

Configuration Manual

MSc Research Project Cloud Computing

Abhiram Adluru Student ID: x22187898

School of Computing National College of Ireland

Supervisor:

Vikas Sahni

National College of Ireland Project Submission Sheet School of Computing

Student Name:	Abhiram Adluru
Student ID:	x22187898
Programme:	Cloud Computing
Year:	2023
Module:	Msc Research Project
Supervisor:	Vikas Sahni
Submission Due Date:	12/12/2024
Project Title:	Configuration Manual
Word Count:	703
Page Count:	4

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:	Abhiram Adluru
Date:	11th December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies).	
Attach a Moodle submission receipt of the online project submission, to	
each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both for	
your own reference and in case a project is lost or mislaid. It is not sufficient to keep	
a copy on computer.	

Assignments that are submitted to the Programme Coordinator office must be placed into the assignment box located outside the office.

Office Use Only	ce Use Only			
Signature:				
Date:				
Penalty Applied (if applicable):				

Configuration Manual

Abhiram Adluru x2218798

1 Introduction

The Configuration Manual provides all the details for integrating APT Application, the system is deployed using python for model training and evaluation and deployed on a AWS cloud environment for real-time network Analysis

2 System Specifications

2.1 HardWare Requirements

2.1.1 HardWare Configuration for the web application

- Processor: Intel 11th Gen Core i3 @ 2.4 GHz
- 16 GB DDR4 RAM 3200MHz
- Storage: 512 GB SSD
- Operating System: Windows 10, 64-bit

2.1.2 Cloud Based Machine learning Model Development

- processor : Hosted Multi-Core CPU on Google Cloud
- RAM : 12 GB
- Environment : Pre-Configured Jupyter Notebook Interface with Python Libraries pre-installed.

2.2 Software Requirements

The Whole Project was developed and implemented using python for model development and back-end processing, the apt detection system has conv-LSTM model along with random forest and svm to classofy various stages of network activities, the web application is developed using flask and is integrated with machine learning Back end witj interface usinh HTML, CSS.

2.2.1 Frame Work and Tools

- Flask : Back End Frame work for serving with the model predictions.
- Jupyter Notebook : for developing and testing the machine learning model VS Code IDE : for Writing and managing and running the code locally

2.2.2 Python Dependencies

The Following Python Libraries were used for model development and to ensure efficient handling of data and visual exploration.

- Pandas : for handling and preprocessing datasets
- matplotlib : for static visualization of the data.
- ploty.express : for interactive visualizations such as bar and pie charts.
- sklearn.preprocessing: for scaling numerical data to specified range

3 Dataset Description

The dataset used is the DAPT 2020 Dataset, taken from Kaggle, which includes network traffic logs designed for detecting APTs. The features describe packet lengths, flow attributes, and flag counts among others, while categorical labels include Stage, such as Benign and Reconnaissance, and Activity to identify concrete behaviors. The dataset was preprocessed by handling missing values, encoding categorical columns, and normalizing numerical features to prepare it for machine learning. It was split into training and testing sets, with a split of 70-30, respectively. The training data was used in developing models such as Conv-LSTM, Random Forest, and SVM, while the test data were used for evaluation. This dataset allows the system to imitate real-life APT scenarios, supporting model training, testing, and real-time applicationsMyneni (2020).

• https://www.kaggle.com/datasets/sowmyamyneni/dapt2020?resource=download.

4 Environmental setup

4.1 Google Colab Setup

for training and testing the APT detection model upload the APT-attacks-final.ipynb code file and other datasets required to run the code

- 1. run the following code to connect to google drive
 - from google.colab import drive
 - drive.mount('/content/drive')
- 2. upload all the required datasets and .pynb code file provided in the artifacts to a folder in google drive and give necessary permissions to access and change the location of the path in your code using below format

• file_path = '/content/drive/MyDrive/apt_project/your_file.csv'

Figure 1: Google Colab Setup

3. Execute the code in google colab to load the data and succesfully running the code

	_	<u>^</u> ^	рт ~	ttack	. fina	Linunb	x								
	0	File	Edit '	view	insert	Runtime	Tools	Help							
:=		- Code		Text		Run a									
		[11	impor	t ploi	ly.ex	Run b	efore								_
Q					orkx	Run th	e focus	id cell							J.
				sklear	n.pre	Run s	election		Ctrl+Sh	ift+Enter		StandardScaler			J.
$\{x\}$			impor	t num	minnet was	Punc	all and h	olow		CtrlaE10	е,	recall_score, fi_s	scor	re, confusion_matrix, classification_report	J.
				tensor	flow.										J.
ତଅ				tensor	flow.	Intern	upt exect								J.
						Resta	rt sessio								J.
			e	onv1D	Loott	Porta	rt naesio	o and o	lle au						J.
			F	latter	1. 1.										J.
				ropout		Disco	intect an	d onen	ranome						J.
						Chang	e runtim	e type							J.
			с	onvLS	M2D,										J.
			I	nout	11011	Mana	ge sessi								J.
							esource								J.
				tensor	flow.	View	untime l	ogs							J.
			from	tensor	flow.			· · · ·				.ROnPlateau			J.
					TIOW.	keras.ut	115 IN	port t	o_categorical						J.

Figure 2: Execute the Code

4.2 Application Setup

1. ensure python 3.8 or higher version is installed on your machine and create a virtual environment for running the flask application.

2. once the virtual environment is activated install the required flask version and dependencies from requirements.txt for running the application

pip install Flask = = 3.1.0

pip install -r requirements.txt

3. once the flask is installed navigate to project directory where app.py is located and run the following command

python app.py

4. open another terminal and navigate to directory where client.py is located to initiate the communication between client and server

python client.py

Figure 3: Interface of the application

5 Application deployment on AWS elastic beanstalk

- 1. sign into AWS management Console navigate to Elastic Beanstalk and create a new environment
- 2. upload and deploy provided .zip file which contains all the deployment files required for the deployment of the application.

Ap	oplication code Info
0	Sample application
	Application versions that you have uploaded.
0	Upload your code Upload a source bundle from your computer or copy one from Amazon 53.
Ver Uni	rsion label que name for this version of your application code.
(V	/ersion label
Sou	urce code origin. Maximum size 500 MB
0	Local file
	Upload application
	← Choose file
	File must be less than 500MB max file size
0	Public S3 URL

Figure 4: Upload the zip code

3. after deployment,test the application by accessing the provided url in the elastic beanstalk

				_	
lastic Beanstalk 🤇	X22187898-APT-env 🛶			0	Actions
plicitiens	Environment overview		Pla	tform	Ounge version
unce history	Neelth	Environment 10	Flat	form	
	Degraded - View causes	E e-wapopolitys	Py6	ron 3.5 running on 64b	R Amazon Linux 2023/4.5.1
plication: x22187698-apt	Damain	And instances	Face	ning version	Platform state
	X22167056-4PT-envabe-bprbuomtap-south- 1-startisbeamtals.com/78	x22187898-0pt	1		Supported
skramment: X22133898-4811-					
Concerning and D	Poreta Health Lana Manita	in Alarm Manager and the	Terri		
Confloaration					
Events	Butotr (90)				6
	EVENDS (00) IN				e
Health					

Figure 5: successful deployment of the application on elasticbeanstalk

References

Myneni, S. (2020). Kaggle dataset: Dapt 2020. Accessed: 2024-12-07. URL: https://www.kaggle.com/datasets/sowmyamyneni/dapt2020/code