

Enhanced Automation Solution for Multi-Cloud

platform: Leveraging Advanced CI/CD Tools for

Deployment, Security and Testing

MSc Research Project

MSc cloud computing

Azhar Akhtar

Student ID: X23195215@student.ncirl.ie

School of Computing

National College of Ireland

Supervisor: Shivani Jaswal

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

Azhar AKhtar

……. ………

Student ID:

X23195215@Student.ncirl.ie

………..……

Programme:

Msc cloud Computing

………………………………………………………………

Year:

2024

…………………………..

Module:

Research Project

…….………

Supervisor:

12/12/2024

…….………

Submission

Due Date:

…….………

Project Title:
Enhanced Automation Solution for Multi-Cloud platform: Leveraging

Advanced CI/CD Tools for Deployment, Security and Testing
…….………

Word Count:

10028 32

……………………………………… Page Count…………………………………………….……..

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Azhar Akhtar

……

Date:

12/12/2024

……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Enhanced Automation Solution for Multi-Cloud
platform: Leveraging Advanced CI/CD Tools for

Deployment, Security and Testing
Azhar Akhtar

X23195215@student.ncirl.ie

MS Cloud Computing

Abstract

This research establishes an innovative technique to solve critical challenges

of DevOps Practices which includes vendor lock-in, deployment complexity,

Integration of automated testing in multi-cloud and security issues in multi-cloud.

Most of the previous research has explored the use of different tools like

Terraform and Docker automating infrastructure management, deployment

optimization and testing problems. However, many of these studies are restricted

to single-cloud environments, fail to address the problems of vendor lock-in and

in many cases overlook the critical phases of testing, security and deployment

phases of CI/Cd pipelines in multi-cloud. The research often focuses on isolated

tool comparisons such as Terraform Vs Pulumi AWS-specific solutions or other

cloud provider solution without thinking about complex multi-cloud deployment,

interoperability issues, testing issues and security challenges posed by using

different cloud infrastructures. This research automated DevOps practices in

multi-cloud by enhancing the integration of Terraform, Jenkins, GitHub and

Docker using different techniques that solve these gaps and enable dynamic

workload migration and cross-cloud orchestration. It leverages the terraform

tools to use infrastructure as code to handle the infrastructure in multi-cloud and

Docker to containerise the applications and Jenkins plays an important role in

this which is used to automate the process of CI/CD. It automates dynamic

deployments and allows continuous integration and delivery across multiple

Cloud Providers. It also enhances the testing and security enforcement with the

CI/CD pipeline. Automated testing and deployment, containerized applications

and security policies is seamlessly integrated into the Jenkins pipeline with other

tools which ensure compliance and operational standards across multi-cloud

environments. This research provides a comprehensive solution which integrates

different tools terraform, Docker, and Jenkins to address the issues in multi-cloud

Environments providing enterprise solutions for the application with scalable,

secure and cloud agnostic for CI/CD and infrastructure management. The system

achieved 0% error rates across all test cases, with AWS handling a throughput of

up to 118.41 hits/second and an average response time of 318.3 ms under heavy

traffic, demonstrating its robustness in managing high-traffic and write-intensive

workloads. Google Cloud, on the other hand, managed a higher throughput of

152.6 hits/second with an average response time of 246.68 ms, showcasing its

efficiency and cost-effectiveness for dynamic scaling and rapid deployment.

While AWS is optimal for enterprise-level applications requiring high reliability

and performance under complex workloads, Google Cloud is better suited for

agile projects and smaller workloads, emphasizing cost efficiency and quick

2

deployments. Both platforms displayed excellent scalability and operational

reliability across varying traffic conditions

Keywords – Docker, Terraform, Jenkin, GitHub, CI/CD, Multi-Cloud, DevOps,

Deployment, Testing, Security, AWS Cloud, Google Cloud

1 Introduction

The transformation toward a multi-cloud ecosystem in IT organizations has profoundly

changed the software development lifecycle, offering opportunities and challenges. In the

current fast-changing IT field, organizations are increasingly adopting multi-cloud strategies

to leverage the distinct benefits offered by different cloud providers, such as improved

scalability, availability, cost efficiency, and risk mitigation (Kim and Wang, 2023). However,

this shift introduces new complexities in managing, orchestrating, and automating the

infrastructure of different cloud providers and application deployments across these diverse

environments. DevOps plays a crucial role in the software development lifecycle. It combines

development and operations to enable efficient software delivery and automate processes.

DevOps emphasizes Continuous Integration, Deployment, and testing, allowing organizations

to achieve continuous delivery while maintaining reliability and stability (Tanzil et al., 2023;

Tanzil et al., 2024)

One of the key practices in DevOps is Infrastructure as Code (IaC), which allows cloud

services to be programmatically controlled and managed. It enhances scalability,

reproducibility, and reliability. Tools such as Terraform and Pulumi have become widely

used for implementing IaC at the enterprise level, enabling automated and consistent resource

provisioning across cloud platforms (Karlsson, 2023; Ghosh et al., 2024). However,

managing these tools in a multi-cloud ecosystem presents significant challenges. These

challenges include maintaining consistent resource configurations, securing cross-cloud

communication, and handling complex dependency management (Manca, 2023; Obi et al.,

2024). Additionally, developers often face struggles in maintaining and integrating suitable

DevOps tools that cater to the unique requirements of multi-cloud infrastructure for

applications (Farayola et al., 2023).

The shift from on-premise servers to cloud-native architectures has also necessitated the use

of containerization mechanisms such as Docker, which provides a standardized ecosystem for

running applications independent of the platform. Containers simplify deployment and

configuration across platforms by packaging applications and their dependencies, ensuring

consistent performance and configuration (Farah and Patel, 2024). However, orchestrating

containers and automating processes for deployment in a multi-cloud environment requires

robust CI/CD tools like Jenkins. Jenkins automates the integration and deployment of various

tools, reducing human error and enhancing overall efficiency (Chavan and Khadkikar, 2023;

Sokolowski and Salvaneschi, 2023)

Despite these advancements, several research gaps persist at every step of the software

development lifecycle. Many previous studies have focused on single-cloud deployments or

3

only compared individual tools used for IaC and pipelines that automate single-cloud

processes. For example, studies comparing Terraform and AWS Cloud Development Kit

(AWS CDK) often fail to address the challenges of the multi-cloud ecosystem (Pessa, 2023;

Bafana and Abdulaziz, 2024). There is a critical need for comprehensive frameworks that

integrate IaC tools and create pipelines capable of handling automated testing and

deployment in multi-cloud setups to manage complex use cases effectively (Kalliomaai,

2024; Tanzil et al., 2024). Security is also a vital concern in both single-cloud and multi-

cloud environments. Misconfigurations and vulnerabilities in containerized applications and

automated deployments can have severe consequences for organizations and users.

Therefore, implementing best practices for container security and compliance at every stage

of application development is essential (Farah and Patel, 2024; Olaoye and Luz, 2024

This research addresses these challenges by developing a practical application with an end-to-

end CI/CD framework using different multi-support tools for a multi-cloud ecosystem. The

study utilized Node.js as the backend language to develop servers that handle user data and

manage client requests. The application was containerized using Docker for consistent

deployment and testing. For the frontend, the project created a user interface with React.js,

deployed to Amazon S3 using Terraform. The backend application was deployed using

Jenkins to orchestrate the CI/CD pipeline, automating code integration, testing with Mocha

and Chai, and deployment to Amazon ECS with EC2 instances in AWS Cloud. The entire

infrastructure was written using Terraform, ensuring efficient and reliable resource

management (Ghosh et al., 2024; Pessa, 2023). The project was extended to other cloud

providers, deploying the application on Google Cloud to demonstrate true multi-cloud

flexibility and address vendor lock-in concerns. Additionally, this research explored the

integration of advanced security libraries to protect Docker containers from threats and secure

applications against attacks. The framework enhances security posture by ensuring

compliance and operational standards (Farah and Patel, 2024; Obi et al., 2024).This research

builds on previous studies by proposing a scalable, secure, and automated CI/CD framework

for more efficient multi-cloud software delivery (Kim and Wang, 2023; Tanzil et al., 2023).

1.1 Research Question
To what scale can a comprehensive framework integrating advanced DevOps tools enhance

automation in multi cloud ecosystem, particularly concerning in operational efficiency,

resource management and system reliability?

 Organizations are day by day change from the single cloud to multi cloud environments to

get benefits from it for application scalability, flexibility, and cost efficiency. The different

cloud providers offer these services for different types of applications (Obi et al., 2024) (Kim

and Wang, 2023). still, this shift comes with great complexities. One big challenge is

managing the infrastructure of different clouds and automating the process and

communication between different modules of the application across multiple. which requires

consistent configuration and secure, efficient deployment processes as well as checking the

different threats at every step. (Farayola et al., 2023) (Obi et al., 2024) Existing research

often focuses on single-cloud setups, it did not perform testing and security checks at

different stages of application development which is independent from the cloud which

solves a lot of 2 issues of multi-cloud. They failed to address these complexities in the multi-

cloud ecosystem. such as security integration and vendor lock-in mitigation (Bafana and

4

Abdulaziz, 2024) (Pessa, 2023). Moreover, the management of applications on multi-cloud

arises issues such as secure cross-cloud communication, preventing misconfigurations, and

handling unauthorized changes, all of which can affect the reliability and performance of

systems (Sokolowski and Salvaneschi, 2023; Olaoye and Luz, 2024). This thesis addresses

these gaps by proposing an integrated framework that uses Infrastructure as Code,

independent testing and security best practices to ensure seamless and secure automation

across different cloud platforms (Farah and Patel, 2024) (Ghosh et al., 2024). By focusing on

a practical, end-to-end solution, this research aims to advance the present capability of multi

cloud DevOps practices make sure the importance of efficiency, security, and flexibility in

complex, distributed environments and make generic environments for testing and security

parts which run independent run from the cloud providers which reduces the communication

problem between the different modules on different cloud provider.

2 Related Work

The change from premise server to cloud toward multi-cloud environments has

transformed the application development life cycle in the organization. It is very important

and necessary part to use modern tools for configuration, testing, and deployment another

part of the development lifecycle stage. These tools are key for efficiently developing and

managing software systems and automating the process. The IT landscape is evolving day by

day. This research explores different studies of comparing tools and techniques for

configuration management, Infrastructure as Code (IaC), security libraries and deployment

automation, highlighting the pros and cons of these tools and identifying research gaps that

guide future advancements

2.1 Significance of Configuration Management (CM) and Automation

Tools

The research ”Configuration Management in the Modern Era: Best Practices, Innovations,

and Challenges” focuses on the important role of configuration management in maintaining

the integrity, reliability, and efficiency of IT organizations in the development of any system.

As organizations evolve day by day to improve the process of their products as they transition

from cloud to multi-cloud environments, CM becomes necessary to manage fast

technological changes and large digital infrastructure for the systems. The study shows

modern practices, including integrating CM with DevOps workflows for developing and

managing the system, making use of containerization technologies, and implementing

Infrastructure as Code (IaC) for automation to reduce the manual handling in the life cycle of

software development. The research also addresses challenges such as scalability, security,

and collaboration difficulties, it gives strategic solutions to improve CM practices. (Farayola

et al., 2023)

2.2 Infrastructure as Code for resources

The IaC for resources is used to control and automate the cloud infrastructure resources with

code. It automates cloud infrastructure management resources and there are different

researches has explored its impact on the cloud infrastructure. In Daniel Karlsson’s research,

5

”Comparison of Infrastructure as Code (IaC) Frameworks from a Developer Perspective,”

shows the comparison of AWS CDK services and Pulumi services. There are other tools but

These are the two prominent IaC frameworks tools used for infrastructure as code. The

research investigates these tools based on factors such as code readability, ease of use of

these tools, and complexity of configuration of tools on the cloud provider. The result of the

result shows that AWS CDK’s high-level abstractions that’s why it is easier to use and less

cognitively demanding, On the other side, the Pulumi tool is very proficient in flexible, stack-

specific configuration management but still both tools have constraints particularly in

Command line interface functionality, Integration problems, security practices and support

for complex use case scenarios for multi-cloud. The research gives the idea that future studies

should inspect multi cloud helps also need advanced state management, security automation

in every stage, CI/CD integration, and fault management to develop a more comprehensive

IaC framework. (Karlsson, 2023).

Another research which is establish on the relative study of different infrastructures as code

tools by Pessa, ”Comparative Study of Infrastructure as Code Tools for Amazon Web

Services,” contrasts of AWS CDK and Terraform tools. This research mainly focuses on

features, functionality, and performance in both tools In the result the researcher’s findings

show that Terraform tools for infrastructure as code are better suited for multi-cloud

ecosystems due to their efficient deployment and update operations. On the other hand, the

AWS CDK is more user-friendly because it has a high level of abstraction for AWS-specific

cloud providers. It is very friendly for seamless integration and familiar programming

languages. The study recognizes gaps in CI/CD pipeline integration and consistent testing

environments for multi-cloud as well, calling for more research on complex use cases and

dependency management (9) There is another paper that addresses the growing challenges of

complexity for IaC tools is ”Towards Reliable Infrastructure as Code” y Sokolowski and

Salvaneschi

The paper ”Towards Reliable Infrastructure as Code” by Sokolowski and Salvaneschi

addresses the growing complexity of IaC tools, likening them to traditional software methods

rather than simple configuration scripts. The author’s attention to the need for robust testing

and verification methods in each step of the creation of infrastructure as code services is

because as failures in IaC scripts can cause significant security and deployment issues. The

study proposes a solution that integrates modern fuzzing testing methods and property-based

testing to enhance IaC reliability. The research shows that current IaC tools lack efficient

testing mechanisms, and unit testing practices remain unmanageable. Future research should

study and explore more streamlined testing techniques and the development of IaC tools

optimized for performance and error prevention. (Sokolowski and Salvaneschi, 2023)

2.3 Automation and Multi-Cloud Tools

The study ”Comparative Analysis of CI/CD Tools in Multi-cloud Environments” by Nguyen

and Lee’s explore different CI/CD tools and their productiveness in multi-cloud

environments. The research compares Spinnaker, Jenkins, and other CI/CD solutions and

6

highlights the importance of tool compatibility with the cloud provider, ease of integration,

and performance optimization in the lifecycle of development of applications. The research

highlights the need for frameworks or use of libraries that facilitate seamless CI/CD pipeline

integration, manage complex deployments with multi-cloud environments and ensure high

system reliability. It also underscores the importance of handling cross-cloud communication

and dependency management efficiently, an area still underexplored (Nguyen and Lee, 2024).

The study ”Choosing the Right IaC Tool for Building Reusable Cloud Infrastructure” further

explores the strengths and limitations of different infrastructures such as code tools

Terraform, Pulumi, and Ansible. It shows Terraform is ideal for multi-cloud environments

due to its declarative approach and strong community support. On the other side, Pulumi with

features like multi-language support is favoured for complex application configurations,

while Ansible is best at automating repetitive tasks across multiple systems. The study

emphasizes evaluating these tools based on their learning curve, scalability, and security

features. Gaps identified include the need for improved security integration and better support

for multi-cloud deployments (Kalliomaai, 2024).

2.4 Deployment and Automation Challenges

The study ”Automatic Deployment Solution for Multi-Cloud Environments” by Gon¸calves

investigates challenges faced by developers using DevOps tools. Through conducting

different surveys and analyzing post data of stack overflow the research categorizes common

issues such as CI/CD tools, infrastructure as code for cloud, container orchestration, and

quality assurance these are the categories which are study findings and give the ratio

according to the severity of the issue. There are tools such as Jenkins, Ansible, Puppet,

Terraform, and Kubernetes are highlighted as the most important tools with findings in the

study emphasizing the complexity of version compatibility and cloud infrastructure

automation. This research underscores the essential of real-world experience and prioritizes

the development of supportive resources for efficient DevOps implementations in the

software development life cycle (Gonçalves, 2023).

Further study by Ghosh, Srivastava, and Supraja ”Streamlining Multi-Cloud Infrastructure

Orchestration,” is based on Terraform’s capabilities, and features to be enhanced with custom

wrappers to simplify deployment across AWS and Azure. This research also discloses that a

declarative approach is used by terrafrom to manage infrastructure resources to ensure

alignment between the desired and actual states. However, the authors focus on future

research as well in the areas of including open standards for cloud orchestration, unified

management interfaces, and enhanced dynamic configuration management (Ghosh et al.,

2024)

2.5 Importance of Containerization and Orchestration

Containerization technologies one of the most important and widely used technologies

nowadays such as Docker, have become necessary in modern DevOps practices. According

to research by Farah and Patel, analyses of containerized applications require strict security

7

measures, especially when deploying an application in a multi-cloud environment. This

research focuses on using vulnerability scanning libraries like Trivy to ensure that images of

docker are secure before deployment. In my research, the use of Docker and security

scanning tools reflects the growing industry trend of integrating security libraries directly into

the CI/CD pipeline using Jenkins as a pipeline for multi-cloud, often referred to as

”DevSecOps” Additionally, further in research, This research explore Docker is used for

creating consistent development and production environments showing the importance of

container orchestration tools, such as Docker for managing distributed workloads. Integrating

practical experience into the literature review can provide a real-world perspective on

existing research. Studies like ”Multi-cloud Infrastructure Management: Challenges and Best

Practices” by Kim and Wang (2023) focus attention on the complexity of orchestrating

CI/CD processes across diverse cloud providers. The main focus is that to implementing

automation frameworks, such as Jenkins integrated with Infrastructure as Code (IaC) tools

like Terraform, is crucial for maintaining deployment consistency, especially when dealing

with Docker zed applications

2.6 Security and Compliance in Automated Frameworks

The growing factor in the multi-cloud context is reliance on automated frameworks for

managing infrastructure which introduces significant security concerns. The literature,

including studies by Nguyen and Lee (2024), shows that automated deployment processes

must include security best practices to prevent vulnerabilities and unauthorized access to the

application. The need for a robust security strategy is further researched and supported by

Olaoye and Luz (Olaoye and Luz, 2024), who support comprehensive access control policies

and regular security audits in multi-cloud ecosystems.

2.7 Research Niche

The increasing complexity of the multi-cloud ecosystem makes necessary a comprehensive

framework to automate key phases of the CI/CD pipeline using advanced tools in the

software development lifecycle. Organizations frequently experience challenges such as

vendor lock-in, misconfiguration of automation scripts, and the management of resources

across various cloud platforms. The centre of attention of most existing research points of

convergence on single-cloud solutions with simple use cases has a view of critical aspects

such as cross-cloud interoperability, robust testing mechanisms, and integrated security

measures. This research addresses these gaps by proposing an advanced integration of

different DevOps tools such as Terraform, Jenkins, Docker, and GitHub Advanced Security

to streamline multi-cloud deployments. By integrating automated testing, security scanning,

and dynamic infrastructure provisioning, the framework ensures scalability, reliability, and

flexibility, making it a significant advancement in multi-cloud DevOps practices.

8

2.8 References, Challenges, and Key Insights Supporting Multi-Cloud

DevOps Research

ti Problem Key Insights and

Relevance

Kim and Wang, 2023 Problems in multi-cloud

infrastructure management,

including vendor lock-in

and misconfigurations.

Bring into being the

importance of addressing

vendor lock-in and

configuration consistency

in multi-cloud

environments.

Tanzil et al., 2023 DevOps problems in

testing and deployment.

Focuses on the need of

integrating automated

testing to improve pipeline

reliability and scalability.

Tanzil et al., 2024 Deficient focus on testing

and security integration in

DevOps pipelines on

different stages.

Illustrate the fundamental

of combining testing and

security problems into

CI/CD pipelines for

robustness.

Karlsson, 2023 Comparison of IaC tools

(AWS CDK vs Pulumi).

Give a comparative basis

for selecting Terraform in

research for its multi-cloud

capabilities and consistent

configurations.

Ghosh et al., 2024 Complexity in Terraform-

based multi-cloud

orchestration.

Validates Terraform's

suitability for manage

complex, scalable

deployments across

multiple cloud platform.

Farayola et al., 2023 Configuration management

problem and scalability in

multi-cloud.

Focuses on the importance

of scalability and

configuration management

to automate and simplify

resource provisioning.

Gonçalves, 2023 Issues in CI/CD tool

compatibility and

automation.

Strength the role of Jenkins

and Docker integration for

authorize seamless

automation in multi-cloud

CI/CD pipelines.

Pessa, 2023 Comparative evaluation of

Terraform and AWS CDK.

Set up Terraform as a

preferred IaC tool for

9

secure and consistent

infrastructure as code in

multi-cloud platforms.

Sokolowski and

Salvaneschi, 2023

Lack of robust testing in

IaC tools.

Need to Shows the value of

enhancing IaC pipelines

with testing stage with

mechanisms to ensure

reliability.

Farah and Patel, 2024 Security vulnerabilities in

containerized applications.

Supports incorporating

security tools like Trivy or

other libraries to make sure

secure and compliant

deployments.

Nguyen and Lee, 2024 Tool compatibility and

cross-cloud communication

in different clout platforms

in CI/CD.

It show the importance of

make sure tool

compatibility to streamline

CI/CD processes in multi-

cloud automation setups.

Olaoye and Luz, 2024 Security concerns in multi-

cloud platform.

Need to focuses on the

importance of access

controls and regular

security audits to secure

multi-cloud deployments.

Nawagamuwa, 2023 Testing gaps in application

infrastructure using IaC.

Advocates for robust

testing strategies to ensure

consistency multi-cloud

ecosystem.

Obi et al., 2024 Security and efficiency

problems in evolving cloud

computing standard.

Validates the integration of

advanced CI/CD

procedures to manage

evolving multi-cloud

challenges.

Chavan et al., 2023 Deployment complexities

in container-based

environments.

Focus on the role of

automation in managing

Kubernetes, Docker and

multi-cloud deployments.

Bafana and Abdulaziz,

2024

Difficulties in managing

immutable infrastructure in

AWS deployments.

Show the benefits of used

of immutable infrastructure

for consistent multi-cloud

setups.

Kalliomaai, 2024 Pick the right IaC tools for

reusable cloud

infrastructure.

Support for reusable

Terraform modules to

enhance multi-cloud

10

infrastructure management.

3 Research Methodology

The proposed DevOps solution is plan to implement an efficient, automated, and secure

CI/CD pipeline across a multi-cloud environment on every stage of software development

lifecycle, integrating code-level security controls, containerization, and deployment

strategies. This section expresses the tools, components, and processes that enable this

solution focusing on deployment speed, scalability, response times, security posture, and

containerization efficiency. Key technologies that are used which include Jenkins, Docker,

Node JS, Terraform, and AWS and Google Cloud services, each selected to streamline

specific aspects of the pipeline

3.1 Jenkins (CI/CD Automation)

For automation the process of application this project used Jenkins as used primarily for

continuous integration and continuous deployment. It is an open-source server that is used to

manage the CI/CD pipeline in this project. It’s have great plugins support allows flawless

integration with multiple services that why it is most important tools for build, test, and

deployment processes. Jenkins automates tasks from code commit to deployment which

reducing manual intervention and improving deployment speed of the application as well

help other stages as well.

 Code Checkout: Get the latest code version of the code from GitHub, make sure the

pipeline always works with up-to-date code and run the pipeline.

 Build and Test Stages: Jenkins executes automated tests using Mocha and Chai using

Docker file, validating functionality at each stage. This make sure that API is test on

every stage.

 Security Scanning & dependence Scanning: Integrated with tools like CodeQL and

Dependabot for security checks on GIT level which is benefit for different cloud

platform. These tools identify and mitigate vulnerabilities in the codebase, enhancing

the securities alerts and dependencies issues this process is independent from the

cloud provider.

 Deployment Triggers: In the deployment stage application are Configured to

automatically deploy to different cloud platforms (AWS and Google Cloud) upon

successful test completion, optimizing deployment speed and minimizing human

error.

3.2 Docker (Containerization)

Docker is utilizing to containerize both the backend Node.js application and the frontend

React.js application. Containerization make sure that applications run consistently across

different cloud platform which enabling efficient management and deployment across AWS

Services and Google services.

11

 Container Build: In this stage Docker images are created for both backend and

frontend services, encapsulating the applications and its dependencies into images.

This promotes portability, ensuring consistent behavior across different platforms.

 Docker Testing: Containers are tested within Jenkins to validate functionality and any

security vulnerabilities in a controlled environment before deployment, enhancing

containerization efficiency by reducing issues related to platform-specific

configurations.

 Image Storage and Management: Images are stored in two cloud providers such as

AWS ECR and Google Artifact Registry make sure efficient retrieval for deployment

on ECS (AWS) and Cloud Run (GCP). Docker’s versioning capabilities allow easy

rollback if needed, providing a robust fail-safe.

 A vulnerability scanner used for securing Docker images by identifying issues in

containers, dependencies, and configurations which provides insight about this issues.

This ensures secure and compliant deployment of containerized applications.

3.3 Terraform (Infrastructure as Code)

Terraform is integrated to manage infrastructure as code on both AWS and Google Cloud

which provide automated, versioned, and consistent deployment of resources on both cloud

providers. It provisions and manages all necessary cloud components, supporting scalability

and resource utilization.

 Terraform Init: Initializes the Terraform environment and downloads necessary

plugins based on the both cloud provider (AWS or GCP).

 Terraform Plan: Prepares a “dry-run” of the infrastructure setup it like plan for the

resources, identifying any configuration issues before deployment.

 Terraform Apply: Run the script to create infrastructure configurations to the cloud,

creating resources like ECS clusters, ECR repositories, Cloud Run services, and IAM

roles. This ensures a consistent, repeatable infrastructure setup that can easily scale.

 Terraform Destroy: Give the ability to delete all resources when necessary, helping to

control costs by removing unused infrastructure.

3.4 AWS and Google Cloud (Deployment Platforms)

The application is deployed on both AWS and Google Cloud to achieve a multi-cloud

environment using Jenkins, Docker and terraform, Utilizing the different capabilities of each

platform for efficient resource utilization, scalability, and monitoring.

3.4.1 AWS Services

 ECS (Elastic Container Service): Used ECS for Hosting the backend Node.js

application, make sure that auto-scaling option are enable for handle increased traffic,

ensuring scalability, and optimizing resource utilization.

 ECR (Elastic Container Registry): It is used to Stores Docker images, enabling

quick and consistent deployment of containerized applications.

12

 S3 and Cloud Front: Hosting the frontend make sure fast content delivery,

scalability for static resources, and improved performance for end-users.

 RDS (Relational Database Service): For database MySQL used for persistent data

storage, providing a managed database solution to efficiently handle backend data

requirements.

 Cloud Watch: Monitors Aws resource utilization, response times, and error rates. It

managed essential metrics for analyzing scalability and system response under

varying load conditions.

3.4.2 Google Cloud Services

 Cloud Run: It is used to Provides a environment for the backend Node.js application,

allowing rapid deployment with automatic scaling to handle request.

 Artifact Registry: It is same to Stores Docker images, ensuring efficient and secure

retrieval and deployment, similar to ECR on AWS.

 Cloud SQL (MySQL): Same database are used here for controlling persistent data

storage for the backend application with Google's managed MySQL service, offering

high availability and scalability.

 Cloud Monitoring: To tracks application performance, providing insights into CPU

and memory usage, response times, and error rates across deployments.

3.5 GitHub

 It is Used for version control with repositories secured using GitHub Advanced Security

 Scans for vulnerabilities, dependencies issues, and other security concerns to ensure high

code quality

4 Design Specification

The proposed solution with tools is designed to implement an efficient and secure CI/CD

pipeline across a multi cloud platform using both AWS and Google Cloud providers. The

framework integrates key tools and techniques to make sure seamless automation, scalability,

and performance monitoring. Below is a detailed explanation of the design:

13

4.1 Architecture Diagram:

Architecture Diagram of the Multi-Cloud CI/CD Framework figure (1)

14

The architecture diagram shows the comprehensive flow of the CI/CD pipeline and

deployment processes in both environments such as AWS and Google cloud. The process

start with code security checks it is independent from the cloud infrastructure that is used as

generic it used GitHub Advanced Security tools such as CodeQL for vulnerability detection,

secret scanning to identify hardcoded secrets in the code, and dependency analysis of the

libraries that are used for the project implemented for security vulnerabilities. This make sure

that only high-quality code, secure and standard code is proceeds to the next steps. The code

is stored and managed in GitHub repository.it is the serves as the central repository for

version control. When the code commit is made, Jenkins, the CI/CD orchestrator is run the

pipeline to deployment the application that automates the build, test, and deployment stages.

This includes to create the build of the application using Docker then running unit tests with

Mocha and Chai to make sure backend application functionality. Same for the frontend

another pipeline is created and run when the code is committed. After the testing and Before

deployment of the application, Trivy scans Docker images for vulnerabilities at this stage,

make sure application is secure and compliant builds. The backend Node.js application is

deployed on different cloud platform such as AWS and Google Cloud to achieve a multi-

cloud strategy. Terraform provision the infrastructure as code all the services on both

providers which including Amazon ECS for hosting containerized applications with auto-

scaling, Amazon ECR for storing application Docker images, and Amazon S3 with

CloudFront for serving the React.js frontend with fast and scalable delivery. For storing data

of backend is managed through Amazon RDS (MySQL), while Amazon CloudWatch

monitors resource utilization, response times, and errors to provide insights into system

performance. On the other hand, terraform is used for the google cloud resources. Google

Cloud, the backend application is deployed using Cloud Run. Google Artifact Registry

control Docker images, while Cloud SQL (MySQL) make sure a highly available and

scalable database solution. Google Monitoring provides detailed metrics, including CPU and

memory utilization and error rates of the application. The frontend React.js application is

hosted on AWS S3, integrated with Cloud Front for fast delivery it just for the users. The

combination of AWS and Google Cloud services with the tools like Jenkins, Docker, and

Terraform make a robust, scalable, and secure infrastructure capable of handling different

workloads and make sure seamless CI/CD operations. This solution not only make sure high

performance and scalability but also integrates strong security measures at every stage.

5 Implementation

The implementation of the proposed solution of multi-cloud DevOps application focuses on

automating the CI/CD pipeline, make sure that it takes robust security measures on every

stage, and achieving fast and efficient deployment across both cloud providers. The solution

process start with GitHub, which act as the repository for managing the backend app and

frontend app code with features of Advanced security such as CodeQL, secret scanning, and

dependency analysis of the code and with vulnerabilities and ensure the integrity of the

codebase before progressing to other steps. Jenkins tool are used for the CI/CD pipeline,

automating tasks such as code checkout, unit testing, containerization, and deployment.

Mocha and Chai are used for unit testing for the backend to validate functionality and detect

15

errors early in the code. Jenkins tool is integrating with Docker to build containerized

versions of the backend application and frontend as well to make sure consistent runtime

environments. Before deployment of the applications Trivy scans the Docker images for

vulnerabilities, adding one more layer of security to the deployment process. The

infrastructure is provisioned using Terraform that make enabling automated, consistent, and

scalable resource management across both cloud providers. On AWS side the backend is

deployed to Amazon ECS which is supported by Amazon ECR for container storage with

EC2, Amazon RDS (MySQL) for database management, and Amazon Cloud Watch for

performance monitoring and errors. The frontend application is deploying and hosted on

Amazon S3, with CloudFront enabling fast and scalable content delivery of the content. On

Google Cloud, the backend application is deployed using Cloud Run, with Google Artifact

Registry controlling Docker images and Cloud SQL providing a scalable database

management. Google Monitoring service is used to track application performance and

monitor key metrics such as CPU and memory utilization. By combining these with secure

and automated CI/CD pipelines the solution achieves faster deployment cycles, robust

application security, and consistent performance monitoring, making it better for handling

complex workloads in a multi-cloud ecosystem.

6 Evaluation

The evaluation of project focuses of different factors such as comparison between the aws

and google cloud services with respect to CI/CD pipeline tools such as deployment speed,

developer experience, integration with tools that emphasizing their efficiencies in different

use cases. Performance metrics such as response time, throughput and error rates show the

application scalability and reliability in addition with use cases and deployment speed robust

security measures were integrated at different stages which show the vulnerabilities and

simulating attacks at different level. This research provides comprehensive approach that

validate the practical solution for optimization deployment, enhancing security, project

objectives and make sure the operational efficiency in multi cloud environment.

16

6.1 AWS USE CASES

6.1.1 Performance Testing Results for Use Case 1

To evaluate the efficiency and scalability of the Node.js application that is deployed using

Docker and AWS infrastructure with the help of terraform, performance testing was

conducted using BlazeMeter tool.

The above metrics were for Use Case 1

 Maximum Users: 5

 Hits Per Second (Throughput): 68.62 Hits/s

 Error Rate: 0% (indicating no errors during the test)

 Average Response Time: 69.71ms

 90th Percentile Response Time: 83ms

 Average Bandwidth: 1.99 MiB/s

Graph Explanation:

 User Load (Blue Line): The virtual user count gradually increased from 1 to 5,

representing a light load scenario. The application handled this smoothly without

delays to response to the use.

 Hits Per Second (Yellow Line): Throughput increased to 68.62 Hits/s, show that

good efficiency in handling requests.

 Average Response Time (Orange Line): Response time stabilized at 69.71ms,

indicating low latency and quick processing of requests of every user.

 Error Rate (Green Line): The error rate remained at 0%, confirming the

application’s reliability.

 Bandwidth: The bandwidth usage of 1.99 MiB/s indicates efficient data transfer,

appropriate for the tested user load.

The application performed extraordinarily well under the load of 5 virtual users that

maintaining a 0% error rate and also show low latency with an average response time of

69.71ms, and consistent throughput of 68.62 Hits/s. These results validate the reliability and

robustness of the deployment pipeline and infrastructure configuration, ensuring efficient

data transfer and quick processing for light traffic scenarios.

17

6.1.2 Performance Testing Results for Use Case 2

Use Case 2 involved simulating a load of 50 virtual users (VUs) to test the scalability

and reliability of the system under heavier traffic conditions.

 Maximum Users: 50

 Hits Per Second (Throughput): 118.41 Hits/s

 Error Rate: 0% (indicating all requests were successful)

 Average Response Time: 318.3ms

 90th Percentile Response Time: 388ms

 Average Bandwidth: 3.44 MiB/s

Graph Explanation:

 User Load (Blue Line): The number of virtual users steadily increased to 50,

simulating a moderate load. The system successfully scaled to meet the demand.

 Hits Per Second (Yellow Line): Throughput peaked at 118.41 Hits/s, reflecting the

backend’s ability to handle a higher request rate for the users.

 Average Response Time (Orange Line): The response time stabilized at 318.3ms,

showing that the system maintained performance under heavier traffic with good

response time .

 Error Rate (Green Line): With a 0% error rate, the application handled all requests

without issues.

 Bandwidth: Bandwidth usage of 3.44 MiB/s reflects efficient data handling, even

with a higher number of users.

These results show the robustness of the deployment pipeline and infrastructure configuration

as code with AWS ECS with EC2 instances and S3 for frontend hosting. This test case shows

the scalability of the application and the ability of AWS infrastructure to handle high traffic

effectively, with no degradation in service quality.

18

6.1.3 Performance Testing Results for Use Case 3

Use Case 3 involved simulating a load of 40 virtual users (VUs) to evaluate the system’s

ability to handle write operations effectively under moderate traffic conditions.

 Maximum Users: 40

 Hits Per Second (Throughput): 217.48 Hits/s

 Error Rate: 0% (all requests were successful)

 Average Response Time: 138.65ms

 90th Percentile Response Time: 149ms

 Average Bandwidth: 257.44 KiB/s

These results validate the backbend application feature to handle write-intensive workloads

while ensuring data integrity and efficient processing. This test case shows the efficiency and

scalability of the application’s backend for data insertion and updates of data as well which

show that the AWS infrastructure is optimized to handle write-heavy scenarios without

bottlenecks in service quality.

6.1.4 Overall Benefits Across Use Cases

1. Reliability: All use cases, the error rate remained at 0%, showcasing a highly

dependable backend infrastructure.

2. Scalability: The system effectively handled and control increasing user loads that

make sure seamless operation under diverse traffic conditions.

3. Performance Optimization: The average response times and high throughput

highlight the system's capability to process both read and write operations without

performance decrease.

4. Efficiency: Efficient bandwidth usage ensures smooth data transfer and optimized

resource consumption, even under high loads.

5. Real-World Readiness: The robust performance validates the system’s ability to

handle different workloads.

19

These results confirm that the deployment strategy, infrastructure setup (AWS ECS/ECR, S3,

Docker), and automated CI/CD pipeline (Jenkins + Terraform) are well-optimized to deliver

high performance and reliability for diverse workloads for different applications.

6.1.5 CPU Utilization Analysis for Use Cases

The graph provided shows the CPU utilization (%) over time for the Node.js instance during the

performance tests of all three use cases on the aws services. Below is the analysis:

Observation:

1. Baseline Usage:
o At the start (23:15 to around 00:45) CPU utilization remained low near to 0%. This

reflects minimal activity during periods without load testing or when the system was

nothing to do.

2. First Spike (Around 00:45):
o A sharp increase in CPU usage is observed, reaching nearly 60%.

o This spike likely corresponds to Use Case 1, where a small load of 5 virtual users was

applied. The backend responded to the read requests efficiently, causing a moderate

spike in CPU activity before settling back to idle.

3. Second Spike (Around 01:15):
o A significant spike is seen when the testing is performing, peaking at approximately

70-75% utilization.

o This spike matches the execution of Use Case 2, where a larger load of 50 virtual

users generated both read and write operations at that time. The mixed workload

involved more intensive processing, including handling simultaneous database

queries and updates, leading to higher CPU usage.

4. Third Spike (Around 02:00):
o The CPU usage rises again, reaching around 40%.

o This correlates with Use Case 3, focusing only write operations (POST requests).

Although write operations are computationally heavier than the read, the smaller load

of 40 virtual users resulted in lower CPU utilization compared to Use Case 2.

20

6.1.6 Explanation of Results of CPU Utilization:

1. Efficient Resource Utilization:
o The CPU usage increased proportionally with the workload shows that the backend

scaled well with the rising demands of the request and user load.

o The system was not overwhelmed at any point with low to high load with CPU

utilization staying below 80%, indicating sufficient computational capacity for all

three use cases.

2. Consistency Across Use Cases:
o Spikes in CPU utilization align with the intensity of each use case that show that the

infrastructure was well-configured to handle different workloads efficiently.

3. Idle Periods:
o The graph's return to near-zero utilization after each spike highlights the system's

ability to return to an idle state when no active workload is present.

6.2 GOOGLE USE CASES

6.2.1 Performance Testing Results for Google Cloud Use Case 1

To measure the efficiency and scalability of the Node.js application deployed using

Google Cloud Run. The following metrics were captured for Use Case 1

 Maximum Users: 5

 Hits Per Second (Throughput): 59.23 Hits/s

 Error Rate: 0% (indicating no errors during the test)

 Average Response Time: 80.77ms

 90th Percentile Response Time: 98ms

 Average Bandwidth: 1.71 MiB/s

6.2.2 Graph Explanation:

 User Load (Blue Line): The virtual user count increased to 5, representing a light

load scenario.

 Hits Per Second (Green Line): Throughput increased to 59.23 Hits/s with increasing

the virtual users that show backend application capability to efficiently handle the

incoming requests.

21

 Average Response Time (Orange Line): Response time stabilized at 80.77ms, show

quick processing and low latency for the requests.

 Error Rate (Red Line): The error rate remained at 0%, indicating the system's

reliability in handling all requests successfully.

 Bandwidth: The bandwidth usage of 1.71 MiB/s reflects efficient data transfer

suitable for the tested load.

These results shows to validate the robustness of the deployment pipeline and

infrastructure configuration using Google Cloud Run and google other services. This test

case focusses the scalability of the application and the ability of Google Cloud

infrastructure to handle light traffic effectively without any degradation in service quality.

6.2.1 Performance Testing Results for Google Cloud Use Case 2

To measure the scalability and reliability of the Node.js application deployed using

google cloud services. The following results were captured for Use Case 2:

 Maximum Users: 50

 Hits Per Second (Throughput): 152.6 Hits/s

 Error Rate: 0% (indicating no errors during the test)

 Average Response Time: 246.68ms

 90th Percentile Response Time: 363ms

 Average Bandwidth: 4.41 MiB/s

6.2.2 Graph Explanation:

 User Load (Blue Line): The users count increased to the maximum of 50 users. The

system handled this increase effectively, with no decrease in service quality.

 Hits Per Second (Green Line): The throughput at raised.6 Hits/s, show the

backbend’s ability to process a high volume of mixed read and write requests

efficiently.

 Average Response Time (Orange Line): The average response time reach at

246.68ms, while the 90th percentile response time was 363ms, indicating consistent

performance under more traffic conditions.

22

 Error Rate (Red Line): The error rate remained at 0% throughout the test, show that

the application successfully processed all requests without failure.

 Bandwidth: The average bandwidth of 4.41 MiB/s reflects efficient data transfer

capabilities to handle high traffic loads.

These results show the reliability and scalability of the Google Cloud Run infrastructure for

controlling heavier workloads on both read and write operations. This test case shows the

robustness of the deployment pipeline and the features of Google Cloud services to maintain

high performance under significant traffic, ensuring a responsive and reliable user

experience.

6.2.3 Performance Testing Results for Google Cloud Use Case 3

To show the capability of the Node.js application to handle write-intensive operations

using Google Cloud Run and other cloud services. The performance testing was

conducted with 40 virtual users (VU). The following results were captured for Use Case

3:

 Maximum Users: 40

 Hits Per Second (Throughput): 176.08 Hits/s

 Error Rate: 0% (indicating no errors during the test)

 Average Response Time: 215.89ms

 90th Percentile Response Time: 285ms

 Average Bandwidth: 214.35 KiB/s

6.2.4 Graph Explanation:

 User Load (Blue Line): The user of the application count increased to a maximum of

40, simulating a moderate traffic scenario of request for application for write

operations. The system scaled effectively without delays.

 Hits Per Second (Green Line): Throughput spark at 176.08 Hits/s, show the

backbend’s efficiency in processing high volumes of POST requests.

23

 Average Response Time (Yellow Line): The average response time reach at

215.89ms, with 90% of the requests completing within 285ms, indicating consistent

performance under this load.

 Error Rate (Red Line): The error rate remained at 0%, confirming the system

successfully processed all POST requests without failures.

 Bandwidth: The average bandwidth of 214.35 KiB/s show the efficiency of data

transfer while handling concurrent write operations.

The backend controls a 0% error rate with consistent response times that show the robustness

and scalability of Google cloud services for handling write-heavy requests. This test case

shows the infrastructure's ability to control moderate traffic levels with reliable and efficient

write operation processing, making it well-suited for applications that involve frequent

database inserts or updates.

6.1.4 Overall Benefits Across Use Cases (Google Cloud)

The performance testing of the Node.js application deployed on Google cloud services show

the following benefits across all use cases:

 Reliability:

 Across all use cases, the system maintained a 0% error rate, make sure the robust and

dependable handling of all requests, whether read or write operations.

 Scalability:

 The application efficiently scaled to accommodate increasing user loads and requests

of the user from 5 users in Use Case 1 to 50 users in Use Case 2, and 40 users in Use

Case 3, without performance degradation.

 Consistent Performance:

 Response times remained within good ranges under varying loads, with average

response times of 80.77ms (Use Case 1), 246.68ms (Use Case 2), and 215.89ms (Use

Case 3), show the backbend’s optimization for handling diverse workloads.

 High Throughput:

 The backend application achieved high throughput rates, with peak Hits Per Second

values of 59.23 (Use Case 1), 152.6 (Use Case 2), and 176.08 (Use Case 3). show the

system's capability to process a large number of requests efficiently.

 Efficient Bandwidth Utilization:

 The infrastructure controls efficient bandwidth usage, with average bandwidths of

1.71 MiB/s (Use Case 1), 4.41 MiB/s (Use Case 2), and 214.35 KiB/s (Use Case 3),

make sure the smooth data transfer and optimized resource utilization.

24

 Adaptability to Different Workloads:

 The system performed effectively across a different of scenarios which including light

read-heavy workloads (Use Case 1), mixed read-write operations (Use Case 2), and

write-intensive tasks (Use Case 3), validating its adaptability to real-world application

demands.

The testing outcomes show the reliability, scalability, and efficiency of Google cloud services

for deploying and managing Node.js applications. The infrastructure proved capable of

handling diverse traffic patterns and workloads from min to heavy request while maintaining

high performance and low error rates, making it an excellent choice for applications requiring

flexibility and resilience.

6.2.1 CPU Utilization Analysis for Google Cloud Use Cases

The provided graph shows the CPU utilization (%) for the Node.js application deployed

on Google Cloud Run across the three use cases. Below is a explanation:

Observation:

1. Baseline Utilization:
o The initial CPU utilization remained low when the system was handling zero

traffic. This indicates that Google Cloud Run efficiently manages idle

resources to minimize overhead.

2. Use Case 1:
o The first spike in CPU usage corresponds to use case 1 where 5 users hit on

system which create a light traffic load with read-heavy operations (GET

requests).

o CPU utilization show 23%, demonstrating that the application handled the

requests with minimal computational effort and maintained efficient resource

usage.

3. Use Case 2:

25

o The second spark increase in CPU usage with respect of Use Case 2, which

involved 50 virtual users performing a mix of read and write operations.

o The CPU utilization increased to 26.65%, show the additional computational

effort required for handling both types of operations on heavy request. The

moderate rise in CPU utilization indicates the system's ability to scale

effectively under heavier traffic conditions.

4. Use Case 3:
o The final spike to Use Case 3, which involved 40 virtual users performing

write-intensive operations.

o CPU utilization reached its peak at 26.93%, slightly higher than Use Case 2,

due to the heavier workload associated with database write operations. This

show that the system effectively managed the increased complexity of

handling write-heavy tasks.

6.2.2 Explanation:

 Efficient Resource Utilization: The CPU usage for all three use cases remained well

within acceptable limits, with utilization peaking at 26.93%, indicating that the

application was optimized for efficient computational resource usage.

 Scalability: The slow increase in CPU utilization across use cases show the system's

ability to scale proportionally to the workload.

 Idle Efficiency: Back to lower CPU utilization levels after the spikes confirms that

Google Cloud Run efficiently control and manages resources during periods of

reduced activity, minimizing unnecessary costs.

 Workload Distribution: The CPU utilization sparks align with the complexity of

each use case, with read-heavy workloads requiring less CPU power and write-heavy

workloads demanding more computational resources

6.3 Deployment Speed Analysis, Easy of deployment and other factors

Across AWS and Google Cloud

The deployment process for the application which is deploy on Aws and google cloud

services show the efficient automation and timing across whole process of CI/CD stages.

Most likely two stages such as trivy vulnerability scanning and pushing Docker images were

the most time intensive steps on both platforms. While AWS and Google cloud had slight

differences in total time duration both have showcased and secure deployment workflow.

 AWS Deployments

Stage Duration (1st deployment) Duration (2nd deployment)
Checkout Code 4.8 sec 4.8 sec
Test Docker Access 1.9 sec 1.6 sec
Build Docker Image 17 sec 17 sec
Trivy Vulnerability Scan 5 min 3 sec 3 min 10 sec
Login to AWS ECR 11 sec 11 sec
Push Docker Image to ECR 3 min 53 sec 2 min 05 sec
Deploy to ECS (EC2) 5.1 sec 5.1 sec

26

Total Duration 9 min 58 sec 5 min 55 sec

 Google Deployments

Stage Duration (1st deployment) Duration (2nd deployment)
Checkout Code 3.8 sec 3.9 sec
Test Docker Access 1.6 sec 1.5 sec
Build Docker Image 15 sec 17 sec
Trivy Vulnerability Scan 3 min 38 sec 3 min 39 sec

Login to Google Artifact

Registry

3 min 28 sec 17 sec

Push Docker Image to

Artifact Registry

38 sec 24 sec

Deploy to Google Cloud Run 30 sec 30 sec
Total Duration 8min 47 sec 5 min 22 sec

The deployment speed show for both Aws and Google Cloud show that different efficiencies

in CI/CD workflows. In the first deployment took approximately 9 minutes 58 second around

and optimization with change into code second deployment reduced the time to 5 minutes 22

second around on both cloud providers. It decrements in the deployment is depend upon

different factors such remove security vulnerabilities and extra dependences from code and

leveraging with simple strategies for the application testing, security which is independent

from the cloud provider while used multi cloud environments and its also effect the tools

used for CI/CD pipeline such as Jenkins, Terraform, Docker etc.

 Cost Observations

Aws have higher costs for continuous and high demand workload due to hourly billing for

EC2 instances and RDS but it offers flexible pricing models and saving plans for long

term optimization. On the other hand, google cloud which offer lower costs for server less

services such as Cloud Run which bills is on usage. It is more costs effective then aws

with power of handling unpredictable workloads.

 Ease of Deployment

Aws provides wide range of tools and integration which offer a mature ecosystem but

configuration of services can be complex and time consuming. Other the other side

google which simpler the deployment process it abstracts much of underlying complexity

of infrastructure complexity

 Integration with CI/CD Tools

Both cloud provider services are integrating well with Jenkins, Terraform and Docker that

enabling unified CI/CD pipeline however aws provider other tools like code pipeline and

code build and google also provide cloud build tools.

27

6.4 Discussion

The findings of this research focuses on the importance of multi-cloud CI/CD automation

frameworks solution using different tools and their effectiveness in facing the difficulties.

such as deployment consistency, scalability, and security across different cloud platforms.

Due to time constraints and a limited learning curve of just three months to explore all tools

and services this research focuses on implementing a practical and streamlined multi cloud

CI/CD framework rather than out and out exploration of all possible solutions. It shows the

generic idea how the security libraries or tools are integrated and compatibility of the tools

with cloud providers. Using the idea other tools and libraries are integrated in such a way

which enhanced the security, testing and other stages of application development. Now Both

AWS and Google Cloud showed their potential in handling and controlling automated CI/CD

pipelines with tools such as Jenkins, Docker, and Terraform. However, the comparative

analysis discloses refinement differences that can show the selection of the optimal platform

based on specific use cases. AWS be in view the superior performance in scenarios which

involving high traffic and complex workloads which especially in write-intensive operations.

The services such as Elastic Container Service (ECS) and Relational Database Service (RDS)

were influential make sure scalability and reliability. The used of infrastructure as code

Terraform integration facilitated consistent infrastructure management. While other Aws

services like ECR come up with seamless Docker image storage and retrieval. These results

support AWS’s strength in managing enterprise-level applications of different sectors

requiring robust infrastructure, high throughput, and minimal latency.

Notwithstanding Google cloud by very good in deployment speed and cost efficiency that

specially for smaller workloads applications or with dynamic scaling needs. Cloud Run

service with its server less architecture make it easy the deployment process and optimized

resource used by scaling based on demand. Artifact Registry and Cloud SQL services worked

united to support backend operations of the application which shows Google Cloud's

flexibility in maintaining performance under varying workloads of the application. These

discovering Google Cloud’s suitability for agile applications and environments where quick

deployment cycles are important. Security played a very important role throughout the CI/CD

pipeline on both platforms on every stage of software development life cycle. The integration

of tools like Trivy or other libraries that are easily integrated which is independent the cloud

services for vulnerability scanning and GitHub Advanced Security ensured robust defenses

against threats in the code. While both AWS and Google Cloud providers provided a secure

ecosystem. Aws services is mature ecosystem provide a slightly more comprehensive suite of

monitoring and compliance tools, such as Cloud Watch. On the other hand, Google Cloud’s

efficient resource management reduced overhead and cost, presenting a competitive

advantage for smaller-scale projects.

In conclusion, while both cloud provide are highly have the ability so for application the

selection between AWS and Google Cloud depends on the specific requirements of the

application. Aws is strongest match for large-scale, complex workloads demanding high

performance and reliability, whereas Google Cloud gives an edge in deployment speed, cost-

28

efficiency, and flexibility for dynamic scaling. This research emphasizes the significance of

integrating advanced DevOps tools in a multi-cloud ecosystem, enabling organizations to

achieve scalable, secure, and efficient CI/CD pipelines customize to their unique operational

needs.

7 Conclusion

This research established a comprehensive framework using advance tools for automating

CI/CD pipelines in multi-cloud platform to addressing important challenges such as vendor

lock-in, deployment complexity, security, and testing in multi cloud ecosystems. By

manipulating the strengths of both providers with tools like Jenkins, Docker, and Terraform

etc. The study showed how a consolidated CI/CD approach can enhance operational

efficiency across different workloads of the application. AWS surpassed in managing high-

traffic, write-intensive workloads through robust services like ECS, RDS, and Cloud Watch

on the other hand Google Cloud lighted its features in rapid deployment and cost-efficient

resource management using Cloud Run and Artifact Registry services. The integration of

security measures at every stage which including Trivy for container vulnerability scanning

and GitHub Advanced Security which make sure compliance and minimized risks affirming

the importance of embedding security into CI/CD pipelines. The solution validated the use of

Terraform for consistent infrastructure management, Docker for portable application

ecosystem and Jenkins for orchestrating automated workflows for any cloud. It showed how

multi-cloud strategies not only reduce vendor lock-in but also optimize resource utilization

which make sure the system scalability, flexibility, and reliability. In addition, the research

discovered gaps in cross-cloud communication, data synchronization, and advanced security

measures putting the groundwork for future exploration. These decisions underscore the

importance of a multi-cloud CI/CD approach in building resilient, scalable, and secure

systems that can ready to the evolving needs of modern enterprises while maintaining

operational excellence.

8 Future Work

Future enhancements of the project can include the adoption of advance Kubernetes services

for scalable container orchestration, enabling advanced workload distribution, automated

scaling, and fault tolerance and also used of mesh technologies that can improve cross cloud

communication and traffic routing to reducing latency and enhance resilience. Testing

features can be expanded with tools with cloud native testing solution. Such Aws device farm

and google test lab that can validate applications across a different environment, devices, and

network conditions. Additionally, security and compliance in different cloud providers are

remain critical concerns future studies could explore the solution of integration of threat

detection mechanism that used AI to catch vulnerabilities in real time make sure the

compliance with evolving standards and could be work to enhanced encryption techniques

and implemented the zero-trust architectures to protect the data across multi cloud

environment. Another area to explore for future research is the use of block chain

technologies for improving transparency and security in multi cloud deployments. It provides

29

unchanged ledger to tracking resource provisioning and access logs which reduce the risk of

unauthorized access. Finally, future research also expands the area of testing and monitoring

by simulating very complex and more big application for workload to real world scenarios.

To addressing this area will capable of meeting the demands of complex enterprise

application to create more secure, scalable and efficient multi cloud environment.

References

 Kim, J. and Wang, S. (2023) 'Multi-cloud infrastructure management: Challenges and

best practices', Journal of Cloud Computing, 12(3), pp. 200–215.

 Tanzil, M.H., Sarker, M., Uddin, G. and Iqbal, A. (2023) 'A mixed method study of

DevOps challenges', Information and Software Technology, 161, p. 107244. Available

at: https://doi.org/10.xxxxx (Accessed: 27 January 2025).

 Tanzil, M.H., Sarker, M., Uddin, G. and Iqbal, A. (2024) 'A mixed method study of

DevOps challenges', arXiv e-prints, pp. arXiv–2403.

 Karlsson, D. (2023) Comparison of Infrastructure as Code Frameworks from a

Developer Perspective. PhD thesis. National College of Ireland.

 Ghosh, A., Srivastava, S. and Supraja, P. (2024) 'Streamlining multi-cloud

infrastructure orchestration: Leveraging Terraform as a battle-tested solution', in

Proceedings of the 2024 International Conference on Cognitive Robotics and

Intelligent Systems (ICC-ROBINS). IEEE, pp. 911–915.

 Farayola, O.A., Hassan, A.O., Adaramodu, O.R., Fakeyede, O.G. and Oladeinde, M.

(2023) 'Configuration management in the modern era: Best practices, innovations, and

challenges', Computer Science & IT Research Journal, 4(2), pp. 140–157.

 Gonçalves, J.M.M. (2023) 'Automatic deployment solution for multi-cloud

environments', Journal of Cloud Development Practices, 6(1), pp. 45–56.

 Chavan, S. and Khadkikar, R.M.D.P.A. (2023) 'Accelerating cloud-native

applications: Automated Kubernetes cluster deployment', in Proceedings of the 2023

Kubernetes DevOps Summit. IEEE, pp. 123–132.

 Pessa, A. (2023) 'Comparative study of infrastructure as code tools for Amazon Web

Services', Journal of Cloud Computing, 12(1), pp. 55–72.

 Bafana, M. and Abdulaziz, A. (2024) 'Immutable infrastructure in practice: A

comprehensive guide to AWS deployment', Asian American Research Letters

Journal, 1(1), pp. 45–57.

 Sokolowski, D. and Salvaneschi, G. (2023) 'Towards reliable infrastructure as code',

in Proceedings of the 2023 IEEE 20th International Conference on Software

Architecture Companion (ICSA-C). IEEE, pp. 318–321.

 Kalliomaai, N. (2024) 'Choosing the right IaC tool for building reusable cloud

infrastructure', Journal of Infrastructure Management, 7(2), pp. 112–130.

 Farah, S. and Patel, R. (2024) 'Securing containerized applications in multi-cloud

environments using Trivy', Journal of Security in Multi-Cloud Environments, 8(1),

pp. 45–60.

30

 Olaoye, G. and Luz, A. (2024) 'Future trends and emerging technologies in cloud

security', Telecommunication Engineering Centre Journal, University of Melbourne,

5(2), pp. 198–209.

 Nawagamuwa, J. (2023) Infrastructure as code frameworks evaluation for serverless

applications testing in AWS. MSc thesis. University of Sydney.

 Nguyen, T. and Lee, K. (2024) 'Comparative analysis of CI/CD tools in multi-cloud

environments', Journal of Software Development, 15(3), pp. 112–123.

 Obi, O.C., Dawodu, S.O., Daraojimba, A.I., Onwusinkwue, S., Akagha, O.V. and

Ahmad, I.A.I. (2024) 'Review of evolving cloud computing paradigms: Security,

efficiency, and innovations', Computer Science & IT Research Journal, 5(2), pp. 270–

292.

