
Blockchain-Based Framework for Secure
Cloud Storage with Data Integrity

Verification

MSc Research Project

MSc Cloud Computing

Harshit Bhalla
Student ID: x23208813

School of Computing

National College of Ireland

Supervisor: Ahmed Makki

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Harshit Bhalla

Student ID: x23208813

Programme: MSc Cloud Computing

Year: 2024-2025

Module: MSc Research Project

Supervisor: Ahmed Makki

Submission Due Date: 12/12/2024

Project Title: Blockchain-Based Framework for Secure Cloud Storage with
Data Integrity Verification

Word Count: 6851

Page Count: 21

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 12th December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Blockchain-Based Framework for Secure Cloud
Storage with Data Integrity Verification

Harshit Bhalla
x23208813

Abstract

Today, Data is considered as an invaluable asset. Cloud computing have drastic-
ally transformed management of data by providing cost efficient and scalable data
storage solutions, however their centralised architecture poses considerable chal-
lenges such as unauthorised access and data breaches and attacks to data integrity,
hence it is essential to protect sensitive data. These challenges are addressed by
combining decentralised technology blockchain and cryptographic techniques to de-
velop a secure platform for storing sensitive data to cloud. The proposed system
employs Advanced Encryption Standard (AES-256) to encrypt user data ensuring
confidentiality on cloud storage and to preserve integrity of data,achieving a 100%
detection accuracy in integrity verification tests. Merkle tree-based approach is im-
plemented, allowing users to verify authenticity of the data and detect tempering
of data. The system also supports periodic integrity verification feature that allows
user to enable automated integrity check for their data. This approach offers real
time alerts in the event of file integrity violation. The platform is designed as a
web application, providing users with interface to securely store, manage and verify
integrity of data over cloud. The result of study shows that blockchain technology
can enhance the security and ensure integrity of the data over cloud storage system.

1 Introduction

In this era of information, data is considered as one of the most valuable assets and as
the dependency on data is increasing, so do the challenges related to ensuring its security
and integrity. Cyber-attacks and unauthorised access to sensitive data poses significant
risks that can potentially weaken the trust users have in the systems managing their data.
Amongst the principle of data security CIA (Confidentiality, Integrity, and Availability)
data integrity is considered as critical concern as it’s violation can damage trust and
decision-making processes.

1.1 Research Motivation:

Traditional cloud computing services have brought a paradigm shift in the way we man-
age data, it is considerably more secure, reliable and efficient. Whether for a small-scale
business or large corporations, there is a significant shift to cloud storage solutions for
addressing the growing demands driven by lower cost, auto scaling and high availabil-
ity. However, the centralized architecture of traditional cloud storage service introduces

1



several challenges.Data stored over a centralised servers is susceptible to unauthorized
access and data breaches (Barona and Anita, 2017). A Research on cloud computing
vulnerably shows data breaches in centralized cloud environment not only threaten the
data confidentiality but can also cause violate of integrity resulting in user’s data manip-
ulation and corrupted data.(Feng and Li, 2022),Such data breach can violate users trust
over data, additionally user faces lack of transparency regarding how their data is stored
and managed, compelling them to solely rely on service provider’s integrity. One of the
primary concerns of traditional cloud storage system is security of sensitive data. Valu-
able and sensitive data are often stored by organizations on cloud servers that is essential
for their daily operations, making it potential target for cyber attacks. Research shows
that data breaches and unauthorized access to cloud data continue to be significant issues
in cloud storage systems, many a times resulting in financial losses, reputation damage,
and reduces trust towards service providers (Sharma et al., 2019).

Neto et al. (2020) examines the Capital One data breach, where personal data of
around 106 million customers was compromised. Attackers exploited vulnerabilities in
the AWS cloud infrastructure, enabling a Server Side Request Forgery (SSRF) attack.
Hence there is a need of a system that provides method to ensure integrity of user uploaded
data while ensuring confidentiality of data.

1.2 Project Specification

The web application enables users to securely store data over third party cloud storage
service, ensuring that the stored data is only accessible to actual uploader. Before ac-
cessing the application, user must authenticate themselves using MetaMask wallet. By
implementing blockchain technology, application applies an extra layer of security by
storing critical metadata including file hashes and Merkle Roots on the ethereum block-
chain to prevent tampering of data. Simultaneously, it splits the data into chunks and
encrypts each chunk using AES (Advanced Encryption Standard) encryption technique
and stores encrypted chunks over cloud storage like Amazon web services Simple Storage
Service (S3) , at any time user can perform integrity check to verify their data is not
tempered. Additionally, periodic automatic integrity are performed using smart contract
and Lambda function, user is informed immediately if any discrepancy in data is detected.

1.3 Research questions:

• How effectively the integration of blockchain and encryption and Merkle Tree struc-
ture identify data integrity violations in cloud storage ?

• What are the performance metrics for encryption and decryption using Crypto-
graphy technique (AES-256) when used on fragmented file stored in the cloud?

• How does periodical verification of integrity improve the identification of tampered
data in cloud storage environment?

• What are the trade-offs in performance when using Ethereum smart contract for
metadata storage and data integrity verification regarding cost and scalability?

2



1.4 Research objectives:

• To create a secure framework for cloud data storage by integrating blockchain tech-
nology along with cryptographic methods such as AES-256 encryption and Secure
Hash Algorithm 256 (SHA-256) hashing.

• To maintain data integrity using Merkle Trees and the immutable storage of Merkle
Roots over a blockchain network for ensuring immutable data storage.

• To address data privacy issues of cloud storage solutions by implementing encryp-
tion and offering decentralized authentication methods.

• To provide integrity verification methods with both manual and automatic periodic
integrity testing with a real-time notification system in case of data tampering.

1.5 Research Contribution:

This Research aims to enhance the data security and ensure data integrity in centralised
cloud storage solutions

• Integrity Verification: The study focuses on ensuring the data integrity of cloud
storage data by leveraging blockchain technology to immutably store file metadata
over Ethereum smart contract. Merkle roots is calculated using cryptographic hash-
ing of data fragments, gives an efficient method to validate large dataset. Any
tempering to the data can be detected by recalculating the Merkle root, ensuring
that data remains authentic and unaltered.

• Automated Integrity tests: The system provides automated periodic integrity
test by using smart contracts and AWS Lambda functions. This ensures continuous
integrity test are performed on cloud stored data and if any inconsistencies or
tempering or data is detected, users receive real-time notification via registered
Email with the help of AWS Simple notification service (SNS).

• Enhanced Security: By utilising AES-256 (Advanced Encryption Standard) en-
cryption along with data fragmentation, the system protects the data from any
unauthorised access, ensuring confidentiality of data stored in cloud storage server
while providing efficient way to verify integrity of data.

2 Related Work

2.1 Ensuring Data Integrity in Cloud Computing

To address the data integrity threats in cloud computing settings (Sharma et al., 2019)
proposes a blockchain based solution that uses decentralised and immutable property of
blockchain technology. Their solution focus on employing a combination of blockchain and
Merkle tree to verify integrity of data while ensuring transparency and authentication.
Smart contract within blockchain ecosystem is used for verification process. The proposed
system makes use of P2P (point to point) storage model that is distributed amongst
multiple nodes to mitigate the risk associated with a centralised architecture storage like
single point of failure. This immutable ledger eliminated the risk of tampering, providing

3



a reliable source for storing Merkle root of data. This process makes sure that only verified
user can interact with the system and data remains intact. While the system proposes an
innovative approach to verify integrity, the author mentioned some limitation including
scalability issue in due to blockchain’s high computational power requirements also the
system mainly focus on integrity this study entends this research to ensure integrity along
with condifentiality make a more secure hybrid model for integrity verification over cloud
envionment.

(Liu et al., 2023) introduces a data integrity auditing system that makes use of Quad
Merkle Tree (QMT) structure. It extents the concept of Merkle Tree by dividing the
data in to four branches per node. System is interconnected with blockchain technology
for immutable storage of QMT root. This scheme addresses the issues seen in traditional
cloud storage by offering decentralized and temper resistant way for data verification,
with use of QMT, the system offers improved data integrity checks but use of QMT has
high effect on computational cost specially in case of large datasets.

(Goswami et al., 2024) Suggests an integrity verification scheme specially build for
cloud storage IOT data. It makes use of Merkle Hash Trees (MHT) and techniques like
Proofs of Retrievability (PoR) and Provable Data Possession (PDP), the system mainly
focus on ensuring data integrity and enable efficient public auditing. Furthermore, the
capabilities of blockchain have been examined for ensuring immutability and transparency
of data. The study expands upon these developments by using blockchain authentication,
AES-256 encryption, and Merkle Tree hash verification, providing scalable approach for
data integrity verification in cloud storage settings.

(Sari and Sipos, 2019) introduced a blockchain based system for handling Secure File
Sharing over decentralised cloud storage that uses Interplanetary File System (IPFS)
over Etherum network The paper suggests a dynamic technique to ensure user file in-
tegrity by using a group consensus mechanism and secure data over P2P(Peer to Peer)
network, offers decentralisation access control and authentication to address drawbacks
of centralized cloud storage.

2.2 Blockchain and Cryptography for Secure Cloud Storage

In order to address the security challenges of cloud data storage, (Idrus et al., 2023)
present a blockchain based framework that aims to improve the privacy and ownership
of data stored in cloud storage. The proposed framework tackles with vulnerabilities
seen in conventional cloud storage solutions like centralised control and vulnerability to
cyber-attacks. By using blockchain immutable ledger, the authors imply cryptographic
methods, AES (Advanced Encryption Standard), for data encryption and SHA 256 (Se-
cure Hash Algorithm 256) for performing hashing. To ensure confidentiality of data, data
is transformed into encrypted blocks and stored permanently on blockchain, with each
block connected to its successor by utilising cryptographic hashes and hence ensuring
transparency and tamperproof technique to securely store data. A significant aspect of
this approach is implementation of Proof of Authority (PoA) consensus mechanism.In
order to validate a block, confirmation from all the validators is required, in comparison
with other consensus mechanism like Proof of work (PoW), PoA provides faster block
confirmation and offers higher throughput but sacrifices on decentralization.

4



(Shakor et al., 2024) suggests a solution for improving cloud data security by integ-
rating dynamic AES encryption and blockchain based key management. The system
modifies encryption key in real time based on the sensitivity of data and the policies
defined by the user. Blockchain technology is used to securely store immutable encryp-
tion keys, blockchain smart contracts are used to manage encryption keys. The proposed
system handles risk of unauthorized access and maintains data confidentiality, perform-
ance is measured in terms of encryption and decryption speed and systems capability to
secure data against any attack or unauthorized access.

2.3 Authentication With Blockchain

(Jha et al., 2023) proposed a system called Certifier Dapp that uses decentralized ap-
proach to managing certificates with the use of blockchain. The system makes use of
MetaMask wallet for providing secure authentication system where user can connect
with their meta mask wallet and application can retrieves the wallet address to identify
the user. Smart contract ensures issuing new certificates to registered users and verify
the authenticity of existing certificates. Each transaction is stored over smart contract
ensuring high transparency of transactions and security.

(Almadani and Hussain, 2023) introduces a secure blockchain based wallet system with
MFA (multi factor authentication), the system uses advanced authentication settings,
including passwords,TOTP(time based one time passwords), and facial recognition. This
paper mainly focus on how secure authentication can help in reducing the risk of phishing
attacks and unauthorised access, the system is implemented using Ethereum blockchain
and python. Author conducted bunch of experiments to validate its security against
attack simulations, this system demonstrates a highly secure authentication mechanism.

(Castro-Medina et al., 2019) reviews different ways of performing data fragmentation
and replication of data in a cloud environment, highlights their role in improving the
overall performance and security, paper discus on various techniques implemented over
the past eight years giving insights on their use case and suitability.

2.4 Research Gap Analysis

The existing work on secure cloud storage mainly focus on either confidentiality or in-
tegrity, (Sharma et al., 2019) research mainly focus on integrity protection, (Idrus et al.,
2023) and Shakor et al. (2024) focus on ensuring confidentiality neglecting solution that
focus on both, although both AES encryption and SHA-256 based hashing are commonly
used but their interaction with blockchain for periodically verifying integrity and auto-
mated of verification is not explored widely, limited attention is given to challenges like
real time breach notification and hybrid solutions that verifies integrity while ensuring
data remains confidential over cloud environment even in situations like data breach,
furthermore existing solutions like Quad Merkle Tree (Liu et al., 2023) and Proofs of
Retrievability Goswami et al. (2024) are processor-intensive, making them less efficient
for large-scale cloud applications.

This research aims to address these gaps by creating a hybrid solution that allows a
organisation or a user to verify integrity while ensuring confidentiality of data by using
AES-256 encryption and blockchain storage. This research addresses the existing limita-
tions literature aims to develop a secure, scalable and efficient system to upload data on

5



cloud storage while ensuring both confidentiality and integrity of data.

Reference Focus Findings

(Sharma et al., 2019) Blockchain-
based cloud
integrity

Uses merkle tree approach to ensure
data integrity, daily Focused on P2P.

(Liu et al., 2023) Data integrity
(QMT)

Suggest QMT approach to improve in-
tegrity of data, shows High computa-
tional costs for large datasets.

(Goswami et al., 2024) IoT data integ-
rity

Integrated AES-256 encryption and
Merkle Tree for data security and in-
tegrity.

(Sari and Sipos, 2019) Decentralized
file sharing

Offer group consensus and secure file
storage in a P2P network, Addressed
centralization drawbacks of traditional
cloud storage.

(Idrus et al., 2023) Offers block-
chain based
cloud security

Combined AES encryption and SHA
hashing with blockchain for secure data
storage.

(Shakor et al., 2024) Dynamic AES
encryption

Real-time dynamic AES encryption
modifies keys based on sensitivity and
policies.

(Jha et al., 2023) Decentralized
certification

Smart contracts for transparent certi-
ficate issuance; MetaMask integration
for secure user authentication

(Almadani and Hus-
sain, 2023)

Blockchain wal-
let security

Offers integrated ways of encryption
(TOTP and password authentication)

(Castro-Medina et al.,
2019)

Data fragmenta-
tion/replication

Highlights the role of fragmentation
and replication in improving perform-
ance

Table 1: References in the Order Discussed

3 Methodology

The proposed system is designed to implement a web application that ensure file integrity
while securing the data stored on cloud storage solution by leveraging blockchain tech-
nology and cryptographic techniques such as encryption. The main goal is to provide a
tamper proof and efficient method by which users can verify integrity of their data while
ensuring security. By combining immutable blockchain storage, cryptographic techniques
and cloud storage the research implementation aims to overcome the drawbacks of central-
ized storage systems like data breaches and lack of transparency inefficient data integrity
verification methods.

6



3.1 User Interface and Web Application

The web application is built on Angular frontend framework, it allows user to register
and login securely with blockchain based wallet integration where user authentication is
done through smart contracts deployed over Ethereum (ETH) blockchain. Once user is
authenticated they can upload a file, the application processes the file locally, where it
performs data fragmentation. The divided segments are then encrypted, these encrypted
chunks are then uploaded to cloud storage and hash for each file chunks is calculated
using and these hashes are then combined to form Merkle tree which represents integrity
of the entire file. This root is further immutably stored over smart contract along with
file metadata. This web application ensures both confidentiality of the file content and
allows user to test integrity of the file. The application allows both manual an automated
testing of file integrity, where user have the option to enable automated verification of
integrity. Furthermore, system allows to enable periodic hash verification where file is
periodically tested for verifying integrity.

3.2 Data Encryption and Integrity Verification

To ensure confidentiality, system utilise cryptographic techniques during file processing,
when a user uploads a file, it’s divides it into smaller chunks by performing data fragment-
ation, and each data chunk is further encrypted using AES-256 (Advanced Encryption
Standard) encryption. This ensures even if data is compromised its content remains hid-
den. AES-256 is a commonly used symmetric encryption method that uses a 256-bit key
length. It is considered as highly secure and helps in protecting sensitive data (Akhil
et al., 2017), because of its large key size it offers efficient encryption mechanism and
offers key lengths varying from 128 to 256 bits, it supports a block-length of 128 bits
and key size of 128 bits,192 bits and 256 bits. AES-256 provides a significant level of
confidentiality and integrity. (Idrus et al., 2023) In application when user uploads a file,
they are prompted to sign a cryptographic message using their blockchain wallet, further
this signature is used to derive Encryption key using a Key Derivation Function (KDF)
that combines the user signed message and wallet address. This approach avoids storage
of sensitive data such as the salt or encryption key on the blockchain ensuring a secure
encryption process. Then the derived key is used for AES-256 encryption of file chunks,
making sure that only authenticated user with access to the wallet can decrypt the file.

Figure 1 illustrate the process of data fragmentation, encryption, storage and decryp-
tion. It shows how user data is fragmented into chunks, encrypted with AES-256, and
stored securely over cloud, and for decryption process user must have same wallet signa-
ture to derive access key which they used for encrypting the file order to decrypt the file.

Figure 1: Cryptographic Process

7



Breaking down large files into smaller chunks allows the system to handle them in
smaller parts, making processing and storage effective and feasible. (Liu et al., 2023)
For Integrity verification each divided chunk is hashed using SHA-256 algorithm, SHA
256 (Secure Hash Algorithm 256) is a widely used cryptographic hash function designed
for data security and authenticity of data. It provides high degree of collision resistance
making sure that different inputs return unique hash values (Devi and Jayasri, 2023).
The hash values generated for each chunk are then used to create a Merkle Tree. A
Merkle Tree is a structure that is very commonly used in blockchain and cryptography
applications to verify data integrity, each leaf node represents hash of a chunk and the
node above it are generated by hashing the combination of its children node. This multi
layered configuration produces a single hash node at the top of tree also called as root
node, the Merkle tree computes Merkle root which acts as a single point integrity verifier,
a point representing integrity of the entire file (Liu et al., 2021). Even if a slight change
made to any of the chunk will result in new Merkle root, allowing system to detect any
tempering of data, this calculated root is stored immutably on blockchain smart contract
along with file meta data including file name, timestamp of uploaded file and the cloud
stored chunk URLs.

3.3 Blockchain Integration

Integration of blockchain provides a decentralized framework for storing immutable metadata
which is used for verifying file integrity, In this system Ethereum blockchain platform is
used. ETH blockchain Smart contract are automatically executing contacts with its terms
and conditions directly written in the code whenever these conditions are met. It executes
the intended code, allowing secure management of agreements without anyone’s involve-
ment. Smart contract immutably stores the computed Merkle Root, and the URLs of
encrypted file chunks stored in cloud storage. Once this data is recorded on smart con-
tract it cannot be changed or deleted Any change to the original file stored over cloud
services will result in a completely new merkle root when compared to the one stored
over blockchain, allowing the system to detect any tampering of data.

This smart contract is written in Solidity, deployed over ETH Sapolia test network
which automated key functionalities in the system, Smart contract is designed to offer
the following functionalities in the system:

• User Registration: Initially when user visit the application for the first time,
they are required to register in order to use the application, A user can register
with their wallet by providing their name and Email address, once registered a user
profile is created over smart contract, linked to their wallet address

• Uploaded File metadata: Whenever an authenticated user upload or modify
a file, it’s computed merkle root along with upload time stamp, file name, URLs
of encrypted file chunks are stored over smart contract, in future if user want to
update a file, smart contract ensures metadata is updated for previously uploaded
files.

• Integrity Verification: The smart contract facilitates functionality to verify in-
tegrity by providing method to retrieve stored Merkle Root for comparison with a
newly computed root. This ensures that any unauthorized changes made to the file
or its chunks can be effectively detected.

8



• Periodic Hash Verification: The contract provides functionality to manage peri-
odic hash verification preferences. A user can opt in and opt out if they no longer
want their encrypted files to be monitored for integrity verification.

3.4 Cloud Storage and Chunk Management

For storing the Encrypted chunks of data over cloud, the system uses Amazon S3 ser-
vice. I selected Amazon s3 because it’s highly reliability and scalable and manages data
in a manner that provides durability, high availability, minimal latency, and enhanced
durability (M et al., 2022). File uploaded by users are divided into smaller chunks for
computing Merkle root and allows parallel processing of data. Once each chunk is en-
crypted and uploaded to s3, S3 returns the uploaded chunks URLs, which are further
stored over smart contract to facilitate integrity verification.

Whenever user wants to test integrity of their file or want to access the file, these
encrypted chunks are retrieved from cloud and decrypted using the users unique key and
are reassembled to create the original file uploaded by the user.

3.5 Periodic Integrity Verification:

Periodic integrity verification provides automated monitoring of file integrity this is im-
plemented using blockchain and some cloud technologies, user gets an option to enable or
disable periodic integrity checks on file. Their preferences are stored over smart contract,
at regular intervals a Lambda function calculates recalculates their Merkle root using
the SHA-256 hash algorithm on uploaded chunks and compare them with smart contract
stored metadata, basically it performs integrity verification similar to the web applica-
tion but it automates the process, enabling user to continuously assess their file for any
potential damage or tampering without requiring manual intervention to the system.

4 Design Specification

The system Architecture of the suggested system will be discussed in this section, the
proposed system is designed to manage secure file storage and retrieval while providing
measures to verify data integrity by using a combination of decentralized authentication,
data encryption and using blockchain smart contracts

4.1 Architectural Overview

Figure 2 illustrates the Architecture model of application, The Architecture is built over
three main components: Web Application, Blockchain (Smart Contract), and
Cloud Storage (AWS S3).

1. Web Application Is built on Angular and provides User interface to interact, it
allows the user to register, login, securely upload and mange user uploaded files, It
offers the following functionalities:

• User Authentication: The application allows the user to register and login
themselves using their meta mask wallet where their wallet address act as a
Unique identifier for authentication.

9



Figure 2: System Architecture

• File Upload/Update: Once user selects a file, the application divides it into
equal-sized chunks, encrypt them using AES 256 encryption by deriving a key
using KDF (key derivation function) and generates Merkle tree structure using
chunk SHA -256 hashes, the encrypted chunks are then uploaded to AWS S3,
and the metadata is stored over smart contract.

• File Download: User gets an option to download the uploaded file for which
encrypted chunks are fetched from AWS S3 and the encryption key is regener-
ated using the same process by taking wallet signature ensuring that only the
rightful owner of the file can access it.

• Verify Integrity: The application gives an option for all user uploaded files
to test the integrity of file that recalculated Merkle root the cloud uploaded
chunks hash and compared it with the stored Merkle root, if any tempering of
data exists then these values can never be the same, also system allows user
to enable periodic hash function which alerts the user about any potential

10



tempering of data using notification service.

2. Blockchain (Smart Contract) provides decentralized storage for maintaining
immutable records, it provides a medium to storing and managing file metadata,
by using blockchain technology system ensures immutable and temper proof storage,
it provides the following functionalities:

• Secure authentication: Stores user details like user name, email address
and wallet address and provides functionality to check if a user is registered
or not.

• Store File Metadata: Stores the Metadata like the file name, Merkle root,
cloud stored chunks URLs and file uploaded time stamp are stored.

• Integrity Verification: Provides functionality to fetch the stored data on
smart contract by providing metadata details of a file to the authenticated
user.

• Periodic Integrity Verification Status: Tracks whether a user has en-
abled periodic integrity checks to automate the testing process.

3. Cloud Storage: AWS S3 is used for storing the user uploaded file, It stored the
file fragmented encrypted chunks, it offers two basic functionalities :

• File Chunk Storage: Encrypted file chunks are stored securely over S3
bucket, with each chunk uniquely named and accessible through its URL.

• File Retrieval: Provides encrypted file chunks to theWeb Application whenever
user request for file downloads or tries to perform integrity checks.

4.2 System Workflow :

The sequence diagram shown in Figure 2 explains the flow of interactions between the
components for running the core functionalities of the system like user registration, au-
thentication, file uploads, file download and file integrity verification.

4.3 Security and Design Justification

• Encryption: File chunks generated from user uploaded file are encrypted with
AES 256(Advanced Encryption Standard) before being uploaded to public cloud.
so, to ensure data remains confidential even if the file chunks are compromised in
a data breach. By using a user-specific key for encryption the system ensures that
only the authenticated user can access the files.

• Data Integrity: To ensure the integrity of uploaded files, application uses Merkle
tree-based verification that uses blockchain immutability to ensure that any unau-
thorized modification or tampering with the file chunks is immediately detectable.

• Decentralized Metadata Storage: Storing file metadata including file details
and Merkle root on the blockchain ensures data cannot be tempered with and
provides immutable storage.

• Wallet-Based Authentication: Using blockchain wallets such as MetaMask for
authentication make sure that only the authorised owner can access the application.

11



Figure 3: Application sequence diagram

5 Implementation

The system was developed using Typescript and the web application was built on Angular
Framework, The webapp frontend user interface was built using HTML, SCSS and boot-
strap. The implementation of the project includes development of a Dapp(Decentralized
application) that integrates blockchain and cryptography to ensure secure data storage
management over cloud and ensure integrity of data.

5.1 Creation of smart contract:

Smart contract is a core component of the application, implemented in solidity and de-
ployed over ETH test network called Sapolia test network, Once the smart contract
(blocksecure.sol) is deployed it will be able to execute its functionality without the need
for any manual intervention, Remix IDE was used for creation and deployment of smart
contract. The table 2 shows the transaction information of deployed contract.

The smart contract is responsible to provide immutable storage and some key func-

12



Field Details
Transaction Hash 0xdf37330c002691e63b0e679695b7f0064649d66523d

08e92133e6b697481be4b

Status Success
Block Height 7122737
Contract Address 0x19967531119842F341D2AE1D96208908EC914BDE

Table 2: Smart Contract deployed on Sepolia Testnet

tionalities for application including user registration, storage of file meta data and data
retrieval, some of it’s key functionality are discussed in 3

Function Name Description
registerUser() Register the user by giving their name and

email,Ensures each wallet address can only register
once.

isUserRegistered() Checks if a wallet address is registered. Facilitates au-
thentication for Web App access.

uploadFileMetadata()Uploads file metadata (file name, chunk URLs, Merkle
Root).

getFileMetadata() Fetches metadata of a file using the user’s address and
file index.

updatePeriodicHash() Stores the status of periodic integrity verifica-
tion(Enabled/Disabled).

Table 3: Functions defined in Smart Contract.

5.2 Data Transformation (Encryption and hashing of files):

For the calculation of Merke root representing the complete dataset, each file uploaded
by the user is split into smaller chunks by performing data fragmentation after that
data is encrypted using AES 256 in Cipher Block Chaining (CBC) mode and to carry
out encryption, Node.js library CryptoJS is used. The process involved calculation of
encryption key, key is generated from the user blockchain wallet signature using the PB-
KDF2 (Password-Based Key Derivation Function 2)and using this derived encryption key
, IV (Initialization Vector) the AES algorithm encrypts each data chunk, for encryption
process node library CryptoJS is used.

Post encryption each file is hashed using SHA-256 (Secure Hash Algorithm). Different
input generates unique hash that is completely non-duplicate by any other input of data,
Once all computations are complete user can view the calculated hash for each chunk
along with the encrypted data and can also see the computed merkle root of chunk
hashes as showing in Figure 4 and Figure 5.

13



Figure 4: AWS S3 Bucket storing user uploaded file chunks

Figure 5: Page to view encrypted chunk data.

5.3 Integrating Amazon S3

Integration of AWS S3 with web application was carried out using AWS SDK. A bucket
named ‘blockstore-data’ was created for storing encrypted file chunks, Figure 6. shows the
S3 dashboard with uploaded content, once user uploads the file the generated encrypted
chunks are stored to this bucket. Parameters like the region name (us-east-1) and bucket
name were configured in the application in environment file and a IAM role was created
to access the S3 service using access key ID and secret access key.

14



Figure 6: AWS S3 Bucket storing user uploaded file chunks

6 Evaluation

The Evaluation of the web application was conducted to measure its performance in terms
of security and integrity of data. These performance analyses align with the research
objectives and provides detail on how system solves the issues related to cloud storage
security.

6.1 Experiment 1:

To maintain data integrity with the use of Merkle Trees and the immutable
storage of Merkle Roots over a blockchain network for ensuring tamper-proof
data storage.

The main objective of this research is to verify the integrity of user uploaded data
under cloud environment, The web application solves this issue with the help of Merkle
tree hash calculations, the evaluation is based on testing scenario when integrity of data
is violated or uploaded data is tempered with, the system demonstrates this results by
performing comparison between the newly calculated Merkle root and the one stored on
blockchain.

The system was able to identify the violation of data successfully, To achieve this
10 diffrent files were uploaded from a user account to cloud (AWS S3) and 4 of them
were manually altered to demonstrate a data breach or data tempering attempt by at-
tacker.Results from web application are shown in Figure 7, the tempering of data were
detected in real time for all altered files.

. . .

6.2 Experiment 2:

To address data privacy issues of cloud storage solutions by implementing and
evaluating wallet based encryption and deception method.

15



Figure 7: Page to view uploaded file integrity.

To Evaluate the encryption and decryption process for different size files, a test was
performed to evaluate the effect of file size over encryption. Since we need to fragment
the data to calculate SHA Merkle root hash, I setup the size of chunk to be 1MB. The
table 4 shows the evaluation results and result are plotted in graph that demonstrates
encryption and decryption times for different file sizes shown in Figure 8

The result from this experiment depicts a direct relation between the size file and
both encryption and decryption times such as :

• As the size of file increases both encryption and decryption times increase linearly
.

• encrypting a 1MB file took around 110ms, whereas a 100MB file requires over 11.4
seconds.

• Decryption times are slightly faster than encryption times across all file sizes, with
average time of 114ms for encryption of and 101ms for decryption.

• System works uniformly even with 100mb file with around 100 chunks, this shows
that system demonstrates scalability for handling larger files, making it suitable for
real world application.

6.3 Experiment 3

To assess the automated periodic integrity verification system and measure
its efficacy in detecting tampering of data stored over cloud (AWS S3).

16



File Size (MB) Encryption Time (ms) Decryption Time (ms)
1 110.34 106.11
5 775.97 656.77
10 1586.50 1367.87
50 5898.43 5345.73
100 11428.35 10017.34

Table 4: Encryption and Decryption Time (MS) / File Sizes(MB)

Figure 8: Encryption/Decryption Time for Different Size File.

Figure 9: Periodic integrity Verification

To achieve this a files was uploaded from a user’s account to cloud (AWS S3) was
manually altered to demonstrate a data breach or data tempering attempt by attacker.To
assess the system, A file tampering occurs and observe the system’s response in notifying
the user. Lambda function results are shown in Figure 9

17



6.4 Discussion

The findings of the research highlights through the experiments conducted that integrat-
ing blockchain technology, cryptographic techniques, and cloud storage has a potential to
address the challenges of security, integrity of cloud storage. However, these experiments
also shows the opportunities for improvement.

One of the findings based on Merkle Tree based Integrity Verification was that the
system was able to detect the data tampering. The tampering is detected by comparing
the recalculated Merkle root with the previous stored root on the blockchain. This
guarantees the Merkle tree structures integrity consistent with findings in related work,
such as (Liu et al., 2023). Immutability is a strength of blockchain that ensures instant
detection of tampered data.

The second experiment that was conducted on wallet based encryption and decryp-
tion performance. The application’s use of AES-256 encryption aligns with prior studies
emphasizing its security, such as (Idrus et al., 2023). However, the encryption and de-
cryption times increases with increase in file size. Decryption time is slightly faster that
shows efficient key management. However, the encryption process has computational
overhead that could be a bottleneck for data operations.

Another experiment on periodic integrity verification automated tampering detection
and sent notifications for the same. The real time alerts enhances the user experience
and brings in the trust. The use of AWS Lambda functions gives the efficiency in cost
execution. However, having periodic triggers instead of continuous monitoring can result
in delays.

There are few limitations observed throughout the experiments that are as follows:

• As Ethereum’s transaction cost is high, it poses a challenge to keep the scalable
blockchain. This limitation impacts the feasibility of scaling the system for high-
frequency metadata updates, as highlighted in related studies, such as (Rouhani
and Deters, 2018).

• The dependency on centralized cloud services (AWS S3) for storage partially con-
tradicts the decentralized ethos of the system, might create single point of failure.

• Performance overheads as discussed above in experiments too, large files creates
high-loads on data fragmentation, encryption and Merkle tree. These overheads
could become significant in high load environments.

The improvements that can make application better could be exploring alternative
blockchains to reduce costs and increasing the throughput. One of the other improvement
can be real time integrity checks that is based on implementing integrity verification us-
ing services like AWS EventBridge for immediate responses. Incorporating decentralized
storage solution could further decrease the dependency on centralized cloud providers.
Bettering the user experience by providing more intuitive interfaces and improve engage-
ment for periodic verification and displaying integrity logs could be another improvement.

18



7 Conclusion and Future Work

Nowadays, there are lot of data breaches, leading a threat to security and integrity of a
critical information. This left me wondering about how can blockchain technology can
ensure data encryption, security and integrity of data for cloud storage systems. Driven
by this concern, my primary goal of the research became to address the security and
integrity challenges of centralized cloud storage through blockchains technology. There
are techniques such as data fragmentation, data encryption, automated integrity that
could address the challenges.

The step by step method of research included was firstly creating a secured framework
for cloud data storage by integrating blockchain technology with AES-256 encryption and
SHA-256 hashing. Second step was about the integrity where the Merkle Tree concept
was used. Next step was about addressing the data privacy. Data privacy was handled
by authentication methods. There was an implementation of detection of any tampering
with real-time notifications.

The research question successfully achieved the objectives and key findings were:

• The enhanced security due to implementation of AES-256 encryption ans SHA-256
hashing.

• To ensure the integrity of uploaded files, application uses Merkle tree-based verifica-
tion that uses blockchain immutability to ensure that any unauthorized modification
or tampering with the file chunks is immediately detectable.

• The use of blockchain technology leads to more transparency. A tamper proof mech-
anism was created by storing merkle roots in Ethereal blockchain for verification of
data stored in S3.

• The integration of smart contracts and AWS Lambda helped in testing the file
integrity periodically.

While the framework shows strong potential for improving the data security and
integrity but there are few limitations such as high transaction costs and scalability
issues of Ethereum and some performance issues data fragmentation and encryption for
large datasets. There are future works that can be included as follows:

• Find an alternative blockchain that can lower the transactional costs and higher
throughput.

• Developing a more efficient data fragmentation and encryption for large datasets

References

Akhil, K. M., Kumar, M. P. and Pushpa, B. R. (2017). Enhanced cloud data security using
aes algorithm, 2017 International Conference on Intelligent Computing and Control
(I2C2), pp. 1–5.

Almadani, M. S. and Hussain, F. K. (2023). Implementing a secure blockchain-based
wallet system with multi-factor authentication, 2023 IEEE International Conference
on e-Business Engineering (ICEBE), pp. 23–30.

19



Barona, R. and Anita, E. A. M. (2017). A survey on data breach challenges in cloud
computing security: Issues and threats, 2017 International Conference on Circuit,
Power and Computing Technologies (ICCPCT), pp. 1–8.

Castro-Medina, F., Rodŕıguez-Mazahua, L., Abud-Figueroa, M. A., Romero-Torres, C.,
Reyes-Hernández, L. A. and Alor-Hernández, G. (2019). Application of data fragment-
ation and replication methods in the cloud: a review, 2019 International Conference
on Electronics, Communications and Computers (CONIELECOMP), pp. 47–54.

Devi, S. S. and Jayasri, K. (2023). Esha-256: An enhanced secure cryptographic hash
algorithm for information security, 2023 2nd International Conference on Automation,
Computing and Renewable Systems (ICACRS), pp. 952–958.

Feng, Y. and Li, M. (2022). Data integrity and security in cloud storage: Challenges and
emerging solutions, IEEE Transactions on Cloud Computing 10(3): 809–822.

Goswami, P., Faujdar, N., Debnath, S. et al. (2024). Investigation on storage level data
integrity strategies in cloud computing: classification, security obstructions, challenges
and vulnerability, Journal of Cloud Computing 13(45).
URL: https://doi.org/10.1186/s13677-024-00605-z

Idrus, M. A. Z. B., Rahman, F. D. A., Khalifa, O. O. and Yusoff, N. M. (2023).
Blockchain-based security for cloud data storage, 2023 IEEE 9th International Confer-
ence on Smart Instrumentation, Measurement and Applications (ICSIMA), pp. 73–77.

Jha, S., Modak, A., Pise, R. and Patil, S. (2023). Certifier dapp - decentralized and
secured certification system using blockchain, 2023 IEEE International Conference on
Blockchain and Distributed Systems Security (ICBDS), pp. 1–6.

Liu, H., Luo, X., Liu, H. and Xia, X. (2021). Merkle tree: A fundamental component
of blockchains, 2021 International Conference on Electronic Information Engineering
and Computer Science (EIECS), pp. 556–561.

Liu, Z., Ren, L., Feng, Y., Wang, S. and Wei, J. (2023). Data integrity audit scheme
based on quad merkle tree and blockchain, IEEE Access 11: 59263–59273.

M, P. H., Shankaraiah, S. and R, S. (2022). Patient health information framework using
aws s3 service, 2022 IEEE 2nd Mysore Sub Section International Conference (Mysuru-
Con), pp. 1–5.

Neto, N. N., Madnick, S., de Paula, A. M. G. and Borges, N. M. (2020). A case study of
the capital one data breach, Working Paper CISL# 2020-07, Cybersecurity Interdis-
ciplinary Systems Laboratory (CISL), Massachusetts Institute of Technology.
URL: https://web.mit.edu/smadnick/www/wp/2020-07.pdf

Rouhani, S. and Deters, R. (2018). Performance analysis of ethereum transactions in
private blockchain, 2017 8th IEEE International Conference on Software Engineering
and Service Science (ICSESS), pp. 70–74.

Sari, L. and Sipos, M. (2019). Filetribe: Blockchain-based secure file sharing on ipfs,
European Wireless 2019; 25th European Wireless Conference, pp. 1–6.

20



Shakor, M. Y., Khaleel, M. I., Safran, M., Alfarhood, S. and Zhu, M. (2024). Dynamic aes
encryption and blockchain key management: A novel solution for cloud data security,
IEEE Access 12: 26334–26343.

Sharma, P., Jindal, R. and Borah, M. D. (2019). Blockchain-based integrity protection
system for cloud storage, 2019 4th Technology Innovation Management and Engineering
Science International Conference (TIMES-iCON), pp. 1–5.

21


	Introduction
	Research Motivation:
	Project Specification
	Research questions:
	Research objectives:
	Research Contribution:

	Related Work
	Ensuring Data Integrity in Cloud Computing
	Blockchain and Cryptography for Secure Cloud Storage
	Authentication With Blockchain
	Research Gap Analysis

	Methodology
	User Interface and Web Application
	Data Encryption and Integrity Verification
	Blockchain Integration
	Cloud Storage and Chunk Management
	Periodic Integrity Verification:

	Design Specification
	Architectural Overview
	System Workflow :
	Security and Design Justification

	Implementation
	Creation of smart contract: 
	Data Transformation (Encryption and hashing of files): 
	Integrating Amazon S3

	Evaluation
	Experiment 1:
	Experiment 2:
	Experiment 3
	Discussion

	Conclusion and Future Work

