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Abstract 

 

Real time frameworks of the gaming industry are persistent in challenges: latency, 

bandwidth limitations, scale and high costs. These issues mess up the user experience and 

slow down the game developer’s efficiency, hence making them to have need of 

innovative solutions. This research considers these challenges and addresses them by 

leveraging hybrid cloud computing which integrates local, edge, and cloud resources. This 

study is motivated by the need for scalable, cost-efficient gaming platform that can offer i 

high performance without relying too much on localized hardware. In this study, a hybrid 

cloud gaming model is proposed, whereby the workload is partitioned, and the gaming 

clusters are placed in an edge cloud to achieve lower latency, faster server response times, 

and more efficient resource utilization. To evaluate the model, latency, frame rate, and 

bandwidth usage performance metrics in various configurations were analysed, showing 

significant improvements over local only and cloud only frameworks, specially reducing 

latency by more than 55% and FPS (frame rate per second) jitter rate is brought close to 

1% which means smoother visual performance. Also, bandwidth usage was minimal as 

the hybrid consumed only 24.6 KB/s while cloud used only 371.2 KB/s. The results 

suggest that hybrid cloud computing not only improves game efficiency but also 

responded to current gaming industry's trend of scalability and user centricity. It is 

expected that in real-world applications, this model provides a cost effective and 

extensible solution for solving gaming performance issues faced by game developers, 

gamers, and cloud service providers. But new work is required to refine it for scalability 

and investigate how to integrate with numerous emerging technologies to spur 

sustainability in the gaming industry. 
 

1 Introduction 
 

Over the past decade, the gaming industry has expanded exponentially with the 

development of technology, increased ease of access and an ever-growing international 

audience. With video games ever more sophisticated, high-resolution graphics, real-time 

interactivity and immersive gameplay, robust computational infrastructure is required. Yet, this 

growth has also uncovered key issues in the real-time gaming framework: latency, bandwidth 

constraints, scalability bottlenecks and rising operational costs. Not only do these issues 

degrade the user experience, but they also serve as a barrier to game developers and service 

providers trying to innovate and develop in accordance with consumer’s expectations.  And 

then there’s the growing group of players who’d like to play graphically intense, demanding 

games, but can’t because of inadequate hardware and poor network conditions. These users are 

typically constrained by software restriction/old system issues or network latency and are 

having a hard time enjoying the full spectrum of modern gaming experiences. They can’t 

choose local gaming because their hardware doesn’t support high performance games, and they 
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can’t access cloud gaming because of their network issues. That creates a substantial barrier 

between casual and high-end gamers, and many aren’t pleased at being left behind the latest 

gaming innovations. This is important because as the gaming industry continues to grow, so 

too will these challenges and there is a need to overcome them if the broader adoption of 

tomorrow’s technologies is to take hold and continue to grow. As such, gaming frameworks 

have traditionally relied heavily on local hardware for concepts. However, while low latency 

of real-time gaming can be achieved with this approach, hardware constraints, high costs and 

limited scalability make this approach problematic. However, compared to cloud gaming, it 

has evolved as an answer to the real situation where it can move intensive computation off 

local hardware. Nevertheless, cloud gaming brings its own set of problems in terms of latency 

and bandwidth consumption that are damaging for the smooth operation of real time games. 

This duality points to the need for sophisticated solutions that can make the most of the local 

computing and at the same time mitigate the negative aspects of it, of a cloud computing. 

 

1.1 Research Question 

This results in the following research question: 

 

 How can hybrid cloud computing methodologies be effectively applied to optimise 

gaming performance, mitigate latency challenges, and benefit stakeholders such as 

game developers, gamers, cloud service providers, and hardware manufacturers within 

the gaming industry? 

 

By bringing in local, edge, and cloud resources into a consolidated form, hybrid cloud 

computing appears to be a promising approach. Hybrid cloud solutions mitigate many issues 

faced by traditional and cloud only gaming systems by onboarding latency sensitive tasks to 

the local or network edge and remaining one step towards a peak or delegating to cloud servers 

when time sensitive activity occurs. While there is potential in promoting hybrid cloud 

adoption for gaming, research exploring the application of hybrid cloud strategies in gaming is 

limited; there is little research regarding the design and implementation of such models. 

 

1.2 Research Objectives 

 The objectives of this research are as follows: 

 

1. Investigate the Current State of the Art: Review existing gaming frameworks and 

hybrid cloud methodologies to understand the gaps to fill, and the opportunities 

available. 

2. Design a Hybrid Cloud Architecture: Design a model for balancing computation 

tasks between local edge, and cloud. 

3. Implement Workload Partitioning and Edge Computing: Use strategies to achieve 

low latency operations as well as an efficient resource utilization. 

4. Evaluate the Hybrid Cloud Model: Simulate in real world scenarios and carry the 

appropriate feedback to measure its performance in terms of latency and scalability, 

cost, and the user satisfaction. 
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This research makes several significant contributions to the scientific and practical domains: 

 

1. For Game Developers: A framework that allows game development in an industry 

that is intensely pedantic about quality, and creates scalable, high-performance games 

that are entirely non reliant on expensive local hardware. 

2. For Gamers: Reduced latency, better responsiveness and an improved gaming 

experience. 

3. For Cloud Service Providers (CSPs): Insights about hybrid (multi-granularity) 

deployment models aimed at maximizing resource utilization while minimizing 

operational costs. 

4. For Hardware Manufacturers: Tools for designing devices for hybrid gaming 

environments. 

Nevertheless, this work admits some limitations, such as dependency on cloud infrastructure 

costs, and challenges of edge deployment, which need further study in the future. 

The structure of this report is as follows: In the next section of this paper, a review of 

related literature is discussed in terms of existing gaming frameworks, as well as hybrid cloud 

computing applications and state of the art methodologies. Finally, specifications and research 

methodology are detailed with the experimental setup, tools and the evaluation metrics. The 

design and implementation of the hybrid cloud gaming model are then discussed. The 

evaluation results are finally presented, and then a conclusion is provided discussing main 

findings, contributions, and future research directions. 

 

2 Related Work 
 

With so much happening in the gaming industry and it being moved to the cloud, there are both 

opportunities and challenges. Hybrid cloud computing in gaming is examined in this review 

with respect to latency, cost efficiency, scalability as well as user experience. Finally, each 

thematic subsection critically discusses key research works. 

2.1 Hybrid Cloud Computing in Gaming 

 Hybrid cloud computing accesses local, edge and cloud resources to achieve the best 

performance. In Cai et al. (2014), they introduced the concept of "Gaming as a Service," and 

how cloud gaming can decrease hardware costs by moving computation to remote servers. 

Despite that, the study found that latency and bandwidth are the biggest challenges. Shea et al. 

(2013) also early offered an architectural analysis of cloud gaming by discussing performance 

trade-offs. 

Building on these ideas, Chen et al. (2019) proposed a cost-efficient cloud gaming 

system at scale for dynamic task partition between local and cloud resources to maximize 

performance. In addition, Xu et al. (2018) studied cost efficiency and scalability of cheap cloud 

gaming systems. Zhang et al. (2019) further extended these models to study the potential of 

using mobile edge computing to enhance cloud gaming experiences such as reducing end to 

end delay and instant responsiveness. Overall, their work further expands related work by Zhou 

et al. (2022) on dynamic workload balancing in hybrid systems that also need to achieve both 

cost and latency goals. 

 

Conclusion: Solutions of integrating local edge and cloud computing have many advantages in 

performance optimization and cost reduction. Nevertheless, latency and scalability threaten to 

thwart these benefits from being fully utilized. 
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2.2 Latency Mitigation Techniques 

 Latency is arguably one of the most important kryptonite to the success of a real time gaming 

product, impacting responsiveness and user experience. However, studies have repeatedly 

stressed the necessity of working on latency to avoid any game lag.   

  Su et al. (2024) showed that using edge computing instead of the cloud to perform 

computationally intensive tasks could reduce latency by large factors. However, their 

experiments resulted in about 30–50% reduction in end-to-end latency over traditional cloud 

only solutions. The improvement is a result of reducing physical distance that data has to travel 

between the user and the processing server, leading to faster response.   

  Upon this, Jones and Smith (2020) proposed an integrated approach of combining local, 

edge and cloud resources. In the model, small latency tasks are processed at the edge i.e., close 

to the user and larger task are processed in the cloud. This hybrid strategy reduced average 

latency by 40 per cent and allowed for better resource allocation, they found. In both 

computational load and responsiveness requirement, this approach is very effective and 

presents a scalable model for modern gaming systems.   

  In Lin and Shen (2015, 2016), they brought up "Cloud Fog", a concept which combines 

fog and cloud computing resources to fill the latency hole provided by gaming. Based on their 

experiments exploiting fog computing to provide localized processing for massive multiplayer 

online games (MMOGs) where Quality of Experience (QoE) is sensitive to latency, they 

achieved an improvement of 25% for that which requires low latency. As evidence, player 

actions in fog enabled environments processed in under 20 ms (ms) vs. 35-50 ms in cloud only 

setups. Additionally, latency challenges due to network variability are addressed using adaptive 

bitrate streaming techniques. In Aguilar-Armijo (2021), the researchers used multi access edge 

computing (MEC) to dynamically adjust the quality of video streaming in order to mitigate 

latency spikes and achieve stable performance. Similarly, Peña-Pulla et al. (2021) built a 

framework to assess the capacity indicators such as latency and throughput of the wireless 

network. In particular they found that latency optimization techniques could help improve the 

QoE experienced by gamers by 20-30 percent in unstable network conditions.  
  

Conclusion: Hybrid systems are particularly suited to latency mitigation in edge computing, 

fog integration and adaptive streaming. For instance, edge processing can reduce latency by up 

to 50% and adaptive strategies can generate QoE improvements between 25 and 30 percent. 

Existing future research topics include refining task distribution algorithms, exploiting 

predictive models and machine learning to further develop responsiveness and gaming 

performance.   

2.3 Cost Optimization and Scalability 

 Nevertheless, gaming platform stays need to be scalable and cost effective to guarantee 

longevity and adaptability. Due to fluctuating user demands, efficient resource management is 

important to ensure operations costs are reduced while meeting user demands and hybrid cloud 

computing is a promising way addressing these challenges. 
  White et al. (2019) discussed the financial benefits of cloud gaming, and ways by which 

the initial hardware investment required by users could be significantly reduced. The lowering 

of the entry barriers is by offloading heavy computational tasks to the servers on the cloud, 

thereby reducing the power need for less powerful devices to access high quality gaming 

experiences. At the same time, they also noted the scalability of resources in cloud only 

architectures is a hard problem to solve. For example, the demand spike may result in resource 

overloading during peak times as a way to increase system performance and doing so incurs a 

cost, leading to underutilization of resources in low demand times and a consequent rise in 

costs. 
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 To cope with these difficulties, Green and Brown (2021) presented a model that splits the task 

among local and cloud resources. In their model, local infrastructure runs the baseline 

workloads to provide steady performance and to reduce reliance on external resources, whilst 

cloud resources are scaled based on demands. Such strategy based on strengths of local and 

cloud computing allows a cost-efficient approach and avoids limitations of a cloud only system. 

For illustration purposes, their model showed that it is possible to reduce operational costs due 

to peak load utilising cloud services within the boundaries of scalability and without 

overprovisioning.In Chen et al. (2018) cognitive edge computing was explored, with focus on 

dynamic resource allocation prepared to accommodate workload needs. This approach uses 

customer need prediction and adjusts resource allocation to react to customers in real time, 

reducing idle capacity and overall resource utilization. Rahman et al. (2022) extended these 

principles to hybrid cloud gaming and achieve a 30% cost reduction over cloud only systems. 

Allocation of latency critical tasks to local or edge resources, and offloading computationally 

expensive operations to scalable cloud infrastructure lead to this improvement by maximizing 

resource utilization. 

Xu et al. (2018) and Yousefpour et al. (2019) studied the principle of dynamic 

scalability in hybrid systems. Xu et al. presented predictive scaling where algorithms use past 

and real time user data to forecast demand fluctuations and allocate resources in advance. With 

this approach you still have to worry about resource shortages when demand is high, but also 

don’t suffer from over provisioning plus there’s a reduction in latency. Yousefpour et al. 

mentioned workload balancing, distributing tasks dynamically across local, edge and cloud 

resources to achieve performance and scalability optimization. Research showed that bundling 

these approaches speeded up response times by 20% and reduced server load during peak use. 

 

Conclusion: the hybrid cloud models combine use of resources at both sides – the local server 

somewhere, and the cloud, all to reduce the costs and improve scalability compared to cloud 

only models. These models use cloud for demand spikes and using local resource for baseline 

loads to optimize resource utilization and reduce operational costs up to 30%. Workload 

balancing and predictive scaling keep the performance consistent faced with fluctuating user 

demand. Despite that they hold the potential to allow us to fully realize these benefits, robust 

resource management strategies are essential. 

 

2.4 Optimizing Cloud Gaming Experience 

 Gaming platforms are built on the backbone of user experience, specifically it impacts user 

satisfaction and retention. To deliver high quality gameplay, such a challenge as network 

variability, latency, and resource limits have to be addressed to provide consistent performance 

and responsiveness. 

  Taking advantage of fluctuating network conditions, Wang et al. (2017) showed that 

adaptive bitrate streaming can still offer good Quality of Experience (QoE). Adaptive 

techniques improve QoE metrics such as resolution consistency and buffering frequency by 20 

to 35% by dynamically adapting to real time bandwidth availability during video streams. Since 

the network conditions become worse, this approach provided uninterrupted gameplay while 

maintaining a balance between visual fidelity and smooth performance. 

  Slivar et al (2015, 2016) investigated video encoding strategies for QoE optimization 

and focused on the necessity for game specific encoding parameters. They also found that 

action games required higher frame rates to diminish the motion lag, whereas strategy games 

require higher resolution for detail clarity. Game type-based encoding parameters tuning 
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improves QoE by up to 25% while reducing latency by 30% in fast moving games, greatly 

enhancing player immersion. 

  Rohith et al. (2021) investigated the integration of edge devices into real time gaming 

environments for responsiveness. For example, their study also found that edge computing 

could reduce processing latency by 40 percent versus only cloud architectures during times 

when demand for access is high. By offloading latency sensitive tasks to edge servers, it   

managed to keep the interactions smooth and the server congestion impact minimal, and thus 

maximize overall user satisfaction. 

  Carrascosa and Bellalta (2020) studied the network requirements of Google Stadia and 

found they require stable bandwidths from 20 to 30 Mbps for 1080p gaming and over 35 Mbps 

for 4K. These findings indicate that when bandwidth drops below these thresholds, a reduction 

of QoE of 15-20% indicates the need for other adaptive strategies and efficient resource 

management in order to preserve QoE across different network conditions. 

  In Zhao et al. (2023), a hybrid gaming architecture which integrates performance, task 

distribution (local, edge and cloud), and user experience was proposed into a unified model. 

With their study, they got a 30-50% in QoE versus traditional setups. Optimal task allocation 

achieved this, permitting hybrid systems to exhibit low latency and have high computational 

performance. 
  

Conclusion: Adaptive streaming, resource management and game specific encoding strategies 

have to be combined in order to optimize user experience. Adaptive bitrate streaming increases 

QoE by up to 20-35%, while tailored encoding has the same effect by up to 25%. To improve 

QoE by 30% − 50%, hybrid models use local, edge and cloud resources to provide seamless, 

responsive gameplay. There is future work to explore how to do AI driven resource 

optimization and predictive algorithms to further refine these strategies. 

 

2.5 Dynamic Scalability in Cloud Gaming 

 Highly reliable scalability solutions are needed for fluctuating user demands. In the context of 

cloud gaming, Lee and Park (2019) presented dynamic load balancing algorithms that 

dynamically change workloads to guarantee performance consistency during peak traffic 

bursts. Kim et al. (2021) stressed the importance of judicious resource allocation between the 

local and cloud systems and clarified that system reliability and responsiveness are dependent 

on matching user loads across these environments. 

  In hybrid architectures, Al-Turki et al. (2023) propose predictive scaling algorithms 

that proactive allocate resources to tackle demand peaks. The system responsiveness 

improvements and resource bottleneck reduction they achieved during peak periods compared 

to prior approaches were also impressive. The study of Loreto and Romano (2014) was built 

upon a couple of foundational frameworks for scaling interactive gaming applications but 

based on real time communication technologies that help scalability and user experience in 

dynamic environments. 
  

Conclusion: The performance dynamic of hybrid cloud gaming systems requires them to be 

dynamic scalable so as to attain constant performance at varying demands. To achieve this 

scalability, predictive scaling and load balancing algorithms are essential to keep both resource 

efficiency and reliability. Future research should improve these techniques, exploring how they 

can be optimized further to be applied to hybrid structures, and potentially machine (or AI) 

learning based for even greater predictive accuracy and resource utilization. 
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3 Research Methodology 
 

The methodology section details the procedures, equipment, and techniques used to evaluate 

the performance of the Flappy Bird game under three different architectural setups: cloud 

hosted infrastructure, local machine execution as well as a hybrid edge computing model. The 

purpose of this study was to examine the consequences of infrastructure choice on latency, 

frame rate per second (FPS), and bandwidth utilization. Everything in the experimental setup 

itself, as well as data analysis, is precisely the kind of thing that another researcher can 

reproduce. 

3.1 Research Procedure 

3.1.1 Experimental Design 

The research involved three architectural setups to evaluate performance: 

 

• Local Machine: All game assets, logic, and storage were run and managed locally. 

• Cloud-Based: The game was fully hosted on AWS EC2 instance running windows. 

Both computational backend and game execution environment were provided by this 

instance. 

• Hybrid Edge Computing Model: 

o Edge: AWS CloudFront had cached static assets for faster access. 

o Cloud: DynamoDB was used to store player scores. 

o Local: The local machine served as a computation intensive game rendering 

machine. 

The controlled conditions of each setup were tested to guarantee consistency of gameplay and 

network configurations throughout the game. 

3.1.2 Experimental Scenarios 

• Gameplay Session: Each setup was played in five 10-minute sessions. The gameplay 

mechanics remained the same for each session. 

• Simulated Network Variability: Bandwidth, latency and jitter were simulated in 

cloud and hybrid setups using Mininet and mimicking real world network conditions. 

• Data Logging: Prometheus was used to collect the performance metrics (latency, FPS, 

and bandwidth usage) whilst in gameplay. 

3.2 Materials and Equipment 

3.2.1 Hardware 

1.  Local Machine: A laptop with the following specifications: 

• Processor: Intel Core i7-9750H 

• RAM: 16GB DDR4 

• GPU: NVIDIA GTX 1650 

 

2. Cloud Instance: An AWS EC2 t2.xlarge type instance 

3.2.2 Software 

1. Game Framework: 
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• Pygame: For consistent execution across architectures developed the Flappy Bird 

game. 

• Python Libraries: Concurrency is managed by asyncio, network monitoring by 

psutil, AWS integration by boto3, and latency testing is handled by aiohttp. 

 

2. Cloud Services: 

• AWS CloudFront: Served static game assets on the edge. 

• AWS DynamoDB: Player scores and timestamps stored. 

 

3. Performance Monitoring: 

• Prometheus: Collected real time metrics such as FPS, latency and bandwidth 

usage. 

• Grafana: Performance data from Prometheus visualized. 

• WMI exporter: (Windows Management Instrumentation) is a powerful tool that 

exposes system metrics for Prometheus to scrape. 

 

4. Statistical Tools:  

• Pandas: For data analysis. 

• Matplotlib: For visualization in form of graphs to compare. 

3.3 Data Collection 

3.3.1 Data Sources 

• Network Latency: aiohttp was used to send HTTP requests to the target endpoint 

(http://localhost:8000/metrics) to measure that. 

• FPS: Prometheus metric of a logged in real time using the Pygame clock and stored. 

• Bandwidth Usage: Using psutil, monitoring the bytes sent, received over the 

network. 

3.3.2 Measurement Procedure 

• Latency: Additionally, in gameplay, round-trip time (RTT) was logged for HTTP 

requests at intervals of 5 seconds. 

• FPS: Updated for each frame and displayed on the screen. 

• Bandwidth: Bytes sent + bytes received per second, and calculated as the difference 

in bytes sent/received every second, converted to KB/s. 

 

3.4 From Data Collection to Result 

3.4.1 Setup Initialization 

• Prompted Prometheus running on a machine to monitor metrics. 

• Hybrid and Cloud setups using AWS CloudFront and DynamoDB integrated together. 

• Network variability testing with calibrated Mininet. 

3.4.2 Gameplay Sessions 

• To ensure that the gameplay is uniform in the three setups, identical sessions on the 

three setups were played. 

• Track recorded player actions, score saving event and gameplay response for analysis. 
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3.4.3 Metric Logging 

• Latency, FPS and bandwidth usage were measured in real time by Prometheus. 

• exported logs to CSV and further process them. 

3.4.4 Statistical Processing 

• cleaned and pre-processed raw data for analysis. 

• conducted statistical tests to determine what difference (if any) there is between setups. 

3.4.5 Results Compilation 

• metrics and figures were compiled in statistical and numerical summaries, as well as 

visual summaries. 

• Presented and highlighted insights into the efficiency of the hybrid computing model. 

3.5 Evaluation Criteria 
 

The performance of each setup was evaluated using poor network conditions based on: 

1. Network Latency: Smaller numbers represented lower latency with faster network 

response on the network. 

2. FPS Consistency (Jitter): Smooth gameplay was a must and higher FPS was good. 

3. Bandwidth Usage: A lower bandwidth consumption was ideal signalling a cost-

efficient network utilization. 

 

This methodology gives the study the power to follow its results are reproducible and 

verifiable, so other researchers can reconstruct and verify the experiments. Measurable 

improvement in reducing latency and decreasing bandwidth usage, yet maintaining a high 

frame rate, was demonstrated using the hybrid edge computing model. 

 

4 Design Specification 

4.1 Architecture Setups 

 This section outlines the design specifications for the proposed system, including the techniques, 

architecture, and framework employed to implement the experiment and evaluate the performance 

of the Flappy Bird game under different infrastructure setups: Cloud hosted setup, hybrid edge 

computing, and local machine execution. It gives a detailed description of the design decisions, 

algorithms and models at the heart of the experiment, including the requirements and performance 

goals. 

4.1.1 Local Machine Execution 

In the local machine execution setup, entire game is hosted and run on a single machine. Local 

management of all aspects of the game, such as assets (images, sounds, game logic) is 

considered. This setup has no external resources involved, everything from the game's 

rendering to its logic depends only on machine's internal resources. The local system’s 

hardware will directly impact the game’s performance, whether that’s frame rate, 

responsiveness or everything else. 

This setup has very little requirements. Flappy Bird is a relatively lightweight game, so 

the local computer needs to have enough processing power to handle the game’s logic and 

rendering, but since most of these systems don’t have anything fancy, they should be able to 

run Flappy Bird. The game should also need support for some local storage just so it can store 
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game assets, such as static images, sound files, and so on. There are system metrics monitoring 

tools like Prometheus or psutil that you need to watch during game watching for performance, 

such as monitoring FPS (Frames Per Second) and latency to judge how cool the game was 

during the game. 

   The local execution setup is used as baseline comparison to other infrastructure setups. 

It has the good side of no external network or cloud services to rely on, meaning low latency. 

In the performance evaluation, it concentrates on how the game plays under these conditions—

how well it runs and how it uses particularly system resources like CPU and RAM to hold 

game performance consistently through gameplay. 

4.1.2 Cloud-Based Setup 

The static content of the game is handled remotely on Amazon EC2 (Elastic Compute Cloud), 

and dynamic game logic is also hosted remotely in the cloud-based setup. This architecture 

processes and stores game logic, as well dynamic content, in the EC2 instance, which is the 

central server of the game. The external content delivery network here doesn’t bring 

CloudFront, since all the assets such as images, sounds, and backgrounds are served directly 

from the EC2 instance. 

We run the game’s backend on an EC2 instance which is responsible for processing all 

the game’s business logic, player interactions, score tracking and session management. This 

instance stores all the assets needed to play and later on delivers them to the players when 

needed. Player data (scores and progress) is also handled through DynamoDB, AWS's NoSQL 

database of choice for quickly scaling without sacrificing low latency access to the game's data. 

DynamoDB stores dynamic data (e.g. player scores, game levels, and session states) and the 

EC2 instance runs game logic (e.g. physics of the bird, when collision occurs, and when to 

spawn objects). 

In the course of this setup, there will be an AWS EC2 instance that is the game’s Host 

that will handle backend and serves static assets. The game logic was also able to run 

comfortably on the EC2 instance, as well as serve assets without overloading. Since any CDN 

(Content-Delivery-network) is not being used, the static assets will be served directly from 

EC2 instance, so the instance will need to have enough storage for static assets. The game 

stores dynamic game data such as scores, progress and session states, using AWS DynamoDB. 

It’s important to have a stable and fast internet connection, in order to let the client get assets 

and game state information from the EC2 instance, without being too much latency. In addition 

to direct impact on the responsiveness of the game, the network latency is also a big concern. 

        Figure 1: Cloud Gaming Architecture 
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Figure 2: Hybrid Gaming Architecture 

This cloud-based architecture performance goals are to assess how the cloud impacts 

gameplay. For example, it investigates the cloud latency introduced, the FPS to decide if 

network interactions hurt the game smoothness, and the bandwidth usage to monitor how much 

data are transferred between local machine and the cloud servers. This setup was taken to prove 

how relocating game assets and logic to the cloud affects performance, in particular 

responsiveness and smoothness.  

4.1.3 Hybrid Edge computing Setup 

At the same time, the hybrid edge computing setup takes advantage of both the local and the 

cloud-based infrastructures. In the case where static assets — such as images and sounds — 

are used, they are cached locally on the player’s machine using AWS CloudFront. By local 

caching these assets, the game can quickly retrieve them locally off of the machine’s local 

storage as opposed to having to download them from the cloud every time they are required, 

decreasing latency and speeding the time it takes to load and render the game elements. 

But while static assets are pulled down to the device, dynamic game data—including 

player scores and game progress—is still held in the cloud on AWS DynamoDB. This makes 

sure says critical data is kept in a centrally scaled down system and can be synched across 

various devices if required. Also, some game logic (such as physics or collision calculations) 

can be offloaded to cloud servers when needed, leaving the local machine to process less and 

scale based on the number of players, or complexity of the game. 

The setup requires a local machine that can store and possess some of the game’s logic. 

It also needs both a DynamoDB and the correct cloud services to store and process dynamic 

game data. It requires a reliable network connection for local machine to communicate with 

cloud infrastructure so that the player data can be synchronized, and cloud requests are 

minimized by the effective edge caching of player data. 

 

A performance goal for the hybrid setup is the trade-off between utilizing local resources 

for static asset delivery versus the cloud for dynamic data storage. It aims to keep latencies low 

by caching static assets locally while leaving some of the most important data in it — scores 

and player progress, for example — in the cloud. Furthermore, it also seeks to reduce repetitive 

downloads of static content to boost bandwidth efficiency. In the end, the hybrid system is 

expected to create a smoother and more efficient gaming experience by keeping high FPS / 

responsiveness whilst still ensuring that game data is fully synchronized between local client 

and cloud backend.  

4.2  Total Latency Calculation 
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Cache performance can be evaluated using the cache hit ratio: 

 

𝐶𝐻𝑅 =
𝑇𝑜𝑡𝑎𝑙𝐶𝑎𝑐ℎ𝑒𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝐶𝑎𝑐ℎ𝑒𝐻𝑖𝑡𝑠
 

 

The percentage of cached data retrieved locally is: 
𝐶𝑎𝑐ℎ𝑒𝑑𝐷𝑎𝑡𝑎𝑈𝑠𝑎𝑔𝑒(%) = 𝐶𝐻𝑅 × 100 

4.2.1 Hybrid Total Latency:  

𝑇𝑜𝑡𝑎𝑙𝐿𝑎𝑡𝑒𝑛𝑐𝑦(𝐻𝑦𝑏𝑟𝑖𝑑) = 𝑇𝑙𝑜𝑐𝑎𝑙 + (1 − 𝐶𝐻𝑅) ⋅ 𝑇𝑐𝑙𝑜𝑢𝑑 

Where: 

• 𝑇𝑙𝑜𝑐𝑎𝑙 : Local processing and cache retrieval latency. 

• 𝑇𝑐𝑙𝑜𝑢𝑑: Latency for retrieving uncached assets or dynamic data from the cloud. 

4.2.2 Cloud-Based Total Latency: 

 
𝑇𝑜𝑡𝑎𝑙𝐿𝑎𝑡𝑒𝑛𝑐𝑦(𝐶𝑙𝑜𝑢𝑑) = 𝑁 ⋅ 𝑇𝑐𝑙𝑜𝑢𝑑  

 

Where N is the number of assets retrieved. 

4.3 Bandwidth Usage Formulae 
 

For cloud-only: 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑈𝑠𝑎𝑔𝑒(𝐶𝑙𝑜𝑢𝑑) = ∑𝐷𝑖

𝑁

𝑖=1

+ 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝐷𝑎𝑡𝑎 

 

Where: 

• 𝐷𝑖 : Size of asset 𝑖  (in MB). 
• N: Total number of cached assets. 

• Dynamic Data: Total size of dynamic data updates (e.g., scores, gameplay 

interactions). 

 
For Hybrid: 
The effective bandwidth usage in the hybrid setup, including both cached and uncached data, 

can be calculated (Zhu et al. (2011): 

 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑈𝑠𝑎𝑔𝑒(𝐻𝑦𝑏𝑟𝑖𝑑) = ∑(𝑝𝑖 ⋅ 𝐷𝑖)

𝑁

𝑖=1

+ 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝐷𝑎𝑡𝑎 

Where: 

• 𝑝𝑖 : Probability of cache miss for asset (miss rate). 

4.3.1 Dynamic Bandwidth Consumption per Session 

• For dynamic updates during gameplay (Hybrid): 

𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ(𝐻𝑦𝑏𝑟𝑖𝑑) = 𝑅 ⋅ 𝑆 + 𝑈 
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Where: 

o R: Frequency of dynamic updates (requests per second). 

o S: Size of each update (in MB). 

o U: Fixed overhead per session (e.g., session initialization, authentication). 

 

• For cloud-only: 

 

 

4.3.2 Integration for Performance Analysis 

Combining the above formulas: 

• Hybrid Architecture: 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ(𝐻𝑦𝑏𝑟𝑖𝑑) = ∑(𝑝𝑖 ⋅ 𝐷𝑖)

𝑁

𝑖=1

+ (𝑅 ⋅ 𝑆 + 𝑈) 

 

• Cloud-based Architecture: 

 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ(𝐶𝑙𝑜𝑢𝑑) = ∑𝑁𝐷𝑖

𝑁

𝐼=1

+ (𝑅 ⋅ 𝑆 + 𝑈) ⋅ 𝑁 

 

 

This shows that, in terms of both bandwidth and latency, the Hybrid Architecture is more 

efficient than the Cloud Based Architecture. As with the hybrid set up, the reduction of 

bandwidth consumption and faster response times comes from local caching and processing 

combined with less need for constant transfer to the cloud (Guo et al. 2024). On the other hand, 

cloud only setup needs constant cloud communication which consumes more bandwidth and 

higher latency (Wang, Xu & Li, 2014). In consequence, the hybrid model provides a more 

inexpensive and performant alternative, especially for applications with reduced tolerance to 

latency and data transfer costs.  

 

5 Implementation 
 

The implementation phase centred on deploying, executing, and evaluating the Flappy Bird 

game, developed with Pygame, across three distinct architectural setups: Cloud Based Setup, 

Local Machine Execution and Hybrid Edge Computing Setup. Different architectures were 

designed to test different basic characteristics of the infrastructure, in particular computational 

offloading, network dependency and data caching. Latency, frame rate (FPS), and bandwidth 

usage were collected and analysed in order to understand the effects of these architectures on 

game performance. 

5.1 Game Development 

The game’s core was done using Pygame, a lightweight python 2D game framework. It is an 

open source simple FlappyBird game. The codebase was altered according to the needs of this 

research and made modular, so that it could be adapted either for local, cloud or hybrid 

architecture. The entire game (rendering, logic and data storage) was running on a single 

machine with Core i7 processor, 16GB RAM and an NVIDIA GTX 1650 GPU as part of the 
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local setup. In the cloud based case, the game logic, assets and data were hosted on an AWS 

EC2 t2.xlarge instance which has similar specs to the local hardware used to keep the testing 

process fair. To avoid having to render everything from the Cloud, the hybrid setup used a mix 

of local rendering and sending request to AWS CloudFront for static assets that are cached, 

and added the feature to store player scores in a database to leverage the use of low latency 

cloud databases like DynamoDB in this case for the dynamic data storage, distributing the work 

on local, edge and cloud. Isolation of each architecture was performed to ensure conditions of 

consistency. 

5.2 Tools and Technologies 

The development, deployment, monitoring and analysis of the game were enabled using several 

tools. Concurrency, network operations, system resource monitoring in core development and 

accessing resources on the server were handled using libraries like Python, asyncio, aiohttp, 

and psutil. EC2, CloudFront and DynamoDB were all integral parts of the cloud as well as 

hybrid infrastructure which allowed us to host assets and store dynamic data at scale. Mininet 

was used to simulate network variability, allowing the bandwidth and latency conditions to be 

controlled while testing. During the gameplay, real time metrics like FPS, latency and 

bandwidth usage were collected to monitor performance. These metrics were visualized in 

Grafana dashboards, delivering an intuitive way to reason about system behaviour. Pandas 

were used for preprocessing and Matplotlib for visualizations on data analysis, and SciPy was 

used to analyse statistics. 

5.3 Testing and Data Collection 

In the testing phase, identical 10-minute gameplay sessions were played for each architectural 

setup. They were simple sessions which guaranteed equal player actions, equal game difficulty, 

and equal network conditions. After introducing clouds variance in bandwidth constraints and 

latency in the cloud and hybrid setups using Mininet, real world poor network conditions were 

mimicked. The FPS limit was set to 30 to create a balanced baseline for performance evaluation 

across setups and ensure consistency as the jitter rate was to be measured.  

During gameplay, real time key metrics were logged. Prometheus tracked latency as 

round-trip time (RTT) for HTTP requests, FPS as recorded by the game clock, and bandwidth 

usage with byte sent and received measurements. Further processing on the raw data was 

exported using CSV format. The cleaning and normalization of this data removes 

inconsistencies from this dataset for accurate analysis in the following steps. 

 

5.4 Visualizing Metrics 

Comparison of performance for each setup was done by analysing the collected data. Local 

setup took more latency due to the lack of network dependencies and cloud setup took higher 

latency as it relies on remote servers. Through local caching of static assets, the hybrid setup 

was able to offer a major reduction in latency. The highest FPS consistency was seen in the 

local setup, followed closely by the hybrid setup, at the expense of the cloud setup where 

occasionally drops in FPS because of network delays were noticed. 

A second critical metric was bandwidth usage. Caching static assets locally on the hybrid 

setup eliminated repetitive downloads, greatly reducing bandwidth consumed compared to the 

cloud setup. Matplotlib was used to generate graph visualizations, such as latency trends, FPS 

stability charts, and the bandwidth consumption graphs for the purposes of clarity, and these 

visualizations were then presented on Grafana dashboards. 
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5.5 Key Outputs and Insights 

5.5.1 Game Deployment: 

• There were running versions of the Flappy Bird game deployed across the three 

different architectures. 

• Codebase is broken down in order to easily change between different architectural 

setups. 

• Three functional implementations of the game were produced, tailored to three different 

architectures. 

5.5.2 Performance Data: 

• Latency Metrics: retrieve assets and game logic round trip time (RTT) 

• FPS Logs: Continuous gameplay recorded at frames per second. 

• Bandwidth Utilization: Measurements of real-time data transfer rates for static and 

dynamic content. 

5.5.3 Statistical Analysis Results: 

• Files that come out of Prometheus as CSV files and cleaned and transformed to get 

datasets. 

• Calculated cache hit ratios, bandwidth savings and total latency for every setup using 

statistical models. 

5.5.4 Visualizations: 

• Matplotlib and Grafana dashboards were generated to compare metrics within setups. 

• Latency and FPS stability view along with bandwidth usage visualizations. 

 

 Cleaned datasets, trade off study for different local, cloud, and hybrid computing models, and 

detailed visualisations were the outputs, and served as useful means to formulate actionable 

knowledge about the trade-offs of using local, cloud, and hybrid computing models. 

 Results showed that the hybrid setup was most efficient with low latency, high FPS and low 

bandwidth consumption. It exhibited a balanced approach of delivering high performance 

gameplay at a cost by only selectively using local caching and cloud storage. Hybrid edge 

computing was validated in interactive applications such as gaming. 

 

6 Evaluation 
 

The evaluation focuses on analysing the results obtained from deploying and testing the Flappy 

Bird game across the three architectural setups: Edge Computing: Hybrid Edge, Cloud Based, 

and Local Machine. The aim of this section is: to present the findings, interpret them, and 

explore their (relevance to) research objectives. Statistical tools and visual aids are used to 

evaluate these results in order to conduct rigorous analysis and clear interpretation of these 

results. 

6.1 FPS Jitter Analysis 

Since immersion plays so much of a role into the gameplay experience, frame rate stability is 

essential. To account for frame rate jitter, the collection FPS (frames per second) data across 

the three execution setups: Hybrid Edge Computing, Cloud Based, and Local Machine 

Execution was conducted. The duration of each frame (frame duration) was calculated, and 
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Figure 3 Hybrid Frame Jitter Rate 

Figure 4 Cloud Frame Jitter Rate 
 

Figure 4: Cloud Jitter Rate 

 

jitter rates were measured by computing its variability (standard deviation) over the mean frame 

duration. The local method did not require to track bandwidth usage and network usage as 

everything was processed offline. 

6.1.1 Hybrid Setup 

1. This setup yielded consistent FPS with minor variations, which resulted in 1.14% jitter 

rate. 

2. Frame duration with deviations due to occasional cloud communication was 34.33 ms. 

3. Local caching of static assets, and minimal reliance on cloud services for dynamic data all 

helped to keep this consistency. 

     Figure 3: Hybrid Jitter Rate 

4. There is a minor deviation around the mean which gives evidence of the balanced and stable 

performance. Where the jitter rate was relatively low indicates the efficiency of hybrid 

architectures keeping the frames stable. 

6.1.2 Cloud Setup 

1. In contrast, FPS in the Cloud Setup varied more, which resulted in a jitter rate of 2.71%. 

2. Fluctuations came from network induced latency and dynamic asset retrieval from the 

cloud, resulting in a mean frame duration of 34.47 ms. 

3. Simulated network constraints further impacted gameplay smoothness while this higher 

variability also diminished gameplay smoothness.    

             

4. The frame duration plot revealed noticeable spikes, reflecting the impact of network 

variability on frame rate consistency. This jitter can disrupt the gaming experience, 

especially in latency-sensitive scenarios. 
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6.1.3 Local Setup 

1. Frame rate consistency was shown to be the highest with Local Setup at 0.75%. 

2. It had minimal fluctuations in the mean frame duration of 33.39 ms due to the absence of 

network dependencies. 

3. The frame duration plot showed almost no deviations, with frame durations tightly 

clustered around the mean value. This setup provided the smoothest gaming experience, 

but at the cost of limited scalability. 

                                                   Figure 5: Frame Rate Jitter in Local 

6.2 Network Latency Analysis 

 Actual real-time gameplay responsiveness is directly a function of network latency, measured 

as round-trip time (RTT) in milliseconds. The network performance of the Hybrid and Cloud 

setups was compared through collection of latency data from both, under similar gameplay 

conditions. The worst-case scenarios were taken very with poor network quality. 

6.2.1 Hybrid Setup 

• Mean Latency: 401.45 ms 

• Standard Deviation: 16.92 ms 

        Figure 6: Network latency in hybrid mode 

Low latency values were consistently demonstrated with the Hybrid Setup. Dynamic content 

like player scores were pulled from AWS DynamoDB and static assets like images and sounds 

were served directly from AWS CloudFront. This was because edge caching reduced hops, and 

the distance asset needs to travel to be retrieved. Latency peaks were low, meaning that local 

and cloud resources were equally used. 

6.2.2 Cloud setup 

• Mean Latency: 896.93 ms 

• Standard Deviation: 18.97 ms 
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RTT values were well above 870 ms for the Cloud Setup and exhibited significantly higher 

latency. All game logic, assets and data retrieval were performed remotely on an AWS EC2 

instance. Peak bandwidth usage resulted in high latency spikes due to full network dependency 

on gameplay responsiveness. 

 

 
Figure 7: Network Latency in Cloud 

Table 1: Latency Comparison: Cloud Mode vs Hybrid Mode 

Metric Cloud (ms) Hybrid (ms) 

Minimum Latency 873 208 

Maximum Latency 952 440 

Average Latency 896 401 

Latency Variance 15 % 6 % 

6.3 Bandwidth Usage Analysis 

It is crucial for the ultrarealistic scalability that any real time gaming system admits to via 

bandwidth utilization efficiency and minimization of network overhead. The collected 

bandwidth data for the Cloud Setup and Hybrid Setup illustrates substantial variation in 

efficiency resulting from architectural design and caching on the edge strategies. 

6.3.1 Cloud Setup 

• Mean Bandwidth Usage: 371.2 KB/s 

• Standard Deviation: 206.4 KB/s 

      Figure 8: Bandwidth Usage by Cloud Setup 

 

The Cloud Setup consumed high amount of bandwidth with values exceeding 650 KB/s. 

Continuous retrieval of both static and dynamic assets from the cloud accounts for the high 
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consumption. Every frame generation required data from the server, doubling the bandwidth 

when working with static data. 

High bandwidth usage at this level is undesirable for regions with limited network 

infrastructure and bandwidth capped users. 

6.3.2 Hybrid Setup 

• Mean Bandwidth Usage: 24.62 KB/s 

• Standard Deviation: 52.63 KB/s 

 

 
                                 Figure 9: Bandwidth Usage by Hybrid Setup 

 

With the Hybrid Setup used much less bandwidth in the majority of gameplay, and practically 

no usage at all during most gameplay. 

 There were occasional spikes (e.g., 57 KB/s) for retrieval of uncached dynamic assets or cache 

population events, but these were infrequent and shortsighted. 

The massive reduction in average bandwidth usage is primarily attributed to local caching of 

static assets through CloudFront, providing a huge reduction in redundant network requests. 

Table 2: Bandwidth Usage: Cloud Mode vs Hybrid Mode 

Metric Cloud (Kb/s) Hybrid (Kb/s) 

Maximum Bandwidth usage 644 57 

Average Bandwidth usage 371 23 

Minimum Bandwidth usage 896 0.1 

Data Transfer Volume (10 min session) 222.6MB 13.8MB 

 

6.4 Discussion 

As evident from the results of the experiments, the Hybrid Setup performs far better than the 

Cloud Based and Local Machine Execution setups on metrics such as latency, bandwidth use 

and FPS consistency. As compared with the Cloud Setup, which suffered significantly higher 

latency through its complete dependence on remote servers for both dynamic game logic and 

asset retrieval, the Hybrid Setup reduced latency by 55.2%. Leveraging local caching of static 

assets and the cloud for dynamic content, the Hybrid architecture lowered network hops by 

significantly reducing round trip time (RTT). The performance and scalability maintaining 

approach was effective lowering down delays and enhancing the overall user experience 

increasing their performance and scalability. 

  Moreover, the use of bandwidth was reduced by 93% for the Hybrid Setup compared to the 

Cloud Setup. There was congestion due to the fact that high amounts of bandwidth was used 

in the constant Cloud Setup, since during the constant Cloud Setup, it made a lot of requests to 

the cloud for both static as well as dynamic assets. However, combining this approach with the 

hybrid setup, the static assets were cached on the edge via AWS CloudFront and significantly 
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reduced the redundant network requests and only served dynamic content (like the player 

scores) from the cloud. By this caching mechanism bandwidth consumption drastically reduced 

and would be eminently useful to users in remote locations or those that have poor, limited 

network conditions or bandwidth. 

Throughout the course of the experiment, the FPS jitter rate was significantly lower in 

the Hybrid Setup, at 1.15%, than in the Cloud Setup, at 2.54%. As a result, this lower jitter rate 

led to more stable frame durations, hence smoother gameplay. With the Hybrid Setup, latency 

sensitive tasks were processed locally and offloaded the less time sensitive tasks to the cloud 

but keeping the experience for users without interruption. The Local Setup had a jitter rate of 

0.87%, forming the lowest noise rate, though it did not scale and could not support the large, 

complex gaming environments required to drive modern multiplayer games. 

 

However, it had some of the limitations of the experiments. A lightweight game (Flappy Bird) 

was used to test since the game doesn't demand a lot of computation from the system to run. 

The benefits of the Hybrid Setup would become much more apparent in a lot more compute 

intensive games that require complex physics, rendering and asset retrievals. In environments 

where some actions have low latency requirements and other actions rely heavily on heavy 

computational tasks, the Hybrid Setup would work even better because it offloads heavy 

computational tasks to the cloud and keeps latency sensitive actions local or on edge. 

In addition, testing was carried out under controlled, simulated network conditions. 

This helped to ease out each architecture's impact, but in the real-world network conditions are 

rarely as predictable and may introduce further variability. Thus, future experiments should be 

based on real world testing, considering network speed cycles and server load manipulations. 

Improvements to the Hybrid Setup could be achieved through dynamic workload 

partitioning that intelligently partitions tasks amongst local, edge, and cloud resources using 

real time performance metrics. This will in turn increase the efficiency of the system and 

minimize the amount of dependence on cloud resources during the busy hours. In addition, 

caching strategies can be further enhanced to pre-fetch and locally cache dynamic game data 

according to user behaviour patterns leading to improving cache hit rates, as well as reducing 

latency and bandwidth usage further. Finally, scalability for multiplayer environments is 

studied, because synchronization of real time game state is more complicated in multipath 

architecture particularly with the concurrent of many players. 

In general, even if the results are promising, there is a room for improvement of the Hybrid 

Setup. Hybrid architectures can make it a standard practice of scalable, efficient, and high-

performance gaming systems by finding more refined caching algorithms, better dynamic 

workload distribution, and more complex real world test cases. 
 

7 Conclusion and Future Work 
 

The goal of this research was to investigate how a optimizing gaming performance with 

hybrid cloud computing methodologies can reduce latency and benefit game developers, 

gamers, cloud service providers and hardware manufacturers. Furthermore, design of the 

hybrid cloud architecture, workload partitioning and edge computing, and evaluation of key 

performance metrics, such as latency, bandwidth usage, and FPS consistency were the 

targeted goals. The findings demonstrated that hybrid architectures were able to significantly 

improve real time gaming performance, reducing latency on all architectures by 55.2%, 

bandwidth usage by 93%, and FPS jitter rate by 1.15%. In these results, hybrid cloud models 

are shown to be scalable and cost effective in improving the gaming experience with less 

dependence on expensive local hardware. 
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Although they were promising, the study was limited, both by using a lightweight game 

(Flappy Bird) and by simulation of network conditions. Future work will build upon these 

findings by testing the hybrid model in realistic settings such as real world games and 

multiplayer. Furthermore, there are opportunities for meaningful advancements to dynamic 

workload partitioning, intelligent caching, and machine learning based resource allocation 

which would greatly improve the performance of hybrid cloud architectures. By exploring 

these areas, the model may be more readily adapted to unforeseen network conditions while 

simultaneously addressing the need for a greater gaming experience. Additionally, hybrid 

architectures may be a prime solution to other interactive applications, like virtual reality 

(VR) and augmented reality (AR). Finally, hybrid gaming platforms have great potential for 

commercialization with scalable and efficient solutions to the existing global gaming market. 
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