

Configuration Manual

MSc Research Project

MSc Cloud Computing

Tejas Chavan

Student ID: X22206183

School of Computing

National College of Ireland

Supervisor: Aqeel Kazmi

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

Tejas Chavan

Student ID: …x22206183

Programme

:

MSc in Cloud Computing Year

:

2023-2024

Module: MSc Research Project

Lecturer: Aqeel Kazmi

Submission

Due Date: 03-01-2025

Project

Title:

Enhancing Network Layer Security in Cloud Computing through

Machine Learning Techniques

Word

Count: ……………………………………… Page Count………………………………….…….………

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the rear

of the project.

ALL internet material must be referenced in the bibliography section. Students are required

to use the Referencing Standard specified in the report template. To use other author's

written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature: Tejas Chavan

Date: 03-01-2025

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed into

the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Tejas Chavan

X22206183

1. Introduction
This Configuration Manual outlines the prerequisites and steps required to replicate the research study

titled "Enhancing Network Layer Security in Cloud Computing through Machine Learning Techniques".

The document covers system setup, data preprocessing, model implementation, and evaluation

procedures. Screenshots and visualizations will accompany the steps where required and this config

manual is organized as follows:

● System Requirements

● Data Collection

● Data Preprocessing

● Model Implementation

● Evaluation

2. System Requirements
2.1 Hardware Requirements
The hardware specifications necessary for the study are shown below:

● CPU: Minimum 8-core processor (e.g., Intel Core i7 or AMD Ryzen 7).
● GPU: NVIDIA GPU with CUDA support (e.g., NVIDIA RTX 3060 or higher).
● RAM: At least 16 GB.
● Storage: 200 GB of free storage space.

2.2 Software Requirements
● Operating System: Ubuntu 20.04 LTS or equivalent.
● Programming Language: Python 3.8 or higher.
● Integrated Development Environment: Jupyter Notebook (provided with Anaconda).

Figure 1: List of Required Libraries

2.3 Code Execution

1. Install Anaconda from https://www.anaconda.com/download

2. Launch Jupyter Notebook.

3. Navigate to the directory containing the code file.

4. Open the file and execute all cells sequentially.

3. Data Collection

The primary dataset used in this study is the CTU-13 dataset, obtained from the official CTU University

of Prague repository. This dataset contains labeled network traffic data from multiple scenarios, making it

ideal for training machine learning models for intrusion detection.

3.1 Dataset Details
● Source: Official Repository
● File Format: CSV
● Size: Approximately 20 million records.
● Attributes:

○ Traffic features (e.g., protocol, source and destination IPs, ports).

○ Labels indicating traffic types (e.g., benign, botnet, background).

Figure 2: Sample of CTU-13 Dataset

3.2 Loading the Dataset

● Load all CSV files using Python's glob and pandas libraries.

● Combine the files into a single DataFrame.

● Use the head() method to inspect the first few rows for verification.

Figure 3: Dataset Loading Code

4. Data Preprocessing
Preprocessing ensures data quality and compatibility with machine learning models. Key steps include:

4.1 Handling Missing Values
● Columns with significant missing values include Sport, Dport, State, sTos, and dTos.

● Drop rows with null values to maintain data integrity.

Figure 4: Missing Values Handling

4.2 Feature Engineering

1. StartTime and Dir were removed as they are non-informative for prediction.

2. Original labels were merged into three categories: Background, Normal, and Botnet.

3. Columns like Proto, SrcAddr, and State were converted to numerical format using Label

Encoding.

Figure 5: Feature Engineering Code

4.3 Data Balancing

● Random Under-Sampling (RUS) reduces the majority class size.

● SMOTE synthesizes new samples for the minority class.

Figure 6: Data Balancing Code

Category Count

Background 4,237,660

Botnet 4,237,660

Normal 4,237,660

4.4 Normalization
● Use StandardScaler to normalize numerical features.

Figure 7: Normalization Code

Dataset Component Shape

Training Features (10,170,384, 12)

Testing Features (2,542,596, 12)

Training Labels -10,170,384

Testing Labels -2,542,596

5. EDA
The following plot reveals a clear imbalance in the dataset. The "Background" label has an

overwhelmingly high count compared to "Normal" and "Botnet." This suggests that most of the traffic is

classified as Background, with significantly fewer instances of Normal and Botnet traffic. Such an

imbalance can impact model performance, as a model trained on this dataset may become biased toward

predicting the Background label, highlighting the need for data-balancing methods.

Figure 8: Distribution of the Merged Labels in bar chart format

The following histogram on the left side of each figure shows the distribution of values for each feature

and the adjacent boxplot on the right provides a summary of the spread, quartiles, and potential outliers

for each feature. In these plots, many data points are positioned as outliers, particularly beyond the upper

quartile, indicated by dots. These following are histograms and boxplots of:

● Dur

● sTos

● dTos

● TotPkts

● TotBytes

● SrcBytes

In the protocol distribution plot, we observe that UDP and TCP are the most frequently used protocols,

especially within the "Background" label, which is expected in typical network traffic. The "Normal" and

"Botnet" traffic appears minimally within these protocols as follows.

Figure 9: Bar plot of Protocol Distribution by Label

Figure 10: Bar plot of State Distribution by Label

6. Model Implementation
The following machine learning models were implemented:

6.1 Logistic Regression
● The purpose of the baseline classification model.

● Hyperparameters used are regularization strength C, penalty type.

Figure 11: Logistic Regression Code

Model Performance

Metric Value

Training Time 496.28 seconds

Detection Time 0.25 seconds

Classification Report

Class Precision Recall F1-Score Support

Background 1 0.3783 0.4872 847,532

Botnet 1 0.872 0.8578 847,532

Normal 1 0.8556 0.7089 847,532

Accuracy 0.702 2,542,596

Macro Avg 0.7111 0.702 0.6846 2,542,596

Weighted Avg 0.7111 0.702 0.6846 2,542,596

6.2 Random Forest
● Ensemble learning model for robust classification.

● Hyperparameters:

○ Number of estimators: 100

○ Maximum depth: Auto

Figure 12: Random Forest Code

Metric Value

Training Time 4183.68 seconds (~69.3 minutes)

Detection Time 49.92 seconds

Accuracy 0.999

Precision (Macro Avg) 0.999

Recall (Macro Avg) 0.999

F1-Score (Macro Avg) 0.999

False Positive Rate Background: 0.0006, Botnet: 0.0002, Normal: 0.0008

6.3 XGBoost
● Gradient boosting model optimized for speed and performance.

● Hyperparameters:

○ Learning rate: 0.1

○ Maximum depth: 3

○ Number of estimators: 100

Figure 13: XGBoost Code

Metric Value

Training Time 150.68 seconds

Detection Time 2.07 seconds

Accuracy 0.9899

Precision (Macro Avg) 0.9899

Recall (Macro Avg) 0.9899

F1-Score (Macro Avg) 0.9899

False Positive Rate Background: 0.0055, Botnet: 0.0031, Normal: 0.0065

6.4 Gradient Boosting Machine (GBM)
● Sequential ensemble model for high predictive accuracy.

● Hyperparameters:

○ Learning rate: 0.1

○ Number of estimators: 100

○ Maximum depth: 3

Figure 14: Gradient Boosting Machine Code

Metric Value

Training Time 8759.19 seconds (~146 minutes)

Detection Time 12.47 seconds

Accuracy 0.9941

Precision (Macro Avg) 0.9941

Recall (Macro Avg) 0.9941

F1-Score (Macro Avg) 0.9941

False Positive Rate Background: 0.0033, Botnet: 0.0019, Normal: 0.0037

7. Evaluation
Model performance was evaluated using the following metrics:

● Accuracy: Overall correctness.

● Precision: True positive rate among predicted positives.

● Recall: Sensitivity to actual positives.

● F1-Score: Harmonic means of precision and recall.

7.1 Confusion Matrices
Visualizations of prediction outcomes for each class provide insights into misclassifications.

Figure 15: Confusion Matrix

7.2 Performance Metrics
The table below summarizes key performance metrics for each model:

Model Accuracy Precision Recall F1-Score FPR Detection Time

Logistic Regression 70.20% 71.11% 70.20% 68.46% 12.33% 0.25

XGBoost 98.99% 98.99% 98.99% 98.99% 1.50% 2.07

Gradient Boosting 99.41% 99.41% 99.41% 99.41% 0.49% 12.47

Random Forest 99.90% 99.90% 99.90% 99.90% 0.18% 49.92

Figure 16: Performance Metrics

8. Conclusion
This manual serves as a guide to replicate the research study, ensuring reproducibility and clarity in

methodology. For more details, refer to the full research paper.

References
● CTU-13 Dataset: https://www.stratosphereips.org/datasets-ctu13

● Python Libraries Documentation:

○ Pandas

○ Scikit-learn

○ XGBoost

