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Configuration Manual

Tejas Chavan
X22206183

1. Introduction

This Configuration Manual outlines the prerequisites and steps required to replicate the research study
titled "Enhancing Network Layer Security in Cloud Computing through Machine Learning Techniques".
The document covers system setup, data preprocessing, model implementation, and evaluation
procedures. Screenshots and visualizations will accompany the steps where required and this config
manual is organized as follows:

e System Requirements

e Data Collection

e Data Preprocessing

e Model Implementation

e Evaluation

2. System Requirements

2.1 Hardware Requirements
The hardware specifications necessary for the study are shown below:

e CPU: Minimum 8-core processor (e.g., Intel Core i7 or AMD Ryzen 7).

e GPU: NVIDIA GPU with CUDA support (e.g., NVIDIA RTX 3060 or higher).

e RAM: At least 16 GB.

e Storage: 200 GB of free storage space.
2.2 Software Requirements

e Operating System: Ubuntu 20.04 LTS or equivalent.

e Programming Language: Python 3.8 or higher.

e Integrated Development Environment: Jupyter Notebook (provided with Anaconda).
Figure 1: List of Required Libraries

pyplot as plt
xgboost import XGBClassifier
imblearn.pipeline i i
imblearn.over sampl
sklearn.preprocessil
sklearn.preprocessi StandardScaler
~om sklearn.ensemble i ndomForestClassifier
from sklearn.linear_mode t LogisticRegression
sklearn.model_selec t train_test split
imblearn.under_samp t RandomUnderSampler
sklearn.ensemble adientBoostingClassifier
from sklearn.metrics classification report. confusion matrix, ConfusionMatrixDisplay
~om sklearn.metrics accuracy score, precision score, recall score, f1 score, confusion_matrix

plt.rcParams| figure.dpi’]
warnings. filterwarnings('ig

2.3 Code Execution
1. Install Anaconda from https://www.anaconda.com/download

2. Launch Jupyter Notebook.
3. Navigate to the directory containing the code file.
4. Open the file and execute all cells sequentially.

3. Data Collection



The primary dataset used in this study is the CTU-13 dataset, obtained from the official CTU University
of Prague repository. This dataset contains labeled network traffic data from multiple scenarios, making it
ideal for training machine learning models for intrusion detection.

3.1 Dataset Details

Source: Official Repository

File Format: CSV
Size: Approximately 20 million records.
Attributes:
o Traffic features (e.g., protocol, source and destination IPs, ports).
o Labels indicating traffic types (e.g., benign, botnet, background).
Figure 2: Sample of CTU-13 Dataset

Table 2 — Characteristics of the botnet scenarios. (CF: ClickFraud, PS: Port Scan, FF: FastFlux, US: Compiled and controlled by

us.)

1d IRC SPAM CF Ps DDoS FF PZP us HTTP Note

1 \,"' '|.-'r '

2 v v v

3 v v

4 v v W, UDP and ICMP DDoS.
5 v v v Scan web proxies.

3 ) Proprietary C&C. RDP.
7 v Chinese hosts.

8 Vv Froprietary C&C. Net-BIOS, STUN.
3 w’i v Y v

10 ¥ & v UDF DDoS.

11 v v v ICMF DDoS.

12 v Synchronization.

13 v v v Captcha. Web mail

3.2 Loading the Dataset

e Load all CSV files using Python's glob and pandas libraries.

e Combine the files into a single DataFrame.

e Use the head() method to inspect the first few rows for verification.
Figure 3: Dataset Loading Code

all files = glob.glob(os.path.join( CTU-13",
df list = []
for file in all files

df = pd.read_csv(file

df_list.append(df
CTU13 = pd.concat(df _list, ignore index=True
print('CTU-13 DataFrame Head:

display(CTU13. head()

TU-13 DataFrame Head:

StartTime Dur Proto SrcAddr Sport Dir DstAddr Dport dTos

2011/08/10

09:46:59.607825 1.026539 tcp 9444127113 1577 147.32.84.59 6881 i ! 0.0

2011/08/10
94.44.127.113 147.32.8459 6881
09:47:00.634364

2011/08/10
09:47:48.185538

2011/08/10
09:47:48.230897

2011/08/10
09:47:48.963351

3.056586 147.32.86.89 71.75.73.33

3.111769 147.32.86.89 71.75.73.33

3.083411 147.32.86.89 71.75.73.33




4. Data Preprocessing
Preprocessing ensures data quality and compatibility with machine learning models. Key steps include:
4.1 Handling Missing Values
e Columns with significant missing values include Sport, Dport, State, sTos, and dTos.
e Drop rows with null values to maintain data integrity.
Figure 4: Missing Values Handling

print(“Columns with null walues:

print(CTU13.isnull().sum()

Columns with null values:
StartTime e
Dur 2]
Proto ]
SrcAddr e
Sport 2836885
Dir 2]
DstAddr e
Dport 194862
State 1378
sTos 228525
dTos 1718811
TotPkts e
TotBytes 2]
SrcBytes ]
Label e
dtype: int64

print(f"Duplicate rows found: {CTU13.duplicated().sum()}"

Duplicate rows found: @

print("Summary
display(CTul

Summary statistics:

Dur
1.997670e+07
2.879468e+02
8.318070e+02
0.000000e+00
2.750000e-04
7.270000e-04
1.966033e+00
3.657061e+03

sTos
1.975618e+07
8.158963e-02
3.910225e+00
0.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00
1.920000e +02

dTos
1.825869e+07
4.074772e-04
3.245888e-02
0.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00
3.000000e+00

4.2 Feature Engineering

TotPkis
1.997670e+07
4.139147e+01
5.545725e+03
1.000000e+00
2.000000e+00
2.000000e+00
4.000000e+00
1.658064e+07

TotBytes
1.997670e+07
3.232745¢+04
3.983037e+06
6.000000e+01
2.140000e+02
2.640000e+02
6.190000e+02
4376239 +09

SrcBytes
1.997670e+07
6.4353600+03
1.667901e+06
0.000000e+00
7.800000e+01
8.300000e+01
3.040000e+02
3.423408e+09

1. StartTime and Dir were removed as they are non-informative for prediction.
2. Original labels were merged into three categories: Background, Normal, and Botnet.
3. Columns like Proto, SrcAddr, and State were converted to numerical format using Label
Encoding.
Figure 5: Feature Engineering Code



CTu13
print(“\nNull values removed.

print olumns with null values and their counts after removal:

print(CTU13.isnull

CTu13

print
displ

print
display

print

Null values removed.

Columns with null values and their counts after removal:
StartTime e

Dur

Proto
SrcAddr
Sport

Dir

DstAddr
Dport

State

sTos

dTos

TotPkts
TotBytes
SrcBytes
Label

dtype: int64

© 0000000000 DDD

Dur SrcAddr Sport DstAddr TotPkts TotBytes SrcBytes

1.026539 p 94.44.127.113 | I . b 156

94.44.127.113 147.32.8459

3.056586 147.32.86.89 77757333
3.111769 147.32.86.89 77.75.7333

3.083411 ] 147.32.86.89 5 77.75.7333

Remaining columns after dropping 'StartTime' and °Dir':

Index(['Dur’, "Proto’, ‘SrcAddr®, ‘Sport’, ‘DstAddr’, ‘Dport®, ‘State’', 'sTos’,
‘dTos®, "TotPkts®, ‘TotBytes®, °"SrcBytes®, “Label’],
dtype="object")

Shape of the CTU13 DataFrame after Cleaning: (18648817, 13)

4.3 Data Balancing
e Random Under-Sampling (RUS) reduces the majority class size.
e SMOTE synthesizes new samples for the minority class.

Figure 6: Data Balancing Code




~ column in c [ "object’]).columns
le =
X[column] = le.fit transform(X[column]

target_class_size = y.value counts()[ 'Botnet’]
num_batches

X _batches = np.ar plit(X, num_batches
y_batches = np.ar plit(y, num_batches

X_resampled_list
y_resampled list

(num_batches) Balancing Data in Batches

X batch = X batches[i]
y_batch = y batches[i]

undersample_strategy = { Background': min(y_batch unts()
Normal®': mi get('Normal
Botnet': min( get('Botnet

undersample ta pler(s n ndersample_strategy. !
X under, y under = undersample _resample(X batch, y batch
smote strategy - { 'Background’: target_class_size, 'Nermal': target_class_size, 'Botnet’: target class s

smote E mote strategy, r 2
X _resampled, y resampled - smote.fit_resample(X_under, y under

X_resampled list.append(pd.D £ (_resampled columns )
y_resampled list.append(pd.S _resampled)

X _balanced = pd t(X_resampled list
y_balanced - pd t(y_resampled list

print(“Class distribution after ba
print(y_balanced.valu

ame(X_balanced

CT to CTU13 Balanced.csv

print(“Balanced dataset saved te "CTU13 Balanced.csv

Category Count
Background 4,237,660
Botnet 4,237,660
Normal 4,237,660

4.4 Normalization
e Use StandardScaler to normalize numerical features.
Figure 7: Normalization Code



s=[ 'Merged Label']

X _train, X test, y train, y test = train test split(X, y

scaler = StandardScaler
X_train_scaled = scaler.fit_transform(X_train
X _test scaled = scaler.transform(X_test

print(“Shape of Training Features:", X train_scaled.shape
print(“Shape of Testing Features:", X test scaled.shape
print(“Shape of Training Labels:", y train.shape
print(“Shape of Testing Labels: y_test._shape

Dataset Component Shape
Training Features (10,170,384, 12)
Testing Features (2,542,596, 12)
Training Labels -10,170,384

Testing Labels -2,542,596

The following plot reveals a clear imbalance in the dataset. The "Background" label has an
overwhelmingly high count compared to "Normal™ and "Botnet." This suggests that most of the traffic is
classified as Background, with significantly fewer instances of Normal and Botnet traffic. Such an
imbalance can impact model performance, as a model trained on this dataset may become biased toward
predicting the Background label, highlighting the need for data-balancing methods.
Figure 8: Distribution of the Merged Labels in bar chart format

1e7 Distribution of Merged Labels

1.754

1.50 4

0.00 - T y
Background Normal Botnet
Label

The following histogram on the left side of each figure shows the distribution of values for each feature
and the adjacent boxplot on the right provides a summary of the spread, quartiles, and potential outliers
for each feature. In these plots, many data points are positioned as outliers, particularly beyond the upper
quartile, indicated by dots. These following are histograms and boxplots of:

e Dur

e sTos



e dTos
e TotPkts
e TotBytes
e SrcBytes
1e6 Histogram of Dur Boxplot of Dur
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In the protocol distribution plot, we observe that UDP and TCP are the most frequently used protocols,
especially within the "Background" label, which is expected in typical network traffic. The "Normal" and

"Botnet" traffic appears minimally within these protocols as follows.
Figure 9: Bar plot of Protocol Distribution by Label

1e7 Protocol Distribution by Label (Top 10 Protocols + Other)
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Figure 10: Bar plot of State Distribution by Label




1e7 State Distribution by Label (Top 10 States + Other)
1.4 4 Merged_Label
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6. Model Implementation
The following machine learning models were implemented:
6.1 Logistic Regression
e The purpose of the baseline classification model.
e Hyperparameters used are regularization strength C, penalty type.
Figure 11: Logistic Regression Code

log reg

start_time = time.time
log_reg.fit(X train_scaled, y_train
training time - time.time - start_time

print{fModel training completed in {training time:. seconds.™
start_time = time_ time

y_pred — log_reg.p ict(X_test_scaled

detection_time - time.time - start_time

print(f Detection completed in {detection_time:

print({“"Classification Repo
print(class catio e y_test, y_pred

_matrix(y test, y pred

merate(log_reg.classes_

um - em[i, i]

- cm[i ]-sum - om[
fp fp + €tn if (fp + tn

print “nFalse Positiwve Rate (FPR) for each class:

fo label, rate in fpr.i
print(f{label}: {

=log reg.classes

Model Performance

Metric Value

Training Time 496.28 seconds

Detection Time 0.25 seconds




Classification Report
Class Precision Recall F1-Score Support
Background 1 0.3783 0.4872 847,532
Botnet 1 0.872 0.8578 847,532
Normal 1 0.8556 0.7089 847,532
Accuracy 0.702 2,542,596
Macro Avg 0.7111 0.702 0.6846 2,542,596
Weighted Avg 0.7111 0.702 0.6846 2,542,596

6.2 Random Forest
e Ensemble learning model for robust classification.
e Hyperparameters:
o Number of estimators: 100
o Maximum depth: Auto
Figure 12: Random Forest Code

rf = RandomForestClassifier(n_e

start_time - time.time
rf.fit(X_train_scaled, y train
training time = time.time() - start_time

print(f"Model training completed in {training time:.2f} seconds.”
start_time = time.time
y_pred = rf.pr ct(X_test_scaled

detection_time - time.time - start_time

print(f"Detection completed in {detection_time:.2f} seconds.”

print("C ification Report:
print(classification_report(y_test, y pred

cm = confusion_matrix(y test, y pred, Labels=rf.classes_

fpr = {
for i, label in enumerate(rf.classes_
fp = om| l.sum() - em[i, 1]
= am.sum() - cm[i ].sum() - om[ i].sum
fpr[label] = fp fp + tn) if (fp + tn) > @

print("\nFalse Positive Rate (FPR) for each class:
for label, rate in fpr.items
f"{label}: {rate:.4f}"

disp.plo
plt.title("Confusion Matrix
plt.show

| Metric | Value |




Training Time 4183.68 seconds (~69.3 minutes)
Detection Time 49.92 seconds
Accuracy 0.999
Precision (Macro Avg) 0.999
Recall (Macro Avg) 0.999
F1-Score (Macro Avg) 0.999
False Positive Rate Background: 0.0006, Botnet: 0.0002, Normal: 0.0008
6.3 XGBoost

e Gradient boosting model optimized for speed and performance.
e Hyperparameters:
o Learning rate: 0.1
o Maximum depth: 3
o Number of estimators: 100
Figure 13: XGBoost Code

label_encoder = LabelEncoder
y_train_encoded = label_ encoder.fit_ nsform(y_train
y_test_encoded = label_encoder.trans

xgb = XGBClassifier(n_

start_time - time.time
xgb.fit(X_train_scaled, y train_encoded
training_time = time.time() - start_time

print(f"Model training completed in {training time:.2f} seconds.”

start_time = time.time
y_pred encoded = xgb.predict(X _test scaled
detection_time = time.time - start_time

print(f Detection completed in {detection time:.2f} seconds.”
y_pred = label encoder.inverse_transform(y_pred encoded

print("Classification Report:
print(classification_report(y_test, y pred

cm = confusion_matrix(y_test, y pred, Lo s=label encoder.classes_

fpr =
for i, label in enumerate(label_encoder.classes
fp = am[:, i].sum() - em[i, 1]
= cm.sum() - cm[i ].sum() - om| i].sum() + om[i, i]
fpr[label] = fp fp + tn) if (fp + tn

print("\nFalse Positive Rate (FPR) for each class:
for label, rate in fpr.items
print(f"{label}: {rate:.4f}"

disp = rixDisplay di s=label encoder.classes_
plt.fig F
disp.plot

Metric Value




Training Time 150.68 seconds
Detection Time 2.07 seconds
Accuracy 0.9899
Precision (Macro Avg) 0.9899
Recall (Macro Avg) 0.9899
F1-Score (Macro Avg) 0.9899
False Positive Rate Background: 0.0055, Botnet: 0.0031, Normal: 0.0065

6.4 Gradient Boosting Machine (GBM)
e Sequential ensemble model for high predictive accuracy.
e Hyperparameters:
o Learning rate: 0.1
o Number of estimators: 100
o Maximum depth: 3
Figure 14: Gradient Boosting Machine Code

gbm = GradientBoostingClassifier(n

start_time = time.time
gbhm. fit(X_train_scaled. y_train
training time = time.time() - start_time

print(f"Model training completed in {training time:.2f} seconds.”

start_time = time.time
y_pred = gbm.predict(X test scaled
detection_time = time.time - start_time

print(f"Detection completed in {detection time:.2f} seconds.™

print(“Classification Report:

print(c fication_report(y_test, y pred

cm = confusion_matrix(y_test, y pred, Lla -=gbm.classes_

fpr -

for i, label in enumerate(gbm.classes
fp = cm| sum() - cm[i, i]
tn = cm.sum() - cm[i ].5um(} - cm[ i]
fpr[label] = fp fp + tn) if (fp + tn

print(“\nFalse Positive Rate (FPR) for each class:
for label, rate in fpr.items
print(f"{label}: {rate:.4f}"

Display 1 f 0 ) s=ghm.classes_

Metric Value

Training Time 8759.19 seconds (~146 minutes)




Detection Time 12.47 seconds
Accuracy 0.9941
Precision (Macro Avg) 0.9941
Recall (Macro Avg) 0.9941
F1-Score (Macro Avg) 0.9941
False Positive Rate Background: 0.0033, Botnet: 0.0019, Normal: 0.0037

7. Evaluation

Model performance was evaluated using the following metrics:
e Accuracy: Overall correctness.
e Precision: True positive rate among predicted positives.
e Recall: Sensitivity to actual positives.
e F1-Score: Harmonic means of precision and recall.
7.1 Confusion Matrices
Visualizations of prediction outcomes for each class provide insights into misclassifications.
Figure 15: Confusion Matrix
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7.2 Performance Metrics
The table below summarizes key performance metrics for each model:
Model Accuracy Precision Recall F1-Score FPR Detection Time
Logistic Regression 70.20% 71.11% 70.20% 68.46% 12.33% 0.25
XGBoost 98.99% 98.99% 98.99% 98.99% 1.50% 2.07
Gradient Boosting 99.41% 99.41% 99.41% 99.41% 0.49% 12.47
Random Forest 99.90% 99.90% 99.90% 99.90% 0.18% 49.92

Figure 16: Performance Metrics




Annotated Model Performance Metrics
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8. Conclusion

This manual serves as a guide to replicate the research study, ensuring reproducibility and clarity in
methodology. For more details, refer to the full research paper.
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