

National College of Ireland

Project Submission Sheet

Student Name:

EZEKIEL ADEDAYO AYANDA

Student ID:

23129522

Programme:

MSc Cloud Computing

Year:

2024

Module:

Configuration Manual

Lecturer:

Dr. Rashid Mijumbi

Submission
Due Date:

Wednesday, 29th January 2025

Project Title:

Scalability Optimization in Identity Management Systems for Cloud-
Native Applications

Word Count:

……

I hereby certify that the information contained in this (my submission) is
information pertaining to research I conducted for this project. All information
other than my own contribution will be fully referenced and listed in the relevant
bibliography section at the rear of the project.
ALL internet material must be referenced in the references section. Students are
encouraged to use the Harvard Referencing Standard supplied by the Library. To
use other author's written or electronic work is illegal (plagiarism) and may result
in disciplinary action. Students may be required to undergo a viva (oral
examination) if there is suspicion about the validity of their submitted work.

Signature:

Ezekiel Ayanda

Date:

27/01/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS:

1. Please attach a completed copy of this sheet to each project (including multiple

copies).
2. Projects should be submitted to your Programme Coordinator.
3. You must ensure that you retain a HARD COPY of ALL projects, both for your

own reference and in case a project is lost or mislaid. It is not sufficient to keep a
copy on computer. Please do not bind projects or place in covers unless specifically
requested.

4. You must ensure that all projects are submitted to your Programme Coordinator on
or before the required submission date. Late submissions will incur penalties.

5. All projects must be submitted and passed in order to successfully complete the
year. Any project/assignment not submitted will be marked as a fail.

Office Use Only
Signature:
Date:
Penalty Applied (if applicable):

Configuration Manual

MSc Research Project

Cloud Computing

Ezekiel Ayanda
Student ID: 23129522

School of Computing

National College of Ireland

Supervisor: Rashid Mijumbi

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Ezekiel Ayanda

Student ID: 23129522

Programme: Cloud Computing

Year: 2024

Module: MSc Research Project

Supervisor: Rashid Mijumbi

Submission Due Date: 12/12/2024

Project Title: Configuration Manual

Word Count: 1835

Page Count: 22

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Ezekiel Ayanda

Date: 10th December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Ezekiel Ayanda
23129522

1 Introduction

This document serves as a comprehensive guide to perform a successful reproduction
and configuration of the tools and technology utilized in the course of implementing this
project with reference to the code artifact and online documentation were necessary.
Considerate effort has been put into calling out possible issues encountered with setup
and remediation steps taken to easy next reproduction of steps.

Contents

1 Introduction 1

2 Setup Prerequisites 1

3 Azure Kubernetes Cluster 2

4 Java SpringBoot Application 3

5 Identity Management System 6

6 Time Series Monitoring 11

7 Load Testing 17

2 Setup Prerequisites

For the scope of this project, certain versions of tools and platforms have been utilized.
While it might not be mandatory, it is recommended that the same versions are used
were necessary for best results and to avoid configuration mishaps.

Table 1: Azure Kubernetes Cluster

Component Type/Version
Compute Instance Virtual Machine Scale Sets
Operating System Ubuntu Linux
Orchestration Tool Kubernetes (Version 1.29.9)
Container Tool ContainerD (Version 1.6.26)

1

Table 2: VMSS / Node Specification

vCPU 2 vcores
Memory 7 GB
Node VM Size StandardDS2v2
OS Type Ubuntu Linux
Cost of services $0.146/Hour

3 Azure Kubernetes Cluster

As a prerequisite to all configurations in this project, it is expected that you already have
at least contributor access to the Azure Kubernetes cluster.

3.1 Install AZ CLI

Azure CLI is available for download and installation for any of your preferred environ-
ments (Windows, macOS and Linux environments). This can be accessed at Azure CLI
Installation Guide

3.2 Deploy AKS Cluster

Sign into Azure CLI Use the following command to sign into your Azure account:

az login

Set Subscription Context Set the subscription context to your subscription:

az account set --subscription <sub name or id>

Create AKS Cluster Run the following command to create the AKS cluster:

az aks create \
--resource-group <resource-group-name> \
--name <aks-cluster-name> \
--node-count <number-of-nodes> \
--node-vm-size <vm-size> \
--generate-ssh-keys \
--kubernetes-version 1.29.9 \
--network-plugin azure

3.3 Install Kubectl, Docker and Helm Chart

Most of the deployments in the cluster are deployed using Helm as the package manager.
Docker is needed for build the Java app and Kubectl is required to run commands against
cluster. Official guides for installation of these can be followed for installation based on
Operating system.

• Kubectl: https://kubernetes.io/docs/tasks/tools/

• Docker: https://docs.docker.com/engine/install/

2

https://learn.microsoft.com/en-us/cli/azure/install-azure-cli
https://learn.microsoft.com/en-us/cli/azure/install-azure-cli
https://kubernetes.io/docs/tasks/tools/
https://docs.docker.com/engine/install/

• Helm: https://helm.sh/docs/intro/install/

3.4 Nodes and Namespace configuration

Create dedicated nodes for different parts of the cluster along with corresponding namespaces.
Three user node pools can be created alongside three namespaces. The system node pool
is specifically reserved for native Kubernetes operational workloads.

Table 3: Cluster workload Recommended Mappings

Node pool Namespace
appnode1 appnode
idmsnode1 idmsnode
monitoring monitoring

Defining scoped nodes and namespaces ensures proper grouping of workloads within the
cluster, leveraging node selectors and namespace parameters for deployment manage-
ment. User nodes can be created via kubectl or via the Azure portal using the system
specifications in 2

4 Java SpringBoot Application

4.1 Integration and setup

Configuration prerequisites include:

• Realm Name

• Client ID

• Client Secret

Include the necessary dependencies for OAuth2 and Keycloak in your pom.xml:

<dependency >

<groupId >org.springframework.boot</groupId >

<artifactId >spring -boot -starter -oauth2 -client </artifactId >

</dependency >

<dependency >

<groupId >org.keycloak </groupId >

<artifactId >keycloak -spring -boot -starter </artifactId >

<version >26.0.6 </version >

</dependency >

Create a security configuration class to enable OAuth2-based authentication. This handles
the connectivity to Keycloak and redirects users for login in /Java Springboot App/src/main/java/com/hibizatogs/keycloak/demo/config/SecurityConfig.java

3

https://helm.sh/docs/intro/install/

@Configuration

@EnableWebSecurity

public class SecurityConfig {

@Bean

public SecurityFilterChain securityFilterChain(HttpSecurity

http) throws Exception {

http

.cors(AbstractHttpConfigurer :: disable)

.csrf(AbstractHttpConfigurer :: disable)

.authorizeHttpRequests(req -> req

.requestMatchers(AntPathRequestMatcher.antMatcher

("/**")).permitAll ()

.anyRequest ()

.authenticated ()

)

.sessionManagement(session -> session

.sessionCreationPolicy(SessionCreationPolicy.

STATELESS));

return http.build ();

}

}

4.2 Push App to Docker or Azure Container Registry

Build the Docker image

docker build -t <your-dockerhub-username>/java-spring-app:v1 .

Push the Docker image to a container registry

docker push <your-dockerhub-username>/java-spring-app:v1

Creating the Application in the Kubernetes Cluster
The Deployment manifest file can be found in /yamls/java-app-deployment.yml.

Update your docker image and selector. Also set Environment variable values to match
Keycloak deployment.

apiVersion: apps/v1

kind: Deployment

metadata:

name: java -app

labels:

app: java -app

spec:

replicas: 2

selector:

4

matchLabels:

app: java -app

template:

metadata:

labels:

app: java -app

spec:

containers:

- name: java -app

image: <your -dockerhub -username >/java -spring -app:v1

ports:

- containerPort: 8080

env:

- name: iam.integration.keycloak.url

value: "http://<keycloak -host >/"

- name: iam.integration.keycloak.client -id

value: "<ClientID >"

- name: iam.integration.keycloak.realm

value: "<realm name >"

- name: iam.integration.keycloak.username

value: "admin"

- name: iam.integration.keycloak.password

value: "adminpassword"

- name: iam.integration.keycloak.client -secret

value: "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"

The Service manifest file can be found in /yamls/java-app-deployment.yml

apiVersion: v1

kind: Service

metadata:

name: java -app -service

spec:

selector:

app: java -app

ports:

- protocol: TCP

port: 80

targetPort: 8080

type: LoadBalancer

Confirm Java App Pod and Service in AKS

kubectl get pods -n appnode

kubectl get svc -n appnode

5

5 Identity Management System

5.1 Keycloak Installation

This configuration should get Keycloak up and running for a development use case. A full
list of Bitnami Helm chart parameters for Keycloak can be found on Bitnami’s GitHub
repository.

helm install keycloak bitnami/keycloak \
--namespace idmsnode \
--set service.type=LoadBalancer \
--set auth.adminUser=admin \
--set auth.adminPassword=<securepassword> \
--set nodeSelector.agentpool=idmsnode1 \
--set replicaCount=3 \
--set persistence.enabled=true \
--set persistence.size=10Gi \
--set postgresql.enabled=true \
--set postgresql.postgresqlUsername=admin \
--set postgresql.postgresqlPassword=<securepassword> \
--set postgresql.postgresqlDatabase=keycloak \
--set resources.requests.cpu=500m \
--set resources.requests.memory=1Gi \
--set resources.limits.cpu=1 \
--set resources.limits.memory=2Gi

Confirm the pods, Service and Persistent Volume Claim deployment in AKS

kubectl get pods -n idmsnode

kubectl get svc -n idmsnode

kubectl get pvc -n idmsnode

Figure 1: Keycloak pods, services and Persistent Data Volume for Postgresql

Obtain and verify Keycloak admin password

kubectl get secret keycloak -n idmsnode -o jsonpath="{.data.admin-password}"
| base64 --decode

6

https://github.com/bitnami/charts/tree/main/bitnami/keycloak
https://github.com/bitnami/charts/tree/main/bitnami/keycloak

Keycloak Admin console can be accessed over the internet with the External IP or via
port Forwarding.

Figure 2: Keycloak Admin Console Login page

Enable Autoscaler for Keycloak which will be working with Infinspan to on-boarding new
instances into the cache cluster. (Minimum replicacount to enable Keycloak clustering is
2). Update this in the value.yaml file

autoscaling:

enabled: true

minReplicas: 2

maxReplicas: 3

targetCPU: 80

targetMemory: 80

Run helm update to update helm deployment with new parameters

helm upgrade keycloak bitnami/keycloak -f values.yaml -n idmsnode

5.2 Clustering configuration

To enable Keycloak for clustering, distributed cache management has to be enabled and
Node discovery set.

Configure Distributed Caching with Infinispan by enabling caching and cache stack in
values.yaml:

7

cache:

enabled: true

stackFile: ""

stackName: kubernetes

extraEnv:

keycloak:

- name: KC CACHE

value: kubernetes

- name: KC CACHE STACK

value: ispn

This can also be added into the keycloak-env-vars config file

kubectl edit configmap keycloak-env-vars -n idmsnode

KEYCLOAK CACHE STACK: kubernetes

KEYCLOAK CACHE TYPE: ispn

Node Discovery by Enabling JGroups

Add to values.yaml to configure node discovery. (JGROUPS BIND PORT range can be
flexible)

- name: JGROUPS BIND PORT

value: "17900-18000"

- name: JGROUPS BIND ADDR

valueFrom:

fieldRef:

fieldPath: status.podIP

- name: JGROUPS STACK

value: "kubernetes"

With a successful configuration, clustering activity can be verified through the logs of
any instance, preferably the first one.

8

Figure 3: Cluster info from Infinispan in Keycloak pod logs

5.3 JavaScript Provider configuration

Ability to build custom scripts require the scriptsv2 feature, which is part of the preview
feature. This needs to be added to the environment variable of Keycloak and initiated
upon pod startup.

Edit ConfigMap

kubectl edit configmap keycloak-env-vars -n idmsnode

Add in either --features=scripts or ---features=scripts and save ConfigMap

The values.yaml file is also updated with preview and SPI enabling.

- name: KC SPI POLICY JS ENABLED

value: "true"

- name: KC FEATURES

value: "preview"

Prepare the JavaScript policy and Meta in a folder following the structure

META-INF/keycloak-scripts.json

script-example-policy.js

Copy the folder from local machine to providers folder in the keycloak server

kubectl cp ./script-example-policy \
idmsnode/keycloak-0:/opt/bitnami/keycloak/providers

Connect into console of the Keycloak server

kubectl exec -it keycloak-0 -n idmsnode -- bash

Compress the folder to a .jar file

9

cd /opt/bitnami/keycloak/providers/

jar cvf script-example-policy.jar -C script-example-policy .

Initiate a Build for the .jar file

./opt/bitnami/keycloak/bin/kc.sh build

Restart Keycloak in Development mode and redirect port to avoid issues with utilized
port

/opt/bitnami/keycloak/bin$ kc.sh start-dev --http-port=8082

Perform a port forwarding to access the Keycloak over the browser

kubectl port-forward pod/keycloak-0 8081:8081 -n idmsnode

Ensure to enable ”Authorization” in client settings for policy settings to be visible.

Figure 4: Authorization Toggle in Client Settings

Custom Policy will be accessible in policies under clients’ configuration

10

Figure 5: Custom Policy in Keycloak

6 Time Series Monitoring

6.1 Prometheus

In the terminal add the Helm repository for Prometheus and update repository

helm repo add prometheus-community \
https://prometheus-community.github.io/helm-charts

helm repo update

Install the downloaded chart to accurate node and namespace

helm install prometheus prometheus-community/prometheus \
--namespace monitoring \
--set nodeSelector.node=monitoring

Get the services in namespace and expose the Prometheus-server port

kubectl get svc -n monitoring

kubectl expose service prometheus-server \
--type=NodePort \
--target-port=9090 \
--name=prometheus-server-ext \
-n monitoring

Forward port to be accessible locally and access over theBrowser: https://127.0.0.1:9090

kubectl port-forward svc/prometheus-server-ext 9090:80 -n monitoring

11

https://127.0.0.1:9090

Figure 6: Prometheus Portal

Live metrics can be viewed at https://<ipexposed:port>/metrics.

Figure 7: Prometheus Metrics

6.2 Grafana Dashboard

In the terminal add the Helm repository for Grafana and update repository

helm repo add prometheus-community https://grafana.github.io/helm-charts

helm repo update

Install the downloaded chart to accurate node and namespace

12

helm install grafana grafana/grafana \
--namespace monitoring \
--set nodeSelector.node=monitoring

Confirm running pod and service in the monitoring Namespace

kubectl get pods -n monitoring

kubectl get svc -n monitoring

Retrieve the admin password for Grafana login (Username is admin)

kubectl get secret grafana -n monitoring \
-o jsonpath="{.data.admin-password}" | base64 --decode

Forward port to be accessible locally and access over the browser at Browser: ht-
tps://127.0.0.1:3000/login

kubectl port-forward svc/grafana 3000:80 -n monitoring

Figure 8: Grafana Login page

13

https://127.0.0.1:3000/login
https://127.0.0.1:3000/login

Figure 9: Grafana Console

To ensure persistence of data settings configured in Grafana, add a Persistent Volume
Claim (PVC)

helm upgrade grafana grafana/grafana --namespace monitoring \
--set persistence.enabled=true \
--set persistence.size=10Gi \
--set persistence.storageClassName=default

Confirm presence of persistent volume claim

kubectl get pvc -n monitoring

Connect Grafana to Prometheus Data Source and add dashboard of choice based on
desired metrics

14

Figure 10: Adding Data Source

Figure 11: Saving Data Source

15

Figure 12: Grafana Dashboard

6.3 Queries for Metrics collection

These are the PromQL queries used to grab metrics furnished to the Grafana Dashboard.

CPU usage percentage for pods in a Namespace

sum(rate(container cpu usage seconds total{namespace="idmsnode"}[5m])) by

(pod) * 100

Memory Usage in Megabytes (MB) for all pods in a Namespace

container memory usage bytes{namespace="idmsnode"} / 1048576

Http Requests total for pods in a Namespace

apiserver request total{resource="pods"}

Pod Additions into a Namespace

increase(kube pod status phase{namespace="idmsnode", phase="Running"}[5m])
increase(kube pod status phase{namespace="appnode", phase="Running"}[5m])

16

7 Load Testing

7.1 JMeter Configuration

Install JMeter on MAC OS.

Note: For other operating systems, download at https://jmeter.apache.org/download jmeter.cgi.

brew install jmeter

Verify JMeter installation

jmeter -v

Figure 13: JMeter Installed

Launch Jmeter

jmeter

Load JMeter Test Plan file from downloaded artifact at /Jmeter FIles/testplan1.jmx

Figure 14: Load Test Plan

Three Thread Groups are present for User Registration, Login and Deletion respectively.

17

https://jmeter.apache.org/download_jmeter.cgi

Figure 15: Thread Groups

Number of users to be created can be specified with ramp up period. The user creation
request is forwarded from the Java application to Keycloak where users are created almost
real time. Created users data are saved in /path/userdata.csv

Figure 16: User Creation

User creation and data export to CSV are done at the JSR223 PreProcessor and Post-
processor stages respectively utilizing groovy scripts saved in the artifact at:

/Jmeter FIles/usercreation.groovy

/Jmeter FIles/createduserexport.groovy

18

Figure 17: JSR223PreProcessor

7.2 (Optional) Run Login request on Azure Load testing

For more compute power, Azure load testing can be used to run the load testing due to
it’s more robust capacity. Load testing configuration in JMeter can be exported as as
.JMX file and uploaded to Azure load testing.
You can create an Azure Load testing resource and create a new test in it by uploading
the JMter script.

Figure 18: Create Test in Azure Load Testing

Upload the Jmeter file and the user data csv genrated for new users created in Keycloak

19

you can also choose to split the CSVs evenly between engines if you are using more than
one engine (Completely optional).

Figure 19: Upload Test plan

If you have a large csv file, you can split the workload on more than one engine in-
stance and also generate the load from different regions. As this configuration has public
endpoints enabled, we have selected ”Public” for the traffic mode.

Figure 20: Load Configuration

Other settings can be skipped and then save configuration. Launch the test plan

20

Figure 21: Test Plan Launch

7.3 (Optional) Add Backend Listener for Azure Application In-
sights

Backend Listeners can be added to the test plan in other to provide more logging and in-
formation about response from each requests. For setup guide, see: https://github.com/adrianmo/jmeter-
backend-azure
Once added to the JMeter confugration file, you can query logs of new Azure Load testing
run in real time from Application insights

Figure 22: Application Insights logs

21

https://github.com/adrianmo/jmeter-backend-azure
https://github.com/adrianmo/jmeter-backend-azure

Figure 23: App Insights Logs

22

	Introduction
	Setup Prerequisites
	Azure Kubernetes Cluster
	Java SpringBoot Application
	Identity Management System
	Time Series Monitoring
	Load Testing

