomplished using a private key and a
public key. On the other hand, symmetric encryption is done using a single key to encrypt
and decrypt the data. However, this exchange of key between the user and the recipient
must be secured irrespective of the keys thus used. To achieve this security encryption
algorithms are used so that user data is not only secured during the transaction of keys;
but also during the decryption process.

In recent times, securing this key has remained a major concern since transmission of
these keys through an online portal depends on the key size, memory size and the com-
putational complexity thus involved in the process. Cloud has therefore gained massive
popularity in accomplishing these goals in a secured manner. This section of the thesis
therefore highlights the contribution of various authors in this domain of using encryption
keys and algorithms to protect user data transmission on cloud.

2.1 Encryption Algorithms

In a system proposed by authors Shukla et.al, (2020) a combination algorithm of AES
and Elliptic Curve Cryptography (ECC) was used to increase system security. Shamir’s
Secret Sharing (SSS) key was generated so that distribution and management of user
data could be done without a trusted Centre. Despite the fact of a well-organized
secured system, the overall computational cost and time complexity were highly
introduced.

Yahia et.al, (2021) used the combination of above-mentioned algorithms along
with Blowfish. This however reduced the time complexity and made the algorithms more
relatable to secure user data on cloud. The used algorithms also improved the
efficiency and integrity of the system and also avoided user conflict by properly channelizing
resource allocations so that each user can access cloud services. Data accessibility in this
was also managed by the service provider. The author also calculated the avalanche
score in the research so that the impact of plain text and its related changes in the
block size could be measured. The strength of the algorithms such as ECC and
Rivest-Shamir-Adleman (RSA) were measured by Qazi, R.; Khan et.al, (2019). The
algorithms were combined over 256 bytes of data flow and performance amongst
encryption algorithms was calculated. The implementation showed a higher side of
efficiency produced by using ECC to that of Rivest-Shamir-Adleman (RSA). In addition to
providing secured service to user data, the overall size of the data was also drastically
reduced. This in turn minimized the computational complexity and time complexity thus
involved. The program code was however run on JAVA.

Chen et.al, (2021) created a layering method was used to implement encryption on
user data. The first layer was divided into small sections of data bytes which were
eventually encrypted on the basis of key size. On the other hand, the second layer was
partitioned into various elliptical curves such as A0, A1, A2, A3,.An. Both the layers
thus used ensured high levels of security and minimized data loss. Breakdown of the
data was done using asymmetric techniques wherein larger chunks of data were managed
using two different keys. ECC was simultaneously used and the final data was deployed
on cloud. Arockia, P et.al, 2017 focused their work in the services provided by CSP’s. It

6

was observed that securing user data and protecting its privacy were the two main
important tasks to be carried out while deploying user data on cloud. Hence, he used
AES and ECC in combination so that the overall transmission capacity of the information
could be increased and a classification framework could be built to ensure more security
on cloud. The expected deployed model was therefore trustworthy and was implemented
with less computational power.

Pothireddy et.al, (2024) proposed the implementation of Fully Homomorphic
Encryption (FHE) and S e c u r e H a s h i n g A l g o r i t h m - 3 as the encryption algorithm.
His focus was to increase the security, privacy and integrity of the data deployed on
cloud. A differentiating factor in his work was to encrypt the user data and deploy on
cloud without the further need to decrypt it. This process eliminated the scenario of
unauthorized susceptibility that could have resulted into a breach of the system. In a
different work proposed by (Kamble et.al, 2024) he addressed the relevance of
homomorphic encryption wherein multiple clouds were used by the author to deploy his
work. This was done to protect user data by storing it across various cloud environments.
The concept however, experienced certain disadvantages such as handling large complexity
of data and generation of different keys.

Alabdulatif et.al, (2017) introduced a novel method to secure user data by
performing clustering methods using the FHE algorithm. This clustering ensured that
the data is fully secured on cloud. As per the results of this framework, it was observed

that the distributed framework of FHE significantly reduced the overall time complexity
involved in the system. Additionally, a Brakerski, Gentry and Vaikuntanathan (BGV)
scheme was also adopted and MapReduce was used to improve system efficiency. This
model generated an accuracy of more than ninety percent and thereby protected user
data on cloud environments.

2.2 Encryption models of ChaCha20-Poly1305

Thi-Thanh-Dung Phan et.al, (2016) contributed their study in the implementation of
securing user data through FGPA protocol and further combining it with AES-Counter
with CBC-MAC(CCM) algorithm. This combination provided higher efficiency with
minimal time involved as compared to other combination of encryption algorithms. The
author also provided a different angle which stated various security requirements of the
model and also introduced a few techniques that could later protect the system from
different breaches and attacks. Despite introducing new techniques and strategies of the
same; an emergence of wireless network body areas was observed which required low
areas to consume power in the encryption process. Hence, the author shifted his focus
to low areas of AES-CCM implementation using FGPA. The only drawback of this
proposal was that it could not be implemented on hardware platforms since the
resource allocation for its execution was not capable enough.

Fabrizio De Santis et.al, (2017) proposed the encryption mechanism of ChaCha20-
Poly1305 to implement user authentication in IoT applications. A ChaCha stream of
cipher text was used and Poly1305 was designed to be the cryptographic algorithm by
Daniel J. Bernstein. The aim of the author was to ensure that high security of use
data could be achieved that could be deployed on various software platforms. In another
work Sadiq Aliyu Ahmad et.al, (2019) presented a review of hybrid cryptography with 12
tabular surveys being made. The aim of this research was to comprehend the
amalgamation of cryptography and encryption on cloud.

7

2.3 AWS Services and Encryption

Mishra et al., (2022) examined the methods in cloud computing that caters to securing
user data without compromising on its performance whereas Saeed et al., (2019)
implemented AWS Services to ensure security and privacy measures of the system.
Additionally, Talha et al., (2020) evolved various algorithms that addressed the issues of
networking with high security. For this, they emphasized on increasing the overall
quantity of user data and later uploading it on cloud. Boomija and Raja, (2023) targeted
the healthcare sector that offered a solution to monitor and store user data on cloud.
For this they combined Secure Partially Homomorphic Encryption (SPHE) with AES. The
overall efficiency of the system was drastically changed on this implementation.
Mishra, (2023) deployed user data on cloud using AWS Services by including Elastic
Beanstalk (EBS), Elastic File System (EFS) and further leveraging it through AWS Direct
Connect, Snowball and Storage Gateway.

All these studies were attempted with the intention to overcome challenges and diffi-
culties that were connected to cloud. The algorithms and strategies thus used provided
high levels of user security with low computational complexity.

2.4 Comparative Analysis Table
The summary of the analysis of the table is done in Fig 2.

Approa

ch

Algorithm

Metric

Method

Problem Resolved

Dataset

System

Re
f

MPC

NRGD

A, EXECUTION TIME

SSS, CKKS

Data Privacy, Data Sharing

ECO-Dataset

Simulation,

AWS

1

FHE,
MPC

LR, BGD, NRGD

PRECISION, RECALL, TIME

CKKS, SSS

Computation on Encrypted Data

Simulated Dataset

Simulation

2

SHE

RING-LWE

THROUGHPUT, TIME

FV

Latency operations,

Computational Inefficiency

Smart Grid Application Dataset

AWS

3

HE

AES, RSA

SECURITY, ACCURACY,

TIME

SYMMETRIC

Security, encryption efficiency,

Privacy

Various Datasets

Azure

4

FHE

FWC

EXECUTION TIME

HDFS

Data Privacy, Efficient Data

Clustering

UC Irvine Machine Learning Repository (Electricity

Consumption Dataset)

Azure

5

PHE

AES

THROUGHPUT, DOUBLE

ENCRYPTION

Data Privacy

Medical Dataset

-

AWS,

Simulation

6

CGFHE

INTEGRITY,

FUNCTIONALITY

SYMMETRIC

Data privacy, integrity,

availability

Simulated Data

-

AWS

7

LHE

DFHE, FCM

TIME, SENSITIVITY

MPHS

Data Security, Scalability and

Efficiency

Intel Berkeley Research Lab Sensor Dataset

GCP

8

HE

AES, DES

A.SECURITY, TIME

Data Security, Integrity,

Data Sharing

AW, SG, CP

-

AWS and

Azure

Table 1: Comparison of various approaches and their performance metrics.

2.5 Research Gap

The traditional process of a cryptography technique involves the storing of user data in an
encrypted form and getting it deployed on cloud. User data is later decrypted using a secret
key. Since data is exposed to an open-sourced platform, generation of this secret key is the
most challenging task in the entire process. There are high chances of data loss and breach
of key features. This results to be a grave issue and here emerges the need to develop a
method that could store this key and protect it from unauthorized access. Therefore, the
presented report addresses this issue that takes place in the healthcare sector to secure

8

patient sensitive data. For this purpose, two cryptographic techniques are used to enhance
confidentiality and security of the system deployed on cloud. The study’s key point is to
build an infrastructure by integrating a hybrid mechanism with AWS Services. The hybrid
mechanism makes use of two encryption algorithms; Advanced Encryption Standards (AES)
and ChaCha20-Poly1305. Hence, the aim of the project is to install the hybrid encryption
model by using AWS Services such as that of Elastic Beanstalk and finally deploying it on
Flask. The pipeline integration on the backend is simultaneously performed using
Continuous Integration and Continuous Delivery Pipeline which in turn tends to align with
the AWS standard rules. A novelty created at this stage is the deployment of same project
model using Microsoft Azure. The entire project system thus deployed tends to leverage
Python as the programming language and increases the potential of securing user data on
cloud storage systems. In summary, the presented thesis aims to highlight the
implementation of two encryption mechanisms (AES and ChaCha20-Poly1305) deployed on
two AWS cloud infrastructures (MS Azure and Elastic Beanstalk) by running the web app in
the backend using Continuous Integration and Continuous Delivery Pipeline. The thesis
therefore intends to significantly improve the efficiency of the healthcare app without
compromising on the security of user data.

3 Methodology

This section of the thesis briefs on the research design that has been adapted to de-
ploy healthcare data on cloud. Through the literature survey thus conducted, it can be
observed that certain limitations and restrictions do occur in the conventional research
flow. One of the primary concerns was to manage the costs associated with computa-
tional overhead that eventually increased with larger datasets. Response time for the
same was also observed to be high. Such issues resulted for a compromise being made in
the security of user data which is deployed on cloud. In order to overcome such issues
and limitations, the thesis presents a hybrid approach that combines the implementation
of a dual encryption algorithm. MySQL is used as the backend database to monitor user
data. Encryption is performed on the sender and the receiver’s side with the exchange of
the secret key through mail ID. Additionally, CodeRun, CodeDeploy and CodeBuild
along with CI/CD Pipeline is used to deploy the web app. It is important to note here
that such large amount of user data is securely stored on cloud by using a multi-cloud
approach. For this purpose, MS Azure and AWS Service based Elastic Beanstalk (EBS) is
used. The experimental setup thus created tends to meet user demands without system
lag and delays. The sections below highlight the conceptual working implementation of
the methodologies thus involved.

3.1 The phases

3.1.1 Encryption

With advancements being made in the digital world, its crucial to store user data in a
secured manner. This is done to prevent unauthorized access of data from hackers. A set
of standard rules are followed so that privacy violations are not made. Encryption is a
simple process of converting a data in a readable format to a format which is unreadable.
This unreadable data format is called as the cipher-text.
3.1.2 Decryption

The process of encryption serves the purpose of forming a barrier against unauthorized
access of user data to breaches. On one hand, encryption converts readable data to

9

unreadable data; decryption is the act of restoring unreadable data to its original form.
This transformation of data is however performed by making use of certain keys. Such
keys are responsible to reverse the cryptographic processes and thereby generate the
plain-text from cipher-text (Sinaga, M. D, 2018)

3.2 Keys

Keys are generally crucial elements of a cryptographic process since they are responsible
to encrypt and decrypt the entire process. Keys are majorly of two types.

3.2.1 Symmetric Keys

Symmetric key cryptography makes use of a single key to perform the process of en-
cryption and decryption. The key is commonly known as the private key. This key is
further shared between the user and the recipient so that communication entities could
be formed. Its implementation is however faster in comparison to asymmetric key cryp-
tography; since only one key is involved (Jankowski et.al, 2011).

3.2.2 Asymmetric Keys

Asymmetric Key cryptography makes use of two keys which are generated separately
on the user and the recipient side. The key is commonly known as a public key. Both
the communicating entities can make use of this key to decrypt the message. However,
the key faces two major challenges during the process of execution. Former being the
process of key distribution and latter being, digital signatures. Since the process involves
the presence of two keys on both the sides; encrypting or decrypting user data becomes
impossible by knowing only one key. However, a mathematical function is also used for
conversion of plain-text to cipher-text and vice versa.

3.3 Algorithms Used

3.3.1 AES

It is one of the most commonly used techniques in the field of cryptography. Its
implementation process is however based on several mathematical operations which are
executed in the form of block-ciphers. AES is capable to handle and manage 16 bytes of
data which is approx- imately 128 bytes of plain-text. This plain-text is represented in the
form of a 4 x 4 matrix which operates in rounds over the bytes. The number of rounds
is completely reliable on the length of the key size. Primarily three varying key sizes are
used to encrypt and decrypt using AES (128 bytes, 192 bytes, and 256 bytes). These key
sizes are responsible to decide the number of rounds the algorithm would make to
complete plain-text conversion. AES is a form of symmetric key cryptography since it
used only one key on both the ends of the communication parties. The strength of AES
algorithm can be calculated through various statistical analysis which ensures that
cryptography is implemented in alignment with cloud storage.

10

3.3.2 ChaCha20-Poly1305

ChaCha20-Poly1305 is an encryption algorithm which is associated with the AEAD al-
gorithm. The process tends to combine ChaCha20 stream cipher-text along with Poly1305
text so that authentication can take place. It is a fast delivery software algorithm de-
veloped to enhance the overall performance of the system. Its implementation is therefore
faster than AES-GCM. It further takes input in the form of 256-byte key and a 96byte
key to encrypt the plain-text. In the next stage, a cipher text expansion of 128 byte long
key size is made and the plain text is XORed. A cipher-text is then generated which is
used to authenticate user data. This way enables the authentication of one user at a
time.

3.4 Methodologies Used

3.4.1 AWS

The Amazon Web Services provides a range of massive services which can be access by the
user with pay as per use pricing model. Its service ranges from providing resource
storage to computational power and further hosting them on web apps deployed on
cloud. A variety of tools are also used in the process which enables flexibility in the
system thus created. Keeping in mind AWS always comes up with its own networking
infrastructure with already established datacenters. It also has a global infrastructure
which provides virtual services like Amazon Virtual Private Cloud (VPC), Amazon Elastic
Cloud Compute(EC2) and Amazon Simple Storage Service (S3). Dynamic support is also
provided by AWS which helps to scale the web app and further take care of issues related
to load balancing. The overall AWS architecture ensures a seamless user interaction with
the web app so that a versatile cloud computing platform is built.

3.4.2 CI/CD

CI/CD is one of the most important and commonly used automating practices by several
developers. It allows them to commit to their codes without the need to simultaneously
deploy them on the central database. The usage of CI/CD inhibits the process and
reflects the code automatically in the central repository. Hence the need to update the
code is eliminated. This central repository is often observed to be GitHub. Additionally,
there are is a provision for automated process that follows the concept of static analysis
tools to review the code during the testing phase. Integrating these tools not only helps to
improve the quality of software development; but also reduces the overall time
complexity of the system. The working of the pipeline is shown in Fig 1.

Figure 1: CI/CD pipeline

11

Another additional advantage of using CI/CD is that it is capable to detect bugs and
errors in the system and further notifies the developer on its occurrence. This leads to
elimination of system lags and reduces the response time of the software by D. S t å h l ,
et.al,(2014).

Figure 2: working Pipeline of the Project

3.5 Deployment Framework Used

3.5.1 Microsoft Azure

Microsoft Azure is a cloud computing service provided by Microsoft which enables the
user to deploy his web app on cloud. It’s an open-source platform and makes the entire
process a flexible app building task.

3.5.2 Elastic Beanstalk

EBS is also a service provided by AWS that enables the developer to run his codes without
the need to worry about back end issues and load balancing. It can also be used to deploy
web apps on cloud portals.

The working architectural diagram of the research is shown in Fig 3

12

Figure 3: Architectural Diagram

4 Design Specification

4.1 Overview of the Workflow

The work in this thesis proposes to deploy a healthcare system on cloud, using Flask as the
GUI interface. A hybrid method of using AES and ChaCha20- Poly1305 is implemented.
The encryption algorithms are primarily meant to im-prove the overall security and
integrity of the system model. The scheme is further based on a multi-cloud system that
uses two cloud services (MS Azure and EBS) to deploy the project.

To enable a smooth interaction of the users on the web portal, the system design
integrates various critical functionalities. The user can initially register him on the web
app by providing his mobile number and mail ID. The credentials entered by the user in
this stage are safely stored on the backend.

13

Figure 4: Login credentials of the user

After a successful login he is then directed to his dashboard. The Hybrid Cryp-

tography system allows him to add health care data including his age, blood pressure
levels, and cholesterol present in blood and heart rate.

Figure 5: User adding his healthcare data on web portal

The user then submits this information. Meanwhile in the backend during this pro-

cedure; a series of encryption stages along with algorithms are implemented. A hybrid
approach of AES and ChaCha20-Poly1305 are triggered to collect user data and convert
them into respective cipher-texts takes place. The process of key generation also occurs
and is further shared between the user and the recipient. This ensures that a safe upload
of user data is done on cloud. It additionally secures all the transactions therefore being
made on the portal.

14

Figure 6: Encrypted data

Figure 7: Enter key to view Decrypted data

 MySQL is used on the backend to trigger queries and the admin later send the generated
key to the user through his registered mail ID. The user logs into the portal through his
credentials and uploads the data. The decryption key is further sent to the registered
user on his registered mail ID through which the conversion of cipher text to plain text
occurs. An Simple Mail Transfer Protocol(SMTP) is used in this process so that the mail
could be sent. The system design of the model carefully adheres to providing utmost
security to user data wherein the user can download the plain text file only on receiving
the key. Simultaneously a series of AWS Services and integration of the CI/CD Pipeline
is observed in the project. Finally the healthcare app is deployed in the multi cloud en-
vironment by using MS Azure and Elastic Beanstalk. The entire execution of healthcare
on cloud prioritizes to secure user communication and interaction being made on the web
portal. The workflow below depicts the system design of the thesis.

The system design above provides an exact blueprint for deploying the web app on
a multi cloud environment by using a hybrid approach. The AWS Services used in the

design, enables to focus on the interface to be developed so that a smooth functionality is
executed on Flask. The design also highlights the emphasis being made on the user end,
the management of files for seamless encryption followed by the deployment process.

15

5 Implementation

The data implementation of the thesis revolves around using a hybrid encryption method
that uses AES and ChaCha20-Poly1305 as algorithms to store user data on the healthcare
app. The approach utilizes the property of speed and efficiency from AES while using the
robust property of ChaCha20-Poly1305. A detailed process of key exchange takes place
so that the system is benefitted to improve the encryption process of the research. The
encrypted AES key is securely passed to the recipient on his mail ID using the SMTP
protocol. A simultaneous encryption of ChaCha also takes place. Once the recipient
decrypts the data using the key; he can then access his information. This execution of
two algorithms in a hybrid module confirms and ensures that the communication between
the two entities is not breached. It also tends to provide a balance between security and
performance of the system model.

The architecture of the system is however designed to protect user data and focus on
operational reliability. All the functionalities of securing the system and monitoring user
data are performed efficiently in a user friendly environment. AWS Services along with
CI/CD Pipeline are used in combination to build, run and deploy the project by using
CodeBuild, CodeRun and CodeDeploy respectively.

For the purpose of deployment, a multi cloud concept is used and the application is
hosted by Microsoft Azure and AWS Elastic Beanstalk. This gives the cloud a proper
architecture to enhance its security, reliability and scalability. Azure provides a seamless
workflow of resource allocation that can handle change of loads whereas; EBS ensures
that adequate amount of computer provisioning is done so that the developer can run
codes in a hassle free environment. Finally, MySQL is used in the backend to trigger
queries and manage the database. This DBMS thus used guarantees that the deployed

architecture is strong and thereby protected against breaches and hacking activities.

Figure 8 : Encryption Design

16

6 Evaluation

This section of the thesis provides a complete detail on the implementation process ex-
ecuted on the back end while the system is deployed on cloud and is accessed by the user.
Explanation of the same is divided into three fragments; with each fragment contributing
to briefing of the process to induce comprehended results.

Avalanche Effect

In the field of cryptography, the Avalanche effect is generally linked so as to how a
text would react during the encryption and decryption process in terms of mathematical
functions. A minor change being made in the input text would have a massive impact on
the output being generated. This property is termed as the avalanche effect; which tends
to have a significant impact in the domain of cryptography. For instance, a small change
in one byte of the input message would alter the entire encrypted message and
therefore secure it from attacks by third parties. Hence, it is considered to be as the most
desirable property that an algorithm must inhibit during the process of encryption. The
execution of the same is conventionally done on block ciphers by making use of hash
functions. In scenarios of block ciphers with high quality, a small change made in the
plain text tends to have drastic change in the cipher text thus produced. Figure 8 below
depicts the illustration of Avalanche Effect.

Figure 9: Avalanche Score

In cases where the hash functions do not produce avalanche effect to a specific and

desired degree; the plain text is more likely to be attacked by a cryptanalyst. This indicates
that the built encryption algorithm is not strong enough to secure the data on cloud.
Therefore, avalanche effect can also be used to check the strength and weakness of an
algorithm Avalanche effect can however be calculated as:

Avalanche Effect = Number of flipped bytes in cipher text / Number of bytes in
ciphered texts

6.1 Case Study 1: Change of 1 byte

17

This case study enlightens the process of hybrid encryption that takes place on the back
end. Once the user logs into the healthcare app through his credentials, he is then
directed to mention four user attributes such as age, blood pressure levels, cholesterol
levels and heart rate. The input values are taken and termed as “original data”. Two
test case scenarios are expected to occur. The first scenario involves the direct conversion
of plain text to cipher text by using hash function and later calculating its encryption
and decryption time. The second test case scenario involves a change being made in
one byte of the input data and further converting the plain text to cipher text by using
hash function and later calculating its encryption and decryption time. This analysis
helps to understand the strength of the algorithm by changing one byte in the input
data. The analysis is however comprehended through the Avalanche Effect. Both the test
case scenarios are explained below:

6.1.1 Original Data

The experimental analysis for this thesis is based on the encryption process that takes
place on the backend. Generation of the keys and the process of encryption and de-
cryption are monitored. The case studies below briefs on the time required to execute
encryption process, decryption process, time required to execute the same, generation
of keys, conversion of plain text to cipher text, usage of hash function followed by the
avalanche effect.

User Attribute Plain Text Hashed Key Cipher Text Encryption

Time
Decryption

Time
Age 55 QEkvpVpqKG4TwRCjB3b6Q== bG9/ZW0xaXBzdWI1ZX09SXVDVA

==
1.96 2.2

Blood Pressure 85 Rm9vQmFyQmFzZTY0QWzwaGE
M=

Y2lwaGVyVGVzdFBeWxvYWQwOTI
g=

1.5 1.78

Serum Cholesterol 230 SkVUo2blbkFYQ3N2MjByNzg5Mjk= dGlhpc0lZRkjnclwdGVkVGdV4dA== 2.1 2.34

Maximum Heart
Rate

99 SGFzaGVLS2V5RXhxbXBsXBZzXkI
y=

Zm9yVXNIQFZvZXN0dWRSFGfOY
Q=

1.76 1.9

Table 2: Original Data Encryption and Decryption

The table above explains the user attributes thus entered by the user and the corres-

ponding plain text to it. Hashed key is the link that converts the plain text to cipher
text. Once the hash key is generated; the number 55 in column 2 row 2 is converted to
its respective cipher text which is in turn inaccessible by the attacker. The encryption and
decryption time required to perform the above conversions is depicted in the table.

6.1.2 Altered Data with change in one byte

User Attribute Plain Text Altered Text Hashed Key Cipher Text Encryption Time Decryption Time

Age 55 56 SGFzaGVLS2V5RXhxbXBzXBYzXkIy= Zm9yVXNIQFZvZndWRSFGOYQ= 1.6 1.84

Blood Pressure 85 86 RGVtbGluRGFYZ2lhVz5mcYGVgYQ= Y25kc2VwUHVHUHV2c2Dy== 1.35 1.56

Serum Cholesterol 230 232 QUFWTmpJRXJ2WZAbmlJGzUlCE= ZW5jVmRlUkGFc3dmcnEdICFEz== 2.1 2.35

Maximum Heart Rate 99 98 UERyQUldURgyIXNGljA2NZoVZ== ZGVybY29pZGV6INJXNcmVf== 1.84 2.12

Table 3: Altered Data by One Byte and Avalanche Effect

The table above explains the scenario wherein one byte from the original data of

the plain text is changed. The changed plain text is then used to generate the
respected hashed key. In scenario below, 56 is used for hash key generation. Using
this key, the

18

cipher text of its respective number is generated. The encryption and decryption time
required to perform the above conversions is depicted in the table.

6.1.3 Calculation of Avalanche Score

Once the encryption and decryption time for original data and changed data is calculated;
the avalanche score can further be determined to analyse the strength of the system. By
combing tables the generated avalanche score is as follows:

User Attribute Original Data Changed Data by One Byte Avalanche Score (%)

Age 55 56 92.85714286
Blood Pressure 85 86 89.28571429

Serum Cholesterol 230 231 88.285782857
Maximum Heart Rate 99 98 92.85714286

Table 4: Avalanche Effect Calculation

6.2 Case Study 2: Change of 2 bytes

This case study will follow the same procedure as Case study 1 but the score will be
calculated between 2 byte changes.

6.2.1 Original Data

The contents are replicated from the 1st case study to show the randomness of the
algorithm.

6.2.2 Altered Data with change in two bytes

Table below explains the scenario wherein two bytes from the original data of the
plain text are changed. The changed plain text is then used to generate the respected
hashed key. In scenario below, 56 is used for hash key generation. Using this key, the
cipher text of its respective number is generated along with their time metrics.

User Attribute Plain Text Altered Text Hashed Key Cipher Text Encryption Time Decryption Time

Age 55 62 QkFTRTY0S2V5VGVhcyZWVGdXJ0aG cGFzdWxnRTduUjdpbmRldWlzZX 1.45 1.65

Blood Pressure 85 74 QWxpZVZHW5cmF0ZU2haV2FbmM= c2pweXBtRkd2cmdoIGlxXaRoS2V 1.53 1.8

Serum Cholesterol 230 221 UmFuZG90UGlsXGVUZjV1QjVjV2hJcJ ZW5jb2RlRUICc3dmcnQdMNVNJB 2.03 2.16

Maximum Heart
Rate

99 78 TC9pRGVyaGxYZ1Z6bNtbCMlNtyXA= cm9zGVVGZzN0cmNlUoNVUn== 1.56 1.84

Table 5: Altered Data Encryption and Decryption

6.2.3 Calculation of Avalanche Score

Once the encryption and decryption time for original data and changed data is calculated;
the avalanche score can further be determined to analyse the strength of the system. By
combing tables 7, 8, 9 and 10, the generated avalanche score is as follows:

19

User Attribute Original Data Changed Data by two Bytes Avalanche Score (%)

Age 55 62 90.85714286

Blood Pressure 85 74 87.35159429

Serum Cholesterol 230 221 89.104522857

Maximum Heart Rate 99 78 93.842314286

Table 6: Avalanche Effect Calculation

User
Attribute

Hashed Key Cipher Text Avalanche
Score (%)

Age oQ+aqtfFm04vScda4NXD+w== 7VIxOFzzVF0MlVzxIc/08jOiUiA= 90.85714286

Blood Pressure oQ+aqtfFm04vScda4NXD+w== 7nQlOBfk4kR2zl/H3cqlAQ36QBE= 87.35159429

Serum
Cholesterol

5frxGr2yXEZKpU9PVk+9A7m4KJ8hgMb
mY+frFxoU3M8=

7IAxOKV5fvANqxN44mG964weOWw= 89.104522857

Maximum Heart
Rate

3P4t4/vH1Gj9rR8zXq3zYQ0gA6+bXw7lN6
RVjxKH07o=

sRzYg5tXL/R+oQ9NqFUy8M7kPXTVo3F
q5jWZgFYt7Fc=

93.842314286

Table 7: Avalanche Effect Calculation

The avalanche score is calculated using the following script.

Figure 10: Avalanche Score

6.3 Load Balancing in Cloud Environment

This section of the chapter focuses on the backend run being performed in the project.
With multiple users being available on the portal at the same time tends to impact the
load balance of the system thus deployed. Monitoring and balancing this load is necessary
so that system delays and failure can be avoided. For this purpose, an open source load
testing tool named as “locust” is used in Python language. It is a software testing tool
which is responsible to target the occurrence of load in the website and later configure
the web UI in real time. The figure below illustrates the locust dashboard for MS Azure

20

Figure 11: Locust for MS Azure

The figure above indicates three graphs with respect to encryption being performed
on user data, deployed on MS Azure. The first graph represents the number of requests
handled by the system in one second. The second graph represents the response time
given by the system to attend the user requests. While the third graph represents the
number of users being available on the web app. The characteristic feature of the system
to balance load; however leads to the rise of three parameters. CPU Utilization, Network
In and Network Out. Defining these parameters is necessary so that the performance
of the CPU can be calculated in a multi cloud environment. The three parameters thus
extracted and deployed on MS Azure and AWS are explained further.

Figure 12: Locust for AWS

21

6.3.1 CPU Utilization:

This metric is responsible to reflect the load occurring on the system’s CPU while the
web app is deployed on the cloud. A high CPU Utilization is often an indication that the
system is overloaded and over-burdened and therefore cannot generate effective results.
This metric highly depends on the number of users accessing the web app at a particular
instance, the requests received from the user every second, the complexity of the tasks
thus involved and the configuration of the system. Hence, Locust is used so that an
even form of load distribution can be done so that a significant amount of computational
overhead is reduced. The figures below illustrate the CPU Utilization when the web app
is deployed on MS Azure and AWS.

Figure 13: CPU Utilization on Multi Cloud

6.3.2 Network In

This is an important metric which is responsible to measure the total amount of data
thus received by a system network over a period of time. Hence, it is a very crucial tool to
analyze the load occurring on the system so that the performance of the network can be
calculated. The network In parameter heavily depends on the number of concurrent users
along with its request payload. The figures below illustrate the Network In parameter
being deployed on MS Azure and AWS.

22

Figure 14: Network In parameter on Multi Cloud

6.3.3 Network Out (bytes)

This term is an indication of the amount of data being sent to other systems over the net-
work and hence represents the outbound traffic which is made from the server in response
to the requests thus made. This parameter is important to analyze since determines the
range of bandwidth used by the server and therefore optimizes the payload size so that
the system performs better. Network Out majorly depends on the number of concurrent
users and the size of response payloads thus given to each server. Figure below illustrates
Network Out in AWS and MS Azure.

Figure 15: Network Out parameter on Multi Cloud

Through this section, it can therefore be concluded that deployment of healthcare
app on AWS to encrypt user data is more beneficial. Since CPU Utilization and Network
Out traffic were better handled in AWS during peak hours, the encryption performed on
the back end and further deployed on AWS serves the final objective of the system i.e to
deliver consistent performance under payload.

23

7 Conclusion and Future Work (final recap)

The focus of the research is to deploy a healthcare app on cloud and creating a novel
encryption by combining 2 encryption types. AES and ChaCha20Poly1305 are used in
combination to secure user data and generate respective keys to safeguard the data The
procedure of securing user data on cloud is massively significant due to the
incorporation of AWS Services along with CI/CD Pipeline. The final deployment of
the web app is done using a multi cloud environment through MS Azure and Elastic
Beanstalk. The highlight of the project implementation is in the experimental analysis
wherein the encryption and decryption time along with the avalanche effect is calculated.
Avalanche effect is a measure of how strong a system is and can be determined by cal-
culating the number of changes made in the input given to the system. As per tables 6
and 4 thus generated in chapter 6 of the thesis; it can be observed that the Avalanche
score were higher when changes were made in two bytes. This indicates that the hybrid
encryption algorithm was stronger in case study 2 rather than case study 1. Due to this
factor the second case study becomes more difficult for any cryptanalyst to break into
the code. Table 11 below illustrates the Avalanche score generate in both the test cases.

Avalanche score with 1 byte change Avalanche score with 2 byte change
92.85714286 90.85714286
89.28571429 87.35159429
88.285782857 89.104522857
92.85714286 93.842314286

Table 8: Case Study Evaluation.

However the existing limitation of the system restricts its execution to only numbers;

wherein the user can enter the numerical factors in accordance to age, blood sugar levels,
cholesterol levels and heart rate. Another limitation of the system is the slow encryption
time observed during the testing phase.

In the future, the current research thesis can be extended to a hybrid encryption in multi
cloud environment on texts, numbers as well as images. Furthermore, different AWS
Services can be incorporated into the system such as AWS Lambda; so that the
developer need not worry to run codes during the detection of errors and bugs.

24

REFERENCES
1. Shukla, D. K., Dwivedi, V. K., & Trivedi, M. C. Encryption algorithm in cloud computing. Materials

Today: Proceedings, 2021, 37, 1869-1875.

2. Yahia, H. S., Zeebaree, S. R., Sadeeq, M. A., Salim, N. O., Kak, S. F., Adel, A. Z., ... & Hussein, H.

A. Comprehensive survey for cloud computing based nature-inspired algorithms optimization

scheduling. Asian Journal of Research in Computer Science, 2021, 8(2), 1-16.

3. Khan, I. A., & Qazi, R. Data security in cloud computing using elliptic curve cryptography.

International Journal of Computing and Communication Networks, 2019, 1(1), 46-52.

4. Chen, Y.; Liu, H.; Wang, B.; Sonompil, B.; Ping, Y.; Zhang, Z. A threshold hybrid encryption

method for integrity audit without trusted center. J. Cloud Comput. 2021, 10, 3

5. Arockia, P.; Dharani, N.; Aiswarya, R.; Shailesh, P. Cloud data security using elliptic curve

cryptography. Int. Res. J. Eng. Technol. 2017, 4, 32–36

6. Kamble, A., Jiet, M.M. and Puri, C. (2024) ‘Homomorphic Encryption and its Applications in Multi-

Cloud Security’, in 2024 International Conference on Inventive Computation Technologies (ICICT).

2024 International Conference on Inventive Computation Technologies (ICICT), Lalitpur, Nepal:

IEEE, pp. 1493–1499

7. Phan, T.-T.-D., Hoang, V.-P., & Dao, V.-L. (2016). An efficient FPGA implementation of AES-

CCM authenticated encryption IP core. 2016 3rd National Foundation for Science and Technology

Development Conference on Information and Computer Science (NICS)

8. De Santis, F., Schauer, A., &Sigl, G. (2017). ChaCha20-Poly1305 authenticated encryption for high-

speed embedded IoT applications. Design, Automation & Test in Europe Conference & Exhibyteion

(DATE), 2017. doi:10.23919/date.2017.7927078

9. Ahmad, S. A., &Garko, A. B. (2019). Hybrid Cryptography Algorithms in Cloud Computing: A

Review. 2019 15th International Conference on Electronics, Computer and Computation (ICECCO).

doi:10.1109/icecco48375.2019.9043254

10. Alabdulatif, A. et al. (2017) ‘Privacy-preserving Data clustering in Cloud Computing based on Fully

Homomorphic Encryption

11. Mishra, S., Kumar, M., Singh, N. and Dwivedi, S., 2022, May. A survey on AWS cloud computing

security challenges & solutions. In 2022 6th International Conference on Intelligent Computing and

Control Systems (ICICCS) (pp. 614-617). IEEE

12. Saeed, I., Baras, S. and Hajjdiab, H., 2019, February. Security and privacy of AWS S3 and Azure

Blob storage services. In 2019 IEEE 4th International Conference on Computer and Communication

Systems (ICCCS) (pp. 388-394). IEEE

25

13. Talha, M., Sohail, M. and Hajji, H., 2020. Analysis of research on amazon AWS cloud computing

seller data security. International Journal of Research in Engineering Innovation, 4(3), pp.131-136

14. Boomija, M.D. and Raja, S.K., 2023. Securing medical data by role-based user policy with partially

homomorphic encryption in AWS cloud. Soft Computing, 27(1), pp.559-568

15. Mishra, P., 2023. Advanced AWS Services. In Cloud Computing with AWS: Everything You Need to

Know to be an AWS Cloud Practitioner (pp. 247-277). Berkeley, CA: Apress

16. Halder, S. and Newe, T. (2022) ‘Enabling secure time-series data sharing via homomorphic

encryption in cloud-assisted IIoT’, Future Generation Computer Systems, 133, pp. 351–363

17. ‘Data Security in Cloud Environment by Using Hybrid Encryption Technique: A Comprehensive

Study on Enhancing Confidentiality and Reliability’ (2024) International Journal of Intelligent

Engineering and Systems, 17(2), pp. 159–170

18. Turan, F., Roy, S.S. and Verbauwhede, I. (2020) ‘HEAWS: An Accelerator for Homomorphic

Encryption on the Amazon AWS FPGA’, IEEE Transactions on Computers, pp. 1–1

19. A. N. Bhat and R. Kumar, “Efficient Hybrid Encryption Algorithm for Securing Data in Cloud

Environment,” Apr. 18, 2024

20. Alabdulatif, A. et al. (2017) ‘Privacy-preserving Data clustering in Cloud Computing based on Fully

Homomorphic Encryption’

21. S. Murthy and C. R. Kavitha, “Preserving Data Privacy in Cloud using Homomorphic Encryption,”

in 2019 3rd International conference on Electronics, Communication and Aerospace Technology

(ICECA), Coimbatore, India: IEEE, Jun. 2019, pp. 1131–1135

22. M. M. Potey, C. A. Dhote, and D. H. Sharma, “Homomorphic Encryption for Security of Cloud

Data,” Procedia Computer Science, vol. 79, pp. 175–181, 2016

23. Sinaga, M. D., Sembiring, N. S. B., Tambunan, F., &Sianturi, C. J. M. (2018). Hybrid Cryptography

WAKE (Word Auto Key Encryption) and Binary Caesar Cipher Method For Data Security. 2018 6th

International Conference on Cyber and IT Service Management (CITSM)

24. Jankowski, K., & Laurent, P. (2011). Packed AES-GCM Algorithm Suitable for

AES/PCLMULQDQ Instructions. IEEE Transactions on Computers, 60(1), 135–138

25. D. Ståhl and J. Bosch, “Modeling continuous integration practice differences in industry

software development,” Journal of Systems and Software, vol. 87, pp. 48–59, 2014

	National College of Ireland Project Submission Sheet School of Computing
	PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:
	1 Introduction
	1.1 Research question
	1.2 Research objectives
	2.1 Encryption Algorithms
	2.2 Encryption models of ChaCha20-Poly1305
	2.3 AWS Services and Encryption
	2.5 Research Gap

	3 Methodology
	3.1 The phases
	3.1.1 Encryption
	3.1.2 Decryption

	3.2 Keys
	3.2.1 Symmetric Keys
	3.2.2 Asymmetric Keys

	3.3 Algorithms Used
	3.3.1 AES
	3.3.2 ChaCha20-Poly1305

	3.4 Methodologies Used
	3.4.1 AWS
	3.4.2 CI/CD

	3.5 Deployment Framework Used
	3.5.1 Microsoft Azure
	3.5.2 Elastic Beanstalk

	4 Design Specification
	4.1 Overview of the Workflow

	5 Implementation
	6 Evaluation
	Avalanche Effect
	6.1 Case Study 1: Change of 1 byte
	6.1.1 Original Data
	6.1.2 Altered Data with change in one byte
	6.1.3 Calculation of Avalanche Score

	6.2 Case Study 2: Change of 2 bytes
	6.2.1 Original Data
	6.2.2 Altered Data with change in two bytes
	6.2.3 Calculation of Avalanche Score

	6.3 Load Balancing in Cloud Environment
	6.3.1 CPU Utilization:
	6.3.2 Network In
	6.3.3 Network Out (bytes)

	7 Conclusion and Future Work (final recap)

