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1 Introduction 
The implementation of the project is below, as we all know about the Parking Issues which has 
created Issue as the cities becoming urbanized, we are facing the traffic and parking issues. I have 
implemented the smart parking solutions in which the driver would not face many difficulties for 
the parking, as he can use the search engine for looking for the available parking slot. As I have 
implemented using the Deep Learning model which can give an accurate result and also I have 
configured Load Balancer and Autoscaling Group for the server High Availability and Scaling. Below 
are the details: 

 
 
 

System Requirements  

• Software: Windows 10/11, Ubuntu 20.04, or macOS; Python 3.7+. 
• Dependencies: Streamlit, Ultralytics, EasyOCR, OpenCV, NumPy, Pandas, Pytesseract, Pillow. 
• Tools: Tesseract-OCR, CUDA Toolkit (for GPU). 

 

• from google.colab import drive: Imports the Google Colab drive module. 



• drive.mount('/content/gdrive'): Mounts the user's Google Drive at the path 

/content/gdrive to access files stored on Google Drive. 

 
•  Various libraries are imported for the project: 

• NumPy & Pandas: For numerical computations and data manipulation. 

• PIL (Pillow): To handle image processing. 

• Matplotlib & OpenCV: For visualization and image manipulation. 

• TensorFlow & Keras: For deep learning tasks. 

• Scikit-learn (train_test_split): To split data into training and testing sets. 

•  Multiple modules from Matplotlib (pyplot, image) and TensorFlow are explicitly 

imported for convenience. 

 
•  data_path: Specifies the path to the dataset stored in Google Drive. 

•  Categories: A list defining the class labels ("Free" and "Full") in the dataset. 

•  img_size: Sets the image size (224x224 pixels) for preprocessing. 
 



 
•  Initializes an empty list data to store preprocessed images and their labels. 

•  create_data() function: 

• Iterates over the categories defined earlier. 

• Joins the data_path with the category name to locate images for each category. 

• Reads each image using cv2.imread(), resizes it to img_size x img_size, and 

appends the resized image along with its label (class_num) to the data list. 

•  The function is called with create_data() to populate the data list. 

 
•  Iterates through the data list. 

•  Separates features (images) into X and corresponding labels into Y. 

 
•  Uses train_test_split from Scikit-learn to split X and Y into training and testing sets. 

•  test_size=0.20 specifies 20% of the data is used for testing, and random_state=42 

ensures reproducibility. 
 

 
•  Uses train_test_split from Scikit-learn to split X and Y into training and testing sets. 

•  test_size=0.20 specifies 20% of the data is used for testing, and random_state=42 

ensures reproducibility. 



 

 
process_images(image) function: 

• Normalizes the image to have a mean of 0 and a standard deviation of 1 using 

TensorFlow's per_image_standardization. 

• Resizes the image to 224x224 pixels (matches earlier preprocessing). 

• Returns the processed image. 

 
•  Converts training and testing datasets (x_train, x_test, y_train, y_test) into NumPy 

arrays. 

•  Reshapes x_train and x_test into a 4D shape: (-1, 224, 224, 3), where: 

• -1 allows for flexibility in batch size. 

• 224x224 is the image dimension. 

• 3 represents RGB color channels. 

 

 
Constructs a CNN model using Keras' Sequential API: 

• Multiple convolutional layers with different filter sizes (e.g., 96, 256) and kernel sizes 

(11x11, 5x5, etc.). 

• ReLU activation is applied after each convolutional layer. 

• Batch Normalization stabilizes training by normalizing layer outputs. 



• MaxPooling layers reduce spatial dimensions. 

• Fully connected (Dense) layers are added at the end with 4096 neurons each. 

• Dropout layers are applied to prevent overfitting. 

• The final output layer uses a softmax activation for multiclass classification (10 

classes). 

 
•  Specifies loss function: sparse_categorical_crossentropy (for integer labels). 

•  Optimizer: Stochastic Gradient Descent (SGD) with a learning rate of 0.001. 

•  Metric: Model evaluates accuracy during training. 

 
•  Defines an early stopping callback to halt training when validation loss stops improving for 

5 epochs. 

•  restore_best_weights=True ensures the best weights are retained. 
 

 
Trains the model using model.fit(): 

• Inputs: Training data (x_train, y_train). 

• Validation data: (x_validate, y_validate) to evaluate performance. 

• Epochs: 20. 

• Early stopping is passed as a callback to stop training when conditions are met. 

 
•  Visualizes model training metrics: 



• Subplot 1: Plots training and validation accuracy over epochs. 

• Subplot 2: Plots training and validation loss over epochs. 

•  Customizes plots with titles, labels, legends, and figure size. 

•  The purpose is to analyze model performance trends during training. 
 

 
•  Compares y_test (true labels) with pred_digits (model predictions). 

•  Properly classified indices are stored in prop_class, and misclassified indices are stored 

in mis_class. 

•  Prints counts of properly classified and misclassified images. 

 
•  Creates a grid of subplots to display properly classified images. 

•  Each subplot shows: 

• Predicted and actual labels of the image. 

•  Uses imshow to display images from x_test. 
 



 
Adds error handling to the create_data function: 

• Ensures images are valid (not None) and non-empty before resizing and appending. 

• Prints a warning for skipped invalid images. 

 
 



 
•  Loads images from a test directory. 

•  Preprocesses images: 

• Ensures validity. 

• Resizes using OpenCV (cv2). 

• Standardizes images and reshapes them into a 4D tensor (-1, 224, 224, 3). 

•  Appends valid images to owu_img_np (processed data) and paths to owu_img_data. 

•  Prints warnings for invalid/skipped images. 
 

 
•  Iterates through owu_img_np (processed test images). 

•  Uses model.predict() to generate predictions for each image. 

•  Retrieves the class with the highest probability using np.argmax() and appends it to 

owu_predictions. 
 



 
•  Maps numeric predictions (0 or 1) in owu_predictions to their respective class labels: 

• 0 -> "free" 

• 1 -> "full" 

•  Appends the corresponding labels to owu_results. 

 
Displays test images with predicted labels: 

• Limits the number of images displayed to 16 or the total number of images, 

whichever is smaller. 

• Adds each test image to a grid of subplots (4x4). 

• Titles each image with the predicted label. 

 



 
•  Specifies file paths for the "Full" and "Free" datasets stored in Google Drive. 

•  Uses tqdm for progress bars during data processing and suppresses warnings using 

Python's warnings module. 

 
•  A helper function assign_label(img, short_type) assigns a label (short_type) to an 

image. 

•  Likely used to standardize label assignment based on predefined categories. 

 
Function: add_shorts_to_train_data(short_type, DIR): 

• Processes images from the specified directory (DIR). 

• Assigns labels using assign_label(img, short_type) for cricket shot types. 

• Reads images with OpenCV, resizes them to 150x150, and appends to X (features) as 

NumPy arrays. 

• Corresponding labels are stored in Z. 

 



 

 
Adds "Full" shots and "Free" shots to the training dataset: 

• Calls add_shorts_to_train_data() for each class directory. 

• Displays the length of X after adding data for verification. 

 

 
•  Encodes class labels (Z) into integers using LabelEncoder from Scikit-learn. 

•  Converts encoded labels into one-hot categorical format using Keras' to_categorical(). 

•  Prepares Y for model training (e.g., "Full" and "Free" as [1, 0] and [0, 1]). 
 



 

• Imports libraries for: 

o Data manipulation (pandas, NumPy). 

o Image processing (cv2, ImageDataGenerator). 

o Machine learning and deep learning (Scikit-learn, TensorFlow/Keras). 

o Model evaluation (accuracy_score, f1_score, etc.). 

 

 
Function: build_model(bottom_model, classes): 

• Takes a base model (bottom_model) and adds: 

o A GlobalAveragePooling2D layer to reduce dimensions. 

o A dense (Dense) output layer with softmax activation for multiclass 

classification. 

• Returns the modified model, ready for training. 

 



 
•  Loads the VGG19 pre-trained model with ImageNet weights (include_top=False) and 

an input shape of (150, 150, 3). 

•  Adds a custom head to the base model using build_model. 

•  Implements callbacks: 

• EarlyStopping: Stops training when validation accuracy doesn't improve for 11 

epochs. 

• ReduceLROnPlateau: Reduces the learning rate when validation accuracy plateaus. 

•  Uses ImageDataGenerator for data augmentation (rotation, shifts, flips, etc.). 

•  Compiles the model with the Adam optimizer and categorical cross-entropy loss. 



•  Trains the model using .fit with augmented training data and validation data. 

 
•  Visualizes training and validation accuracy/loss over epochs using Matplotlib. 

•  Plots are divided into subplots: 

• First subplot: Training vs. validation accuracy. 

• Second subplot: Training vs. validation loss. 

 
 

 
•  Predicts classes on x_test using model.predict. 

•  Compares predictions with actual labels (y_test) and identifies correctly and incorrectly 

classified samples. 

•  Displays correctly classified test samples with predicted and actual labels in a grid layout. 



 
•  Loads the ResNet50 pre-trained model similarly to VGG19 but uses the ResNet50 

architecture. 

•  Configures the same callbacks (EarlyStopping and ReduceLROnPlateau) and data 

augmentation. 

•  Compiles and trains the model with the same optimizer, loss function, and training setup. 
 



 
• Plots training/validation accuracy and loss for ResNet50 using the same visualization 

method. 

 

 
•  Predicts classes for the test set using model.predict. 

•  Separates indices of properly classified samples (prop_class) and misclassified ones 

(mis_class). 

•  Visualizes a subset of correctly classified samples using plt.subplots: 

• Displays the predicted label and actual label on each subplot. 

 
 



 
•  Uses MobileNet pre-trained on ImageNet as the base model (include_top=False) with a 

custom input shape (150, 150, 3). 

•  Adds a custom head using build_model. 

•  Configures callbacks: 

• EarlyStopping: Stops training if validation accuracy doesn't improve for 11 epochs. 

• ReduceLROnPlateau: Adjusts learning rate upon validation accuracy stagnation. 

•  Employs ImageDataGenerator for augmentation (rotation, shift, zoom, etc.). 

•  Compiles and trains the model using Adam optimizer and categorical cross-entropy loss. 
 



 
Plots training and validation accuracy and loss over epochs using Matplotlib: 

• Subplot 1: Accuracy trends. 

• Subplot 2: Loss trends. 

 
 

 
This snippet predicts test set classes, identifies correctly classified samples (prop_class), and 
visualizes 8 of them in a 4x2 grid. Each subplot shows the test image with its predicted and actual 
labels. 
 

 
•  Installs and imports EfficientNet (a highly efficient deep learning model). 

•  Sets up EfficientNetB0 from the EfficientNet library for use in the project. 

•  Imports necessary layers and utilities from TensorFlow/Keras: 



• GlobalAveragePooling2D and Dense for custom layers. 

• Model for model assembly. 

• Adam optimizer for compilation. 

 
 
 

 
•  Utilizes EfficientNetB0 pre-trained on ImageNet as the base model. 

•  Adds a custom classification head for fine-tuning. 

•  Implements data augmentation with ImageDataGenerator (rotation, shifts, flips, etc.). 

•  Uses EarlyStopping and ReduceLROnPlateau callbacks for training optimization. 

•  Compiles the model with Adam optimizer and categorical cross-entropy loss, trains it, and 



evaluates predictions. 
 

 
•  Plots training and validation accuracy/loss trends over epochs using Matplotlib. 

•  Subplots show: 

• Accuracy trends in the first subplot. 

• Loss trends in the second subplot. 

 
 

 
•  Predicts classes for the test set and identifies correctly/misclassified samples. 

•  Displays 8 correctly classified test images in a 4x2 grid with their predicted and actual 

labels. 



 
•  Leverages DenseNet121 pre-trained on ImageNet with a custom head. 

•  Trains the model with the same augmentation and callback setup as EfficientNet. 

•  Compiles the model with Adam optimizer and categorical cross-entropy loss, trains it, and 

evaluates predictions. 



 
• Similar to EfficientNet, it plots accuracy and loss trends over epochs for DenseNet121 

training. 

 

 
•  Saves the trained model den_model to a file named dense_model_final.h5. 

•  Loads the saved model using load_model to reuse it without retraining. 

 
•  Uses the loaded model to predict on x_test. 

•  Separates correctly (prop_class) and incorrectly (mis_class) classified samples. 

•  Displays 8 correctly classified samples in a 4x2 grid with their predicted and actual labels. 
 



 
•  Calculates accuracy, precision, recall, and F1 score for multiple models (VGGNet, ResNet, 

MobileNet, EfficientNet, and DenseNet) using Scikit-learn metrics. 

•  Organizes results into a pandas DataFrame for easy comparison and sorts by accuracy. 



 
Defines a function make_confusion_matrix to: 

• Create and normalize a confusion matrix. 

• Visualize the matrix using Matplotlib. 

• Annotate matrix cells with percentages and counts. 



 
 

 
Creates and visualizes confusion matrices for each model (VGGNet, ResNet, MobileNet, 
EfficientNet, and DenseNet) using the defined function. 
 
 
Number_plate_detection 



 



 

1. Functionality: 

The code detects and reads license plates from images or videos using a YOLO model for 

object detection and EasyOCR for optical character recognition (OCR). 

2. Main Components: 

• detect_and_read_plates(input_path, output_path, 

confidence_threshold): 

o Loads a YOLO model (yolov11n.pt) and an OCR reader for English 

(easyocr.Reader(['en'])). 

o Handles input files (images or videos): 

▪ Images: 

▪ Reads the image with cv2.imread. 

▪ Processes the frame using process_frame to detect plates and 

perform OCR. 



▪ Saves the processed image to output_path (if provided). 

▪ Videos: 

▪ Uses cv2.VideoCapture to read frames from the video. 

▪ Processes each frame to detect plates and perform OCR. 

▪ Saves processed frames to an output video file using 

cv2.VideoWriter. 

• process_frame(frame, model, reader, confidence_threshold): 

o Detects license plates in the frame using YOLO. 

o Extracts bounding boxes and confidence scores from YOLO's results. 

o For each detection with confidence above the threshold: 

▪ Crops the detected license plate area. 

▪ Uses EasyOCR to extract text from the cropped region. 

▪ Draws bounding boxes and annotates the frame with: 

▪ Extracted license plate text. 

▪ Confidence score of the detection. 

• Bounding Box and Annotation: 

o Draws rectangles around detected license plates (cv2.rectangle). 

o Adds license plate text and confidence score as labels using cv2.putText. 

Pklot[2] 

 

•  !pip install ultralytics: Installs the YOLOv8 library for object detection. 

•  !pip install roboflow: Installs the Roboflow Python package for dataset management. 

 

•  Imports Roboflow. 

 

 

•  Uses an API key to authenticate and download a specific project dataset ("pklot-1tros") 

in the YOLOv8 format. 



 

 

 

Uses shutil.move to rearrange dataset folders (test, valid, and train) into their correct 
locations. 

 

 

The yolo command specifies: 

• Task: detect (object detection task). 

• Mode: train (train the model). 

• Model: yolov5lu.pt (pretrained YOLOv5 model). 

• Data: Path to dataset YAML file. 

• Epochs: 20 (number of training iterations). 

• Image size: 640 (resolution for training images). 

 

 

 

• This command trains a YOLOv8 large model (yolov8l.pt) for object detection using the 
dataset specified in /content/PKLot-4/data.yaml for 10 epochs with a 640x640 image 
size. 

 



 

• This command trains a YOLOv3 model (yolov3.pt) for object detection using the 

dataset defined in /content/PKLot-4/data.yaml, with 10 epochs and an image size 

of 640x640. 

 



 

 



 

Setting Up Dependencies and Helper Functions 

1. Dependencies: Includes modules such as streamlit, PIL, YOLO, easyocr, and 
pytesseract. 

2. OCR Initialization: Initializes EasyOCR and sets up Tesseract for OCR tasks. 
3. Helper Functions: 

o read_plate: Preprocesses images and performs OCR on detected license plates. 
o preprocess_image: Converts images to grayscale and applies binary thresholding. 
o detect_objects: Uses YOLO for object detection and extracts bounding boxes, 

IDs, and plate texts. 

Snippet 2: Parking Lot Detection 

1. Task Selection: Implements a st.radio widget for task selection. 
2. File Upload: Uses st.file_uploader to upload parking lot images. 
3. YOLO Detection: Loads a parking lot detection model (parking_yolov9_model.pt) and 

performs inference. 
4. Confidence Slider: Allows the user to set a confidence threshold for detections. 
5. Result Display: Outputs the detected objects, visualizations, and detection counts in a table. 

Snippet 3: Number Plate Detection 

1. File Upload: Accepts images of cars for number plate detection. 
2. YOLO Detection: Uses a number plate detection model (anpr_model.pt) for inference. 



3. Plate Extraction: Extracts number plates from bounding boxes and performs OCR to display 
readable text. 

4. Result Display: Outputs the detected number plates and visualizations, with a fallback 
message if no plates are detected. 

 

Streamlit application Config file for Number Plate Detection 
and Parking Lot System 

 



 

This code sets up a framework for a Parking Lot and Number Plate Detection System 

using YOLO for object detection and EasyOCR/Tesseract for text recognition. Key 

functionalities include: 

1. Image Preprocessing: Converts images to grayscale and applies binary thresholding 

to enhance OCR performance. 



2. YOLO Object Detection: Detects objects in the image, filters them by confidence, 

and extracts bounding boxes and class IDs. 

3. OCR Setup: Initializes EasyOCR and Tesseract for reading license plate text. 

4. License Plate Text Extraction: Crops detected plates, applies OCR, cleans text, and 

returns alphanumeric content only. 

This setup integrates computer vision and text recognition efficiently, enabling detection and 

extraction of relevant data from images. 

 
 

 

This code extends the functionality of the Parking Lot and Number Plate Detection 



System by integrating the Streamlit user interface and logic for task execution. Here's a 

concise explanation: 

Core Components 

1. Number Plate Processing: 

o Iterates over detected objects. 

o Extracts bounding box coordinates and crops the plate region. 

o Runs OCR on the cropped region using read_plate() and appends detected 

text to a list. 

2. Streamlit UI: 

o Displays a title and allows users to select between two tasks: "Parking Lot 

Detection" or "Number Plate Detection." 

o Includes a file uploader for users to upload images. 

3. Parking Lot Detection: 

o Loads a YOLO model (parking_yolov5_model.pt) for detecting parking 

spaces. 

o Users can adjust a confidence threshold via a slider. 

o Displays: 

▪ Annotated image of parking lot with detections. 

▪ Class counts (e.g., cars, bikes) in a tabular format. 

4. Number Plate Detection: 

o Loads a YOLO model (anpr_model.pt) to detect vehicles and plates. 

o Extracts license plate text using OCR for detected regions. 

o Outputs: 

▪ Annotated image with vehicle and plate bounding boxes. 

▪ Recognized number plates. 



 

•  File Upload: 

• Allows users to upload an image (e.g., a car with a number plate) in .jpg, .jpeg, or 

.png formats using st.file_uploader(). 

•  Image Display: 

• Displays the uploaded image on the Streamlit interface for user confirmation. 

•  Model Loading: 

• Loads a pre-trained YOLO model (anpr_model.pt) specifically for number plate 

detection. 

•  Object Detection and OCR: 

• Performs object detection using YOLO to identify number plate regions. 

• Passes detected regions to an OCR reader to extract plate numbers. 

• Confidence threshold for YOLO detection is adjustable using a slider. 

•  Display Results: 

• Annotated image with detection boxes is shown. 



• Detected number plates are displayed, or a fallback message is shown if no plates are 

detected. 

•  Detection Summary: 

• Shows raw detection results for debugging or review. 

• Counts detected object classes (e.g., cars) and displays the counts in a tabular format. 

We have connected to Flask API as an end module for enabling seamless interaction 

 

 

Configuring the Load Balancer and Auto Scaling Group  
 
Here I am trying to make the instance High Available and Scalable, The Scale minimum 

desired capacity I have made it as 1 and Maximum as 2  

 
 

Configured the Cloudwatch by add my college email address so that I would receive an email 

for high resource utilization. 

 



 
 

Configured the network high availability to different AZ’s 

 
 

 

 
 
Target tracking has been configured if the instance CPU goes high the instance gets created 

automatically resulting in scaling



 
 

Installed the stress package on my ec2 and try to stress the ec2, which resulted Autoscaling. 

 
 



 
 

 

 

 

 
 


