~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Cloud Computing

Oluwaseyi Ezekiel Ademola
Student 1D: 23240334

School of Computing
National College of Ireland

Supervisor: ~ Ahmed Hamza Ibrahim

National College of Ireland National
Project Submission Sheet College of

School of Computing Ireland

Student Name:

Oluwaseyi Ezekiel Ademola

Student ID: 23240334
Programme: Cloud Computing
Year: 2024

Module: MSc Research Project
Supervisor: Ahmed Hamza Ibrahim

Submission Due Date:

12th December 2024

Project Title:

Configuration Manual

Word Count:

601

Page Count:

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature: Oluwaseyi Ezekiel Ademola
Date: 12th December 2024

PLEASE READ THE

FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). U

Attach a Moodle submission receipt of the online project submission, to | J
each project (including multiple copies).

You must ensure that

a copy on computer.

your own reference and in case a project is lost or mislaid. It is not sufficient to keep

you retain a HARD COPY of the project, both for | (I

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Oluwaseyi Ezekiel Ademola
23240334

1 Introduction

This configuration manual provides detailed instructions for configuring and running the
research simulation experiment. It highlights steps taken to reproduce the simulation
from data ingestion, execution of simulation experiment with custom algorithm up to the
result evaluation analysis.

2 System Requirements

The experiment was focused on testing the ability of the proposed algorithm to im-
prove cold start latency, execution time, and resource consumption of serverless functions
primarily based on simulation with the iFogSim simulator toolkit (Buyya and Srirama;
2019) using the IntelliJ IDEA CE IDE. The table below illustrates the main components
such as programming languages, tools, and libraries used.

Table 1: Tools and Technologies

H Type Tool /Technology Description H
Simulation framework iFogSim Simulation framework for
cloud & edge computing
Programming Language Java For implementing simu-

lation environment and
location-aware algorithm
and resources

Data Preparation Python, Pandas, Google Colab | Used for preprocessing
and visualization data-
sets

Version Control Git & Github Managing source code

3 Imnstallation and Setup

3.1 Data Preparation Setup

The data preprocessing was carried out using Python scripts with Jupytar Notebook in
Visual Studio IDE and the cleaned datasets used as input data to the simulation can be

retrieved from this repository https://github.com/oluademola/dataset-prep. The
raw datasets can be retrieved from (Microsoft-Research; [2019)) and (Microsoft-Research;
2011)) for the Azure functions and T-Drive datasets respectively. The dataset should be
placed following the file structure illustrated in Figure [1| to run the data preprocessing.

EXPLORER gitignore = Azure functions data set preparation.ipynb U X @@ bar_plotting.py < analysis.ipynb U B Processed.zip U B processed_app_memor

 RESEARCH-PROJECT [3 BEF O @ notebooks > =° Azure functions data set preparation.ipynb > M+ Data Preparation on Azure Functions Datasets 2019 > @ all_memory_data_processed = []
@ Datasets + Code + Markdown | [>RunAll O Restart = Clear All Outputs | [Variables = Outline ---

tebooks

nalysis.ipynb
&' Azure functions data set pre... U
@ Processed import pandas
B processed_app_memory.csv M
B processed_function_duratio.
B processed_invocations_per._...

> By test
gitignore

B Processed.zip
output_file3=

Li:) hol d D
all_data_processed = []

for range(1, 15):
file_path = os.path.join(input_dir, f'invocations_per_function_md.anon.d{i:@

df = pd.read_csv(file_path)

ct ion columns and convert them t
invocation_columns = [str(i) for i in range(1, 1441)]

data_hourly = df [invocation_columns].copy()

data_hourly.columns = range(1, 1441) on imn nam tec

p jroup by every 60 columns 0 ggregation), the
data_hourly = data_hourly.T.groupby(lambda x: (x = 1) // 60).sum().T

ranspose bac
name columns to ho 0
data_hourly.columns = [f'Hour_{i}' for i in range(24)]

Combine with ori iers : i
data_processed = pd.concat([df [[*HashOuner", p', 'HashFunction', 'Trigger'll, data_hourlyl, axis=1)

Identi 2k hou : ncti top 3 peak hours)
peak_hours = data_hourly.apply(lanbda x: x.nlargest(3).index.tolist(), axis=1)

r ur ol
data_processed|'Peak_Hours'] = peak_hours

ro StaFr the 1
_processed. append (data_processed)

final_data = pd.concat(all_data_processed, ignore_index=True)
row_count = len(final_data)
print(f*The n

The number of rows in the file is: 618545

Figure 1: Data Preprocessing

3.2 iFogSim Simulation Setup

1. Clone the iFogSim simulator toolkit from its Git repository a folder:

git clone https://github.com/Cloudslab/iFogSim

2. Open the IntelliJ IDE

3. Click on the File dropdown menu and select New > "project from existing
resources".

4. Confirm that the Java version and external libraries are added to the project.

https://github.com/oluademola/dataset-prep

5. Navigate to src > org > fog > test > perfeval and run any of the example
applications to verify the installation with the required libraries was successful.
You should get a response in the console as shown in Figure [2| below.

Figure 2: Example Application

4 Running Simulation Experiment

4.1 Project file setup
To configure the simulation environment. Setup the project files with the following steps:

1. Copy the preprocessed Azure Functions datasets to the project’s dataset/Processedl

folder.
2. Copy the preprocessed T-Drive datasets to the project’s dataset/T_drive folder.
3. Copy the project codebase named custom to the src > org > fog > folder.

4. Verify the custom directory contains theses folders mobility pattern, prewarm,
serverlessfunctions, and test with their appropriate java files within.

5. Ensure OpenCSV library use is less than version 5.0

4.2 Running the Experiment with the Algorithm

1. Run the first component of the algorithm by navigating to the src > org > fog
> custom > test > MobilityPatternTest to run the mobility pattern module.
It generates events that’d be used in the final execution of the functions for the
effective execution of functions closer to the user.

Project MobilityPatternModule.java MobilityPatternTest.java
> Doutput package org.fog.custom.test;
> Oresults
v Dsrc import
> [EJimages
~ Borg 7 p] MobilityPatternTest {
[2 cloudbus.cloudsim
[fog
> [application

¢ void main(String[] args) {

5 MobilityPatternModule mobilityModule = new MobilityPatternModule(
v [custom

> [mobilitypattern
> B prewarm mobilityModule.addGeofence("Geofenc
> [serverlessfunctions mobilityModule.addGeofence ("6
v @test
MobilityPatternTest
PreWarmTest
& ServerlessFunctionsTest : " SO ERITTETE @ © RO,
[entities
gui
[mobilitydata
(& placement
policy

\ B2 cnhadiilar

System.out.println("\nAll U nd Trajectorie
for (User user : mobilityModule.getUsers()) {

System.out.println("User ID: " + user.getId());

MobilityPatternTest

Location -> Latitude: .691580, Longitude: 39.851650
Location -> Latitude: .691580, Longitude: .851650
Location -> Latitude: .691630, Longitude: .851690
Location -> Latitude: .691540, Longitude: .851730
Location -> Latitude: .691540, Longitude: .851750
Location -> Latitude: .691590, Longitude: .851670
Location -> Latitude: .691630, Longitude: .851410
Location Latitude: 691620, Longitude: 851610
Location Latitude: .691600, Longitude: 851610
Location Latitude: .691540, Longitude: .851880
Location Latitude: .691580, Longitude: 851970
Location Latitude: .691580, Longitude: 851870
Location Latitude: .691590, Longitude: 851830
Location Latitude: .691620, Longitude: 851470
Location Latitude: .691560, Longitude: .851580
Location Latitude: .691550, Longitude: .851640
Location Latitude: .691530, Longitude: .851650
Location Latitude: .691530, Longitude: .851660
Location -> Latitude: .661790, Longitude: 883720
Location -> Latitude: .603940, Longitude: .907410
Location -> Latitude: .545590, Longitude: .914740
Location -> Latitude: .521950, Longitude: .916000
Location -> Latitude: .485030, Longitude: 914220
Location -> Latitude: 444600, Longitude: .921560
Location -> Latitude: 400470, Longitude: .925940
Location -> Latitude: 441520, Longitude: 932360
Location -> Latitude: 483470, Longitude: .919540
Location -> Latitude: .507890, Longitude: .931280
Location Latitude: .531740, Longitude: .915360
Location Latitude: .571560, Longitude .902630
Location Latitude: .547230, Longitude: .908410

Process finished with exit code @

Sim-main-2 > org > fog > custom

Figure 3: Mobility Pattern Events

2. Run the Prwarm module that handles the container pre-warming based on geofence
entry events by navigating to the src > org > fog > custom > test > PreWarmTest.

Project v MobilityPatternModule.java MobilityPatternTest.java PreWarmTest.java

> Doutput public s PrellarnTest {
> Dresults public static void main(String[] args) {
System.out.println("Pro ing file: " + file.getName());
try (BufferedReader br = new BufferedReader(new FileReader(file))) {
String line;
hile ((line = br.readLine())
String[] parts = line.split(
if (parts.length == 4) {
String userId = parts[0].trim();

[custom double = Double.parseDouble(parts[2].trim());
> [mobilitypattern d = Double.parseDouble(parts[3].trim());
> [prewarm
> [2 serverlessfunctions
v B test preWarmModule.onGeofenceEvent (userId, "Default

Osrc
> [images
v Borg
> [& cloudbus.cloudsim
[fog
> [application

MobilityPatternTest
¢j PreWarmTest

ServerlessFunctionsTest
L file " + file.getName() + ": " + e.getMessage());
[entities
B gui
[E mobilitydata
[placement

[policy
(& scheduler
[test
[perfeval
3 AnplicationConfigjson System.out.println("Cleaning up pre-warme

CardiovascularHealthMonitoringApplication preWarnModule. cleanUpContainers();

PreWarmTest

Processing dataset files...

Processing file: 1053.txt

User 1053 entered geofence: DefaultGeofence
Pre-warming container for user 1053 in geofence: DefaultGeofence
Starting container for user 1053...

Container for user 1053 is now ready.

User 1053 entered geofence: DefaultGeofence
Container for user 1053 is already pre-warmed.
User 1053 entered geofence: DefaultGeofence
Container for user 1053 is already pre-warmed.
User 1053 entered geofence: DefaultGeofence
Container for user 1053 is already pre-warmed.
User 1053 entered geofence: DefaultGeofence
Container for user 1053 is already pre-warmed.
User 1053 entered geofence: DefaultGeofence
Container for user 1053 is already pre-warmed.
User 1053 entered geofence: DefaultGeofence
Container for user 1053 is already pre-warmed.
User 1053 entered geofence: DefaultGeofence
Container for user 1053 is already pre-warmed.
User 1053 entered geofence: DefaultGeofence
Container for user 1053 is already pre-warmed.
User 1053 entered geofence: DefaultGeofence
Container for user 1053 is already pre-warmed.
User 1053 entered geofence: DefaultGeofence
Container for user 1853 is already pre-warmed.
User 1053 entered geofence: DefaultGeofence
Container for user 1053 is already pre-warmed.

gSim-main-2 > > org > fog > custom > > @ PreWarmTest > &) main

Figure 4: Prewarm module of the Algorithm

3. Run the complete simulation of serverless functions under both vanilla and cus-
tom location-aware configurations navigating to the src > org > fog > custom
> test > ServerlessFunctionsTest. It generates the performance metrics across
peak and non-peak hours for cold start latency, execution time, and resource con-
sumption which are exported and analyzed in the next section

MobilityPatternModule.java MobilityPatternTest java PreWarmTest java ServerlessFunctionsTestjava

ServerlessFunctionsTest
o0id main(String[]

String invocationsFile =

String durationsFile = "da
[cloudbus.cloudsim String memoryFile = "data

B fog Map<String, FunctionProfile> functionProfiles = loadFunctionProfiles(invocationsFile, durationsFile, memoryFile);
application
) custom
mobilitypattern List<FogDevice> fogDevices = createFogDevices();
prewarm
serverlessfunctions
= Application application = createApplication(
MobilityPatternTest
Brewsrmrest ExecuteServerlessFunctionstodule module = new ExecuteServerlessFunctionsHodule(
functionProfiles,

ServerlessFunctionsTest

> [entities loadInvocationPatterns(invocationsFile),

> Elgui fogDevices

(3 mobilitydata
(3 placement
(& policy
(3 scheduler
Bl test N
e System printin(ng Hon
§ module. sinulateAndPrintAggregatetetrics (application,
{} ApplicationConfig.json
CardiovascularHealthMonitoringApplication

System i esting C Configurat
CardiovascularHealthMonitoringApplicationEdgeward

module. simulateAndPrintAggregateMetrics(application,

CrowdSensing_Microservices_RandomMobility_Clustering
DCNSFog

MicroserviceApp_RandomMobility_Clustering

} catch (Exception e) {
e.printStackTrace();
MicroserviceAppSample2 System
MicroservicesAppSamplel
TranslationServiceFog
TranslationServiceFog_Clustering
TranslationServiceFog_RandomMobility .
y X @ e static List<FogDevice> createFogDevic
TranslationServiceFog_RandomMobility_Clustering X X . X
List<FogDevice> fogDevices = new ArrayList<>();
TwoApps

VRGameFog fogDevices.add(createFogDevice(

fogDevices.add(createFogDevice(
fogDevices.add(createFogDevice(

} catch (Exception e) {
e.printStackTrace();

CleanFromJson
> [EDutils
topologies

10¢
500000,
executeTuple.png
= executeTuple.useq }
[topologies System.out.println("Fog Dev
[return fogDevices;

ServerlessFunctionsTest

FUNGLLON FRUTLLES Luaueu.

Fog Devices Created.

Application Created.

Invocation Patterns Loaded.

Testing Vanilla Configuration for ALl Functions:

Simulating all functions across Peak and Non-Peak hours...
Aggregated Metrics for Peak Hours

Total Execution Time: 73051951.99 ms

test

> & main

Figure 5: Simulation execution

5 Evaluating the Results

1. Results are collected through the console of the execution of the ServerlessTestFunction
module.

2. The results are analyzed in the analysis notebook file using numpy and matplotlib
3. Run the analysis notebook file to see the analyzed results in charts

notebooks > = analysis.ipynb > @ import matplotlib.pyplot as plt

+ Code + Markdown | [> RunAll 'O Restart = Clear All Outputs | Variables
ax.set_ylabel('Execution Time (ms)‘, fontsize=12)

D>~ ax.set_title('Execution Time Trend Across 24 Hours', fontsize=14)
ax. legend()

Remove ntific t

ax.ticklabel_format(ax: y', style='plain')

Remove aXis
ax.set_xlabel("")

plt.tight_layout()
plt.show()

3. u g ption Sta d Bar Ch.
fig, ax = plt.subplots(figsize=(10, 6))
bar_width = 0.5

ax.bar(index, vanilla_resource, bar_width, label='Vanilla Configuration', color=vanilla_color, edgecol 'black"')
ax.bar(index, custom_resource, bar_width, bottom=vanilla_resource, label='Custom Configuration', color=custom_color, edgecolor='black')

ax.set_ylabel('Resource Consumption (MB)', fontsize=12)
ax.set_title('Resource Consumption Comparison', fontsize=14)
ax.set_xticks(index)
ax.set_xticklabels(configurations, fontsize=10)
ax. legend()

Remove scientifi t 0
ax.ticklabel_format(ax: y', style='plain')

Remove X
ax.set_xlabel

plt.tight_layout()
plt.show()

0.2s

Cold Start Latency Comparison

3 vanilla Configuration
[Custom Configuration

2500000000 1

2000000000 1

1500000000 -

1000000000 -

Cold Start Latency (ms)

500000000 -

Figure 6: Result Analysis

References

Buyya, R. and Srirama, S. N. (2019). Modeling and Simulation of Fog and Edge Com-
puting Environments Using iFogSim Toolkit, Wiley, pp. 433—465.

Microsoft-Research (2011). T-drive trajectory dataset. Licensed under the Microsoft

Research License Agreement.
URL: https://www.kaggle.com/datasets/arashnic/tdriver/data

Microsoft-Research (2019). Azure functions dataset. Licensed under CC BY 4.0.
URAL: https://qgithub.com/Azure/Azure Public Dataset /blob/master/Azure FunctionsDataset2019.md

	Introduction
	System Requirements
	Installation and Setup
	Data Preparation Setup
	iFogSim Simulation Setup

	Running Simulation Experiment
	Project file setup
	Running the Experiment with the Algorithm

	Evaluating the Results

