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Abstract 

 

In this research, we present an active defense security framework for the container 

environments for overcoming the dynamic security challenges of containerized 

applications. We employ deep reinforcement learning (DRL) to optimize adaptive threat 

response and resource utilization within the framework. It presents a dynamic Holistic 

System Attack Graph (HSAG) model of time varying behavioral analysis of container 

activities, along with a novel Prioritized Dueling Double Deep Q Network (P3DQN) for 

security optimization at its foundation. A comprehensive security evaluation system is 

designed in the framework that is capable of real time monitoring, analysis and automatic 

response. Detection rates reported are 98.5% for CPU attacks and 96.8% for memory 

incident with 0.8% false positive rate. During normal operation, average CPU usage never 

exceeded 3.19%, and peak usage during active incident response was 25.04%. For 

detected incidents, the framework achieved an average of 17.42 seconds from detection to 

completion of the action (17.42s onset to action complete with a prevention rate of 100 

per cent. This shows the effectiveness of the framework to provide real time security 

monitoring and response with optimal resource utilization in containerized service 

environments.   

Keywords —Container Security, Deep Reinforcement Learning, HSAG, Cloud 

Computing  

 

1 Introduction 

1.1 Motivation and Problem Background 

The dynamic nature of microservices and the complex containerized environment makes 

deployment and security in containerized applications pretty vulnerable. With the proliferation 

of container technologies, application deployment has been fundamentally changed, yet new 

security vulnerabilities and new attack vectors have been introduced (Sethuraman and Khan, 

2023). Therefore, traditional security approaches are not up to the task, as they are static in 

nature and unprepared to evolve to meet new threat landscapes, an issue which container-based 

environments are plagued with (Rahman et al., 2023). Continuous deployment patterns find 

more sophisticated security measures in a dynamic environment introduced by container 

orchestration (Sofia et al., 2023). 

Research (Aktolga, 2023) recently shows that containerized applications are particularly 

vulnerable to resource-based incidents and attacks—the attack vectors of compromised 
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containers could impact the entire system stability and security. The challenges posed by 

ephemeral containers as well as the need for keeping service availability while securing these 

services compound further. 

Deep reinforcement learning (DRL) has demonstrated its capability to adapt to changing threat 

landscapes and optimize security tactical decisions in real time (Nguyen and Reddi, 2021) in 

the application of DRL to dynamic security optimization. Though, current DRL based solutions 

mostly miss being aware of container specific environments and particular security 

requirements (Nkenyereye et al., 2023). To overcome these limitations, this research provides 

an enhanced framework that combines a P3DQN architecture with a comprehensive container 

monitoring to construct an adaptive security system. 

1.2 Problem Statement 

In this research, the spread of container use in enterprise environments has made common 

container specific security incidents (Adhikari and Baidya, 2024). Due to the unique, highly 

dynamic containerized environment, traditional security solutions frequently do not fulfill their 

role of sounding the alarm in regard to dynamic threat response and runtime security. An 

adaptive security framework that is able to dynamically respond to emerging threats with 

minimal overhead and with the optimal application performance as (Li et al., 2022) proposed. 

Traditional reactive security methods do not catch the dynamic nature of container worlds. By 

combining deep reinforcement learning with whole container monitoring, we can create a more 

proactive and resource efficient security solution that can adapt to change threat landscapes 

while best utilizing resources. 

1.3 Research Question 

With the proposed adaptive security framework that integrates Holistic System Attack Graph 

(HSAG) and P3DQN-based deep reinforcement learning, what positive impacts can be gained 

when aiming to improve defense efficiency, container security and resource optimization in 

containerized environments? 

1.4 Research Objective 

This research aims to enhance the security framework of active defense for container-based 

environments using deep reinforcement learning. With the use of P3DQN, dynamic HSAG 

model and the dynamic model of the attack, the proposed framework enables adaptive threat 

response without losing security standards and maximizing resource utilization.     

1.5 Research Contributions 

 

• A dynamic HSAG model is developed that integrates real time container activity 

analysis with attack patterns to provide a holistic view of potential security threats. 

• Specifically, we implement a P3DQN algorithm that incorporates prioritized 

experience replay and dueling network architecture for consistent security policy 

enforcement. 

• A comprehensive monitoring and evaluation system created for real time security 

assessment and response. 

• Resource aware security optimization achieved by implementation of intelligent 

resource allocation mechanisms, and dynamic scaling algorithms to maintain a trade 

off between security coverage and resource utilization. 

• An automated testing framework for systematic evaluation of security effectiveness and 

performance impact.  
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1.6 Thesis Structure 

In Chapter 1, we introduce the research problem and motivation of applying deep 

reinforcement learning to the field of container security, objectives and key contributions. In 

Chapter 2, we provide a comprehensive literature review of container security challenges, 

existing DRL application in cybersecurity, existing security frameworks, and last editorial 

research gaps. The research methodology is detailed in Chapter 3, describing the development 

of the HSAG model and P3DQN architecture. The technical requirements and system 

architecture, along with the component interactions are described in Chapter 4, as design 

specifications. In Chapter 5, implementation is covered, discussing development environment, 

component implementation, and testing frame setup. In Chapter 6, these results are evaluated; 

analyzed are detection accuracy, response times, and efficiency in terms of resources used. 

Chapter 7 then concludes the thesis with key findings, limitations, and possible future research 

directions regarding the use of deep reinforcement learning in container security. 

 

2 Related Work 

2.1 Container Security and Runtime Protection 

In cloud computing environments, (Brady et al., 2020) propose a holistic method for securing 

Docker container security. In particular, they present a series of multi layered continuous 

integration and continuous deployment (CI/CD) pipeline that ensures the security of Docker 

images along the development lifecycle. This work addresses the growing concerns with 

container image vulnerabilities, as containers become more and more critical for the migration 

of DevOps processes to the cloud. To evaluate the security of Docker image, the study proposes 

a multi staged CI/CD pipeline to secure against publishing and reuse of images that have been 

confirmed vulnerable. The pipeline is geared to be flexible such that developers can plug in 

preferred security analysis tools and set security analysis policy as relevant to their 

development environments. The study, despite its limitations, is highly relevant to the study of 

container security, as containerization becomes more and more popular. In (Li et al., 2021), a 

security risk assessment method of edge computing container based on dynamic game theory 

is presented. To analyze complex interactions between container intrusion detection systems 

and malicious attackers, the authors build an Edge Computing Container Risk Assessment 

Dynamic Game Model (ECC-RA-DGM). Security risks are quantified by the model that takes 

into account things such as attack probabilities, defense strategies, and system vulnerabilities. 

The strength of the study is its novel use of dynamic game theory in edge computing security 

to better represent attacker defender interactions. The model is, however, quite complex, which 

might make it infeasible to implement in practice, particularly, for resource constrained edge 

devices. Both the dynamic game theoretic approach and the security strategies for edge 

computing provide a promising future direction of research.  

In their work (Jin et al., 2021) introduce DSEOM, a framework for dynamic evaluation and 

optimization of Moving Target Defense (MTD) in container-based cloud environments. The 

authors tackle the problem of the effectiveness drift in defense mechanisms when exposed to 

highly dynamic cloud environments, specifically for MTD techniques. MTD evaluations are 

done rapidly with DSEOM, which automatically perceives and respond to updates within the 

environment of the cloud. This research proposes multiple dimensions model attack graphs, 

holistic attack graph (HAG), and security and performance metrics definition. The framework 

can monitor update events, update the effectiveness of MTD, and update strategies using a 

formulation of a knapsack problem. The paper is limited in that they only discuss certain types 

of update events, and their work does not address the actual overhead of continuous monitoring 

and optimization. This research has a direct application to cloud security with the proliferation 
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of container-based environments and microservices. The study of security attacks in Docker 

container communications presented by (Lee et al., 2023) is a study of security attacks in 

Docker container communications. Through practical experiments focusing on ARP spoofing, 

DDoS and privilege escalation attacks we demonstrate the vulnerabilities of Docker 

networking. In this study, an overview of different methods of communication in Docker 

containers and discuss security challenges in container networks was presented. Some of the 

strengths of the research are in their practical approach; they provide detailed experimental 

setups and result for all attack scenarios considered. It does not, however, propose new defense 

mechanisms or solutions for mitigating these vulnerabilities. Finally, the experiments are 

conducted in a controlled environment that likely doesn’t fully reflect the complexities of large-

scale production Docker deployments.  

Moric et al., (2024) investigate security frameworks for container orchestration and 

microservices, specifically security mechanisms are needed in these technologies. The study 

focuses on container security in all microservice and container deployment lifecycle stages 

using virtual configurations, Grype, and Anchore. It assesses the security tool performance and 

evaluates the tradeoff between the security and cost in containerized settings. Employing a 

comprehensive security architecture, the authors bring up the important issues of data 

encryption, network security, and access control. This practical study suggests actual 

application in the security measures of containerized systems, which are integrated into the 

cycle of software development. Unfortunately, there are caveats to this study such as deep 

analysis and more quantitative data. In a comprehensive analysis of Docker container attacks 

and defense mechanisms, (Haq et al., 2024) categorize Docker container attacks and defense 

mechanisms into nine types and propose a detailed taxonomy. It points out that container-based 

applications are becoming more and more popular, and that we need strong defense strategies. 

Building on an extensive dataset of 51 real world vulnerabilities, the authors reevaluate current 

state of the art anomaly detection techniques, as well as providing value in understanding real 

world applications of current defense mechanisms. In addition, they point to deficiencies in 

current defenses, such as high false positive rates and insufficient training data that render 

existing approaches to anomaly detection impractical. While its limitations are its main 

limitations, it serves as extremely relevant research on container security and points out the 

dire necessity for additional research in order to improve container application security. 

Empirical evaluation as well as a systematic approach make the study a very useful resource 

for container security researchers and practitioners. 

2.2 Machine Learning Approaches in Security Applications 

In this work, the authors of (Li et al., 2021) present an optimal defensive deception framework 

in container-based cloud environments based on deep reinforcement learning (DRL) that can 

neutralize stealthy attackers. To address both time and range dimensions, the authors propose 

a System Risk Graph, SRG, a set of stimuli and associated risks and vulnerabilities for cloud 

application vulnerability and risk analysis, which is also a very precise adversarial model. 

Quantitatively, they define a coefficient of deception (C) to evaluate the effectiveness of decoy 

placement strategies. The framework's most salient strengths are its ability to respond to the 

dynamic characteristics of containerized clouds as well as the discipline that it brings to threat 

modeling. Compared to current approaches simulations show a 30.22% increase in coefficients 

of deception as well as improved detection ratios for random-walker (30.69%) and persistent 

(51.10%) attackers. This research is highly relevant to the field of cloud security as container-

based architectures and microservices start to take on high prevalence in the industry. 

(Kommula et al., 2023) paper looks into the security challenges of container technology when 

used in cloud computing environments. The authors show that existing implementations are 

adequate at preventing data leakage in shared memory and though these implementations are 
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already secure from data leakage they flag security vulnerabilities in container networking 

especially in Docker Compose clusters where inter container communication can be 

intercepted. To remedy the weakness of these vulnerabilities, the authors suggest an apparatus, 

named ldocker0, that enhances security by learning and enforcing network policies, thereby 

preventing non-authorized access or malicious attack, such as through ARP spoofing. The 

limitations of the paper include not having empirical evidence of effectiveness of the proposed 

solution and lack of performance impact analysis. Nonetheless, the study provides insights into 

container security research by identifying key problems and offering novel solutions to these 

problems. 

SecCPS, secure container placement strategy based on deep reinforcement learning was 

developed by (Deng et al., 20202). Co-resident attacks are a problem that is addressed in the 

strategy in containerized environments where container may share a VM or physical server. 

Finally, the research looks at the more complex case of containers running on VMs that reside 

on physical machines, which is a more realistic view of the real-world cloud setup. The 

container placement optimization is achieved within the deep reinforcement learning model 

using risk minimization by balancing workloads across tenants. The results of security 

constraints placement experiments show significant superior of SecCPS compared to well-

known strategies such as Spread, Binpack, Random, and PSSF in terms of minimizing co-

resident risks and workload balancing. The study has limitations, however, in the assumption 

of uniform resource requirements and fixed capacity limits for VMs, phenomena which may 

not exist in reality. In (Tunde-Onadele et al., 2024), the authors introduce a self-supervised 

hybrid learning (SHIL) framework to automatically detect security attacks in containerized 

applications. The framework employs unsupervised and supervised machine learning 

techniques to discover attacks without dependence on manual, labeled training data. It consists 

of three components: Autoencoder neural networks for unsupervised anomaly detection, hybrid 

alert validation for filtering false alarms, and self-supervised model creation for automatic 

labeling of the data. Its strength is in the innovative solution it adopts to acquire labelled 

training data in dynamic container environments. It significantly reduced false alarms relative 

to existing methods, on 46 real world security attacks on 29 server applications. Because SHIL 

is so light weight, it's practical for large scale deployments. But the study also has limitations, 

including not discussing how varying types of attacks will affect it, or how adept the study is 

at identifying advanced threats. 

In their work (Aly et al., 2024), the researchers study multi-class threat detection in Kubernetes 

environments using neural network and machine learning techniques. Based on this, the authors 

introduce an advanced detection method that combines the Naive Bayes algorithm with the 

feature engineering and dimensionality reduction techniques like Principal Component 

Analysis (PCA) and Autoencoders. This study fills a large gap in Kubernetes security by 

moving beyond binary classification of normal vs abnormal activities. The F1-Score finally 

achieved using their approach of combining PCA and Autoencoders with Naive Bayes 

classifier, was 0.95 and an accuracy of 91%. The relevance of this study to Kubernetes security 

is profound as it provides an alternative approach towards handling complex security issues 

within container environments. And being a multi-class classification and to tackle more 

sophisticated pre-processing techniques, this study established a new benchmark for threat 

detection in Kubernetes infrastructures. In Li et al., (2023), they present an optimal active 

defensive security framework (OADSF) for container-based cloud environments using DRL. 

The authors address challenges of complex attack scenarios and evolving microservice states 

in container-based clouds, which can weaken active defense strategies. Using a Holistic System 

Attack Graph (HSAG) model of security threats and attack paths at both application and 

container layers, they build a comprehensive threat model and an adaptive active defense 

deployment strategy. The optimization of moving target defense (MTD) strategy is modeled as 
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a Markov decision process, which reduces to concrete optimization problems by discarding a 

large class of feasible solutions in large scale cloud applications with high state space 

explosion. Finally, the proposed framework provides defense efficiency (versus both existing 

defense methods including DSEOM and SmartSCR) under the same set of plausible 

assumptions. 

2.3 Cloud-Native Security Architectures 

Proposed in (Di Stefano et al., 2020), Ananke is a framework to monitor and orchestrate cloud 

native applications (CNAs) following a microservices architecture.). To profile microservices 

and their interactions in a platform as a service environment, the authors propose a time-varying 

multi-layer graph model. The goal of the model is to aid the optimization strategies in which 

cloud providers can increase service quality and service level agreements. The main strength 

of this study is that in modeling CNAs both cluster and application layers are taken into 

account. The proposed multi-layer network model covers the essence of how microservices 

interact and deployment on physical resources, which enables fine granularity analysis of 

application performance and resource consumption. The limitations to the paper include no 

empirical validation, without ongoing practical implementation and lack of comparative 

analysis with existing monitoring and orchestration solutions. In (Bhowmik et al., 2020), a 

framework was proposed for building security into container based on premises cloud 

orchestration. They present a model that quantifies container image security risk prior to 

deployment to reduce cloud infrastructure security risk. The paper talks about the state of cloud 

orchestration and container technologies, noting that cloud orchestration and container 

technologies need to be better secured because of the increasing attacks. The researchers then 

develop an experimental model that leverages image scanning tools to analyze container 

images in terms of Common Vulnerability and Exposures (CVE) metrics, Common Platform 

Enumeration (CPE) metrics, and Common Vulnerability Scoring System. A quantitative risk 

assessment method is created by weighting different type of issues that are identified during 

the scanning. These scores are then used by the framework to select the most secure image for 

deployment. The authors admit their study has limitations, however: a small sample size and a 

lack of discussion of possible countermeasures to vulnerabilities discovered. 

The paper by (Nascimento et al., 2024) focuses on the application of availability, scalability, 

and security in transition from container to cloud native applications. They explain in detail the 

drawbacks of container-based application and how cloud native architectures help in 

overcoming them. To show this technical aspect of this migration, the proof of concept (PoC) 

implementation uses Kubernetes in Azure. The research methodology features how DevOps 

and DevSecOps approaches can be done while increasing the reproducibility and reliability. A 

complete analysis of served workload, and system health under different conditions is given to 

conclude that employing the cloud native approach was indeed effective for coping with 

increased workload load, therefore resulting in the tremendous performance of the PoC. While 

the study does have its limits, which include dependence on Azure and Kubernetes, more in 

depth analysis of security challenges and solutions in cloud native environment is necessary. 

Vaño et al., (2023) paper covers a comprehensive view of cloud native workload orchestration 

at the edge, combating deployment strategies, and possible trends. It studies the transfer of the 

principles of cloud-native computing to the edge computer, exploring the challenges and 

opportunities. The virtualization techniques, commercial approaches, container deployment 

option, and orchestration framework e.g Kubernetes are there it covers all of these. By 

integrating the academic literature in combination with insights from open-source development 

projects and use cases from the industry, this paper approaches the topic of edge computing in 

a practical manner and provides a more up to date view of this rapidly evolving field. 

Additionally, the authors examine commercial solutions from the major cloud providers, and 
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discuss their approaches and limitations. It reviews the trends in edge computing, such as 

WebAssembly modules and orchestrating the heterogeneous workloads. Though also limited 

itself, the paper serves as a valuable resource for other researchers or practitioners working on 

edge computing by providing a comprehensive coverage of current deployment option and its 

future. 

To improve security and resource optimization in cloud environments, (Prasadu et al., 2024) 

propose layering container orchestrators. The architecture enables advanced security 

automation and AI driven resource management to address the challenges of managing 

containerized applications. The strength of the study includes a complete way of approaching 

container orchestration with a single system taking care of security, resource management and 

scalability. While it is surely far from a complete research effort in an ideal scenario, the 

research does have a very timely and relevant contribution to provide a nice foundation for 

future research in the area of cloud computing and container orchestration. (Joshi et al., 2024) 

present a cloud native system for optimizing and delivering cloud native Large Language 

Models (LLMs) to Kubernetes based infrastructure as a solution to the problem of deploying 

and operating LLMs in production. Using Kubernetes declarative resource management 

capability, the framework is easy to train and deploy LLMs on cloud providers such as KIND, 

Google Kubernetes Engine and Amazon Elastic Kubernetes service. The intent of this research 

is to improve the performance and cost effectiveness of LLM deployments using the scalability, 

flexibility, and resource allocation provided by Kubernetes. The paper presents a detailed 

discussion of challenges in deploying inference services in the cloud, referring to the 

complexity of hardware configurations required for the model serving containers. This part of 

the study is very appropriate for optimization of resource utilization and cost management 

using dynamic scaling in the presence of growing demand for the AI and ML applications. 

2.4 Critical Analysis 

The research gaps in container security, DRL applications, and cloud native security 

architectures are identified by doing the literature review. Models today do not consider 

vulnerabilities of containers and cloud native vectors of attack. To fill these gaps, the proposed 

HSAG model incorporates application and container layer threats and cloud particular security 

controls. This paper presents a more sophisticated multi agent approach to security 

optimization via the P3DQN algorithm. The work seeks to produce resource aware security 

solutions for containerized deployments that are adaptive to cloud native services. Building on 

the standard HSAG model, the enhanced HSAG model incorporates dynamic behavioral 

analysis and real time adaptation to overcome the state space explosion and real-time decision-

making issues with existing DRL approaches for container environments. 

 

3 Research Methodology 

3.1 Overview 

The research methodology proposes a systematic and iterative development of an active 

defense security framework for our container-based cloud environments. The methodology is 

based at its heart on theoretical modeling, practical implementation, and empirical evaluation, 

to address the research objectives defined. It is designed to utilize cloud native services in 

conjunction with deep reinforcement learning to build an adaptive security framework, able to 

adapt to emerging threats and optimize resource utilization in cloud native environments. 

The improvement of the Holistic System Attack Graph (HSAG) model represents the 

theoretical foundation. We build upon the work of (Li et al., 2022) and extend the base HSAG 

framework with cloud native attack vectors. A dynamic behavioral analysis model with real-  
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Figure 1: Proposed Research Methodology 
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time adaptation mechanisms is introduced into this enhanced model to enable monitoring and 

reacting to changes in container environments. Specifically, the design of the model exploits 

vulnerabilities and attack patterns that are specific to cloud native services, making it a more 

complete threat model.     

3.2 Proposed Methodology 

The development of an active defense security framework for container-based environments 

presented in Figure 1 follows a systematic and iterative research methodology. The 

methodology centers on three primary components: This thesis proposes a real time container 

monitoring system, a Holistic System Attack Graph (HSAG) model as security analysis model, 

a Prioritized Dueling Double Deep Q Network (P3DQN) for adaptive security decision making. 

To tackle the challenging problem of container security in dynamic environments, the research 

approach includes theoretical modeling for theoretical understanding of the problem, and 

practical implementation and empirical evaluation in dynamic container security. 

These dynamic environments often render traditional security approaches ineffective; namely, 

traditional reliance on static rule-based systems is insufficient. Since the P3DQN architecture 

is able to handle large state spaces and complex decision making better, deep reinforcement 

learning was adopted based on that fact. 

The basic DQN algorithm is updated in the proposed P3DQN methodology through three 

improvements. Next, the dueling network architecture splits the estimation of state values and 

action advantages, facilitating improved policy evaluation in security domain. Second, the 

double Q learning component minimizes value overestimation bias (i.e., double Q learning 

prevents learning security specific values that are too high), which is critical for security 

decision impacts and outcomes to be accurate. Third, prioritized experience replay guarantees 

that forgotten security events won’t be ignored in the learning process. The sophisticated 

approach allows the framework to learn optimal security policies by exploring new security 

strategies and exploiting known effective responses. 

3.3 Security Framework Implementation 

First, we enhanced the HSAG model with the addition of container specific attack vectors and 

security patterns. The HSAG model gives an overall view of the security landscape as a graph 

of attack paths and their connection inside the containerized environment. This work presents 

a model that utilizes multiple auxiliary security metrics like resource utilization patterns, 

network behavior, and container lifecycle events to build up a dynamic security state 

representation for the system. 

To take advantage of the difficult state space created by container environments, we designed 

the P3DQN agent's architecture to easily handle this. This involves multiple dimensions of 

container behavior, including how much CPU the container is using, how much memory the 

container is consuming, what are the network patterns, and some historical security events. The 

security response repertoire includes container isolation, resource throttling, and system 

restoration. We carefully crafted the reward function to balance its security effectiveness 

against the operation efficiency, both in terms of achieving the immediate threat mitigation and 

a stable long-term system. 

The monitoring component was built to offer real time visibility into container behavior with 

minimal overhead. To achieve this, an effective data collection mechanism was implemented 

to gather such security metrics without causing significant performance impact on the 

container. An HSAG model and a P3DQN agent use telemetry data integrated with container 

runtime interfaces to analyze and make decisions. 
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3.4 Experimental Design and Validation 

The experimental methodology leverages a full stack testing environment which emulates real 

world container deployments. It has multiple containerized application with different resource 

requirements and security characteristics in the test environment. The validation methodology 

consists of both a synthetic and realistic security scenario to test the framework performance. 

Different aspects of the framework's effectiveness was carefully defined and chosen to have 

performance metrics such as detection accuracy, false positive rates, response time, resource 

efficiency. Additionally, we highlighted specific metrics in evaluating the P3DQN agent's 

learning progress, including convergence rate, policy stability, and adaptivity to new security 

patterns. 

The focus of the evaluation process is a continuous monitoring approach in which security 

incidents occur at different periods and degrees. This enables appraisal of the system's learning 

capabilities over time, as well as immediate responses to security. Long term performance 

trends and policy evolution patterns are used to gauge the framework’s ability to adapt to new 

threats and optimize its security policies. 

 

4 Design Specifications 

4.1 Architecture 

The active defense security framework for container environment design presented in Figure 2 

includes a highly complex architecture, which involves real time monitoring, security analysis 

and intelligent response mechanisms. In essence, the framework approaches the question of 

security in multiple layers, with each layer accomplishing the specific function of the layer in 

the security framework. The main layers are the container monitoring system, the HSAG 

analyzer, and the P3DQN based decision engine that act together to offer pervasive security 

coverage. 

The first layer of the framework is the container monitoring layer which provides the 

foundation of the framework in that it implements efficient data collection mechanisms to 

produce the important metrics from containerized applications. This is a layer of low overhead 

but high visibility of container behavior. These systems directly interface with the container 

runtime and collect detailed telemetry: CPU utilization, memory consumption, network 

patterns, etc, as well as system calls. They are then processed, aggregated and provide a 

comprehensive view of state of the container environment. 

The architecture of the framework is based on a modular design pattern, in which components 

can be independently scaled and updated without disruption to system cohesion. They 

communicate through well defined interfaces allowing loose coupling, while at the same time 

retaining robust data flow among the system components. In addition, this modular approach 

allows new security features to be incorporated, and existing capabilities can be enhanced, 

without major architectural changes. 
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Figure 2: The Proposed Active Security Mesh Framework Architecture 
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4.2 Component Design 

The HSAG analyzer component is intended to deal with processed metrics and create a holistic 

description of security state. This piece accomplishes the task of implementing complex pattern 

recognition algorithms to recognize unusual container behaviour that can be potential security 

threat. It consists of an analyzer that keeps a dynamically formed graph structure representing 

relationships amongst security events and there possible impacts on the system. The real time 

view of the current security landscape is given in this graph, which is updates continuously 

with new observations and security events. 

Several novel design features endow the P3DQN agent with improved decision-making 

capabilities. The architecture of the agent’s neural network contains dueling streams that each 

respectively estimate action advantages and state value. By providing separation, the agent is 

better able to assess the significance of different security states as well as prospects of effect 

resulting from possible actions. The prioritized experience replay mechanism guarantees 

significant security events to get the necessary attention in learning process and, thus, allow 

the agent to perform better in critical security situations. 

4.3 Interface Specifications 

A full set of interfaces are implemented in the framework to help various components 

communicate and talk to each other. They define standardized methods for collecting container 

metrics, and for reporting security events, through the monitoring interface. This guarantees 

that we collect consistent data across containers running at different container runtimes and 

environments. Analysis interface offers techniques for the processing of the security events and 

the derivation of the risk assessments whereas the response interface characterises the 

execution of the security actions and their resultant effect on the state of information security. 

The visualization interface of the system provides real time insight into the security state of the 

container environment. Efficient data aggregation and visualization techniques are 

implemented into this interface to assist security administrators in the monitoring of system 

behavior and the tracking of security incidents. The security state is presented by the 

component dashboard in multiple views: real time metrics, historical trends, and incident 

reports. 

4.4 Security Tests, Responses and Validation 

The design of mechanisms within the framework is targeted in order to offer graduated security 

responses depending on the nature and severity of presented threats. There are mechanisms that 

implement different security actions, for example, container isolation, resource throttling and 

system restoration. Specifically, each response mechanism is purposely designed to provide 

minimal impact to legitimate container operation, while nevertheless being able to effectively 

counter security threats. 

The feedback of the response system measures the effectiveness of the security actions adopted 

and provides the data for the P3DQN agent to learn how to choose the actions. These 

mechanisms measure response time, resource impact and threat mitigation effectiveness. It 

allows the system to constantly adjust security response and learn from these threats in real 

time. 

The framework contains complete testing specifications that prescribe ways to prove system 

performance and security effectiveness. These specifications establish procedures for test 

scenario generation, system response measurement and security outcome evaluation. 

Automated test sequences are tested employing the testing framework—varying security 

incidents are simulated, and the detection and response capacity of the system is measured. 
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The validation specifications dictate which metrics are to be considered to measure the system 

performance in diverse measurable aspects, i.e. detection accuracy, response time, and resource 

utilization. They also describe ways to measure the learning progress of the P3DQN agent and 

the effectiveness of its security decisions. 

 

5 Implementation 
 

 
Figure 3: Active Defense Security Framework Implementation 

5.1 Development Environment 

Implementing the active defense security framework is itself a major technical undertaking 

with multiple related components. Python 3.9 along with all its machine learning and container 

library are used to implement the framework (Refer Figure 3). For development, Docker is 

used for container orchestration to make sure that the development behaviour is consistent 

across various deployment scenarios. The DRL components are implemented using 

TensorFlow 2.12.0 and employing P3DQN architecture. 

The monitoring and control interfaces rely on a Flask based web application that provides 

RESTful APIs to allow the system to operate via and from which metrics are pulled. The 

development of components is applied in modular way, so each of them is implemented as 

separate module in Python, in order to keep code structured and testable. To carry out the 

implementation a microservices architecture is used in which the different components can be 

independently deployed and scale, improving flexibility and maintainability of the system. 
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This implementation of the monitoring component interfaces directly with the Docker daemon 

using the Docker SDK for real time collection of container metrics and state information. This 

implementation enables very efficient data collection with little overhead, but at the same time 

provides complete visibility into container behaviour. The system has efficient data buffering 

and processing mechanisms to handle metric collection of high volume without affecting 

container performance. 

5.2 Component Flow Implementation 

The flow of the security framework implementation is structured to have a series of interactions 

between the core components the Security Monitor component, HSAG Analyzer, P3DQN 

Agent, and Evaluator as shown in Figure 4. The Docker SDK is used by the Security Monitor 

to periodically collect container metrics such as CPU usage tracking, memory consumption 

patterns and container state information. These metrics are processed by the HSAG Analyzer 

in a sophisticated pipeline which essentially comprises data normalization, feature extraction 

and risk assessment calculations. 

Figure 4: Core Components Implementation Workflow 

The P3DQN Agent is the decision-making core of the framework, which introduces the state 

vector produced by the HSAG Analyzer at its neural network architecture realized with 

TensorFlow. Selected actions taken by the Security Response component are executed via the 
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Docker SDK that involves container isolation, resource throttling and system restoration. The 

Evaluator component provides very comprehensive metrics collection and analysis 

capabilities, memorizing historical data on security incidents, response times and action 

outcomes within the systems and human layers. 

Error handling and logging is strict, in the sense that we do retries for some failed operations, 

and gracefully degrade if components fail. Both synchronous and asynchronous patterns are 

used for communication between components based upon the operation's need to return a 

response immediately. Feedback loops occur, response outcomes affect the P3DQN agent's 

learning process and updating security policies depend on performance metrics. The design of 

this solution achieves real-time visualization of system performance and initial security state 

and implements efficient data update mechanisms to keep data up to date with minimal browser 

resource usage. 

5.3 Testing and Security Response Implementation 

An automated test generation and execution can be created as part of an implementation of a 

testing framework. The security incidents and anomalous behaviors can be generated by 

parameterized sequences used to implement test scenarios. The mechanism of test intensity 

control and duration control are provided in the implementation for comprehensive system 

evaluation under different conditions. 

The monitoring dashboard is realized for provision of enhanced visualization of system metrics 

and security events in real time. Data aggregation and visualization components are included 

in the implementation such that they allow for the presentation of complex security metrics and 

system state information in a clear manner. The dashboard complies with responsive design 

principles and thus answers usability challenges on different devices and screen sizes. 

With container orchestration constraints in mind, the security response mechanisms are 

implemented. A different module is implemented for the response type, with complete failure 

handling. The implementation provides rollback capabilities to return system state to a safe 

state in case the security actions fail, thereby maintaining the system stable under security 

incident. 

5.4 Deployment Configuration and Metrics Collection 

Docker Compose is used to implement the deployment configuration with consistency across 

different environments. Detailed configuration management included can make the adjustment 

of system parameters and behavior easy. The deployment system follows the design decision 

of ensuring proper resource allocation along with the capability to scale based on varying 

workloads and security requirements. 

Efficient data storage and retrieval mechanisms with appropriate use of data structure 

depending on type of metrics is applied in metrics collection system. The implementation 

comprises real-time processing of metrics for real time decisions as well as storage of historical 

data for trend analysis and system evaluation. Various statistical methods are evaluated for 

system performance and security effectiveness by the analysis components. 

 

6 Results Evaluation 
The evaluation of the active defensive framework was done using comprehensive testing and 

measured for security performance analysis over time.  

6.1 DRL Agent Learning Progress 

From Table -1, we observe the DRL agent improves significantly over the evaluation period 

on several performance metrics in its learning progress. The exploration rate (epsilon) was 
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decreasing from 1.0 to 0.913, where the agent moves from exploration to exploiting learned 

security policies. The agent learns knowledge on security responses as it grows memory size 

to 21 experiences and trains for an additional 18 iterations. Most noticeably, the average 

response time jumped from 25.4 to 17.4 seconds (31.5% faster), indicating general 

improvements in decision making. Accuracy of threat detection was improved from 85.3% to 

98.5% accompanying a significant reduction in false positive rate, from 2.4% to 0.8%. The 

result was a 29.7% increase in the resource utilization efficiency up to 94.0%, and an improved 

resource management. The most notable improvement seen was the change in the action 

selection confidence, moving from 45.2% to 87.6% as their confidence in their security 

decisions increased. Together, these metrics show that P3DQN architecture successfully learns 

and optimizes container security responses. 

Table-1: DRL Agent Learning Progress 

Performance Metric Initial Value Final Value Improvement (%) 

Exploration Rate (Epsilon) 1.000 0.913 8.7 

DRL Memory Size (Experiences) 0 21 N/A 

Training Iterations Completed 0 18 N/A 

Average Response Time (seconds) 25.4 17.4 31.5 

Detection Accuracy (%) 85.3 98.5 15.5 

False Positive Rate (%) 2.4 0.8 66.7 

Resource Utilization Efficiency (%) 72.5 94.0 29.7 

Action Selection Confidence (%) 45.2 87.6 93.8 

6.2 DRL Agent Performance 

The continuous interaction with the container environment resulted in effective learning 

capabilities of the P3DQN agent. We show that the agent’s decision making steadily improved 

over time as the reward values increased and policy uncertainty decreased. We found that the 

prioritized experience replay mechanism is especially useful for dealing with critical security 

events, where high priority experiences are used nearly two and a third as often as low priority 

experiences during training. 

 

Figure 5: DRL Agent Training – Learning Curve over Episodes 
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6.3 Security Incident Response 

The capabilities of the response framework were evaluated across a range of security scenarios. 

The system showed efficient incident handling with an average response time 17.42 seconds 

from detection to an action completed. This time is the complete cycle of detection, analysis, 

decision and execution of action. In cases where incidents were detected, the rate of prevention 

was 1.0, precisely meaning that all identified security events were prevented. 

 

Table-2: Security Incident Response – Detection and Prevention Rates 

Incident Type Detection Rate Avg Response Time Prevention Rate 

CPU Spikes 98.5% 16.8s 100% 

Memory Leaks 96.8% 18.2s 100% 

Network Floods 97.2% 17.3s 100% 

Combined Attacks 97.5% 17.4s 100% 

6.4 Resource Utilization Statistics 

The system operation throughout the testing period is shown to be efficient according to 

resource utilization metrics. Average and peak CPU usage were 3.19%, and 25.04% 

respectively, during the normal operation and during the active incident handling. On the 

patterns of memory usage, there were similar efficiency, with average utilization at only 0.42% 

and peak usage never higher than 0.98%. 

 

Table-3: Resource Metrics 

Resource Metric Average Peak Threshold 

CPU Usage (%) 3.19 25.04 80.00 

Memory Usage (%) 0.42 0.98 70.00 

Network I/O (MB/s) 2.45 15.67 50.00 

Response Time (s) 17.42 28.91 30.00 

6.5 Dashboard Monitoring 

 

 

6.6 Discussion 

We show with our results that our container security framework is effective from the 

perspective of different performance dimensions. Learning was remarkable, as the confidence 

in the selected action improved by 42.4% (from 45.2% to 87.6%). Detecting CPU based (400) 

attacks with nearly 100% detection rate and within very low false positive rate (0.8%) is 

obtained from the framework. During all testing, resource utilization remained efficient; 

average CPU usage on normal operation was 3.19% and peak CPU usage during active incident 

response was 25.04%. A drastic improvement was also observed in the system's response time 

— from detection to completion of action, the system averaged 17.42 seconds, a 31.5% 

improvement from initial deployment. The framework was validated for its operational security 

effectiveness based on the security prevention rate which reached 100% for detected incidents. 

We show that the integration of HSAG analysis with P3DQN learning is especially effective 

for enabling adaptation to dynamic security challenges with low operational overhead, proving 

the feasibility of deep reinforcement learning for container security optimization. 
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7 Conclusion and Future Work 
In this research, we present an active defense security framework for container environments 

that integrates DRL into the defense response mechanism. This implementation shows a few 

key achievements to container security. We show that the P3DQN agent's architecture with its 

dual stream network and prioritized experience replay was highly effective for learning security 

policies which resulted in significantly increasing the amount of state action pairs selected with 

high confidence from 45.2% to 87.6%. The implementation of the monitoring system using the 

Docker SDK with optimized polling intervals consumed resources on demand without 

compromising security coverage. The implementation of the real-time processing pipeline of 

the HSAG analyzer successfully processed continuous metric streams, and also effectively 

detected threats. 

Automated test scenarios were implemented using dedicated test containers within the 

framework, used to systematically evaluate and validate security responses. Real-time 

visualization and metric tracking by the monitoring dashboard provided useful insights of 

system performance and security status. 

There are several promising directions for future work. It could improve threat detection 

capability through the integration of more sophisticated attack pattern recognition via advanced 

neural network architectures. Second, the further development of more granular resource 

optimization strategies could take advantage of the system's capacity for further efficiency. 

Furthermore, the applicability of the framework to specific container environment, e.g., edge 

computing and IOT containers can be extended. 
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