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Abstract

Serverless computing architecture enables the development and deployment of
applications without the management or knowledge of the underlying infrastructure
allowing developers to focus on building business logic while delegating resource
management operations to the cloud service providers (CSPs). This simplification
means that resources are allocated on demand and charges are on a pay-as-you-use
basis making it an affordable option for most users. CSPs achieved this execution
model by leveraging containerization whereby application codes are deployed in an
isolated, stateless environment that provides the necessary resources for execution.
Upon completion, these resources are released, requiring the fresh provisioning of
resources for subsequent executions. The initialization of a new container, however,
incurs a delay referred to as cold start latency, hence limiting the applicability of this
model in latency-sensitive applications. This research addressed the problem using
a location-aware algorithm that harnessed user mobility patterns and geofence-
based prewarming to schedule containers and execute functions closer to the user.
The setup was executed through simulation using real-world serverless functions and
mobility datasets provided by Microsoft, and the result recorded a 70% reduction in
cold start latency and a 76% decrease in resource consumption of function execution
during peak and non-peak periods.

1 Introduction

1.1 Research Background

Serverless computing is a Function-as-a-Service (FaaS) model that simplifies application
development and execution by abstracting the underlying complexity of infrastructure
management, allowing developers to focus solely on building business logic typically com-
posed of isolated, stateless, and event-driven functions. These functions may be triggered
by various events, like HT'TP requests, database modifications, or messages from I[oT
devices (Sethunath and Peng; 2022), while the cloud service provider oversees all aspects
of the execution environment, including resource allocation, scalability, and monitoring.
Upon completion of the function execution, resources are released, guaranteeing users are
billed only for the actual compute time that was used, rather than incurring charges based
on pre-allocated resources, making it a budget-friendly solution for many businesses. By
offloading the management of infrastructure to the cloud provider, serverless computing
reduces the operational burden on developers leading to faster development cycles, and
provides scalability which allows applications to handle varying workloads ensuring that
resources are allocated efficiently during peak times and scaled down during periods of
low activity making it suitable for requirements where traffic patterns are unpredictable
(MAMPAGE et al.; [2022)).

As a result of these advantages, serverless computing architectures have been implemen-
ted in applications like machine and big data analytics to manage the processing of image
and video analysis as well as the automatic scaling of resources for large-volume data.
In web services for delivering backend and API services due to its simplification of big
application components into small pieces of functions that are loosely coupled enabling
developers to manage and scale applications as they grow in an agile manner (Zhou et al.;
2024). Moreover, the Internet of Things (IoT) is another domain that integrates server-
less architectures by leveraging the lightweight nature of serverless functions for efficient



processing of data streams generated by IoT devices, enabling real-time decision-making
with minimal latency (Zhao et al.; 2024).

A major component of serverless computing is containerization, though it often oper-
ates behind the scenes it is the core technology that provides a lightweight, secured, and
isolated environment required to execute functions on demand. In serverless computing,
each function is encapsulated within an isolated compute or container that provides the
required resources to execute the function such as dependencies, libraries, and runtime
environments doing so reducing resource consumption, cost overhead, and scalability of
the application. This containerized approach provides consistent execution across various
environments, whether in public clouds, private clouds, or edge computing environments
(MAMPAGE et al} 2022)). Additionally, function executions are stateless, meaning that
upon completion, any containers or resources dedicated to a function will be released, ne-
cessitating the provisioning of resources afresh for new or further executions. The initial-
ization process involved in provisioning new resources consists of creating and deploying
new instances, downloading and installing the necessary runtime and code, followed by
the initialization of the runtime, and subsequently, the function is executed (Zhou et al.;
2024)). The duration required for the completion of this process is termed the cold start
latency problem.

1.2 Research Motivation

This problem presents a huge obstacle to the efficient implementation of serverless com-
puting in applications that require real-time responses like real-time data processing,
healthcare, 10T, and applications that rely on instant user interaction (Htet et al.; 2024).
This not only impacts its applicability but also contributes to intensifying user discon-
tent and potentially deterring end-users from serverless solutions highlighting the need for
strategies to mitigate these issues and enhance the responsiveness of serverless architec-
tures. Existing approaches to mitigating this problem such as prewarming techniques, and
container caching, are limited and introduce additional concerns. For instance, prewarm-
ing techniques typically rely on maintaining idle containers in an active state to prevent
function re-initialization delays. This technique while somewhat successful results in high
resource consumption since containers must be maintained in a warm or active condition
even during periods of inactivity. Moreover, precisely predicting invocation patterns to
enhance pre-warming continues to pose a significant difficulty, particularly for applica-
tions characterized by intermittent or unexpected workloads. Similarly, the container
reuse technique is limited to functions with similar configurations reducing its effective-
ness in mitigating cold start across varied workloads making it an obvious challenge in
multi-tenant serverless setup, as applications often need diverse runtime configurations
(Verma et al.; [2024]). A key strategy is the integration of Edge computing within server-
less architectures. Edge-based resource allocation for serverless applications optimizes
the advantages of edge computing by dynamically provisioning computational resources
according to user proximity and workload patterns. For example, containers may be
prewarmed on edge nodes inside geofenced regions where user activities are anticipated.
This minimizes the resource consumption, raw network bandwidth, and latency, and over-
all reduces the duration needed to initialize serverless functions, guaranteeing improved
response times for end-users.



1.3 Research Question

e Can edge-based resource allocation mitigate cold start latency using a
location-aware algorithm?

e In what ways does the proposed approach stand out from a baseline
serverless platform configuration?

The root cause of cold start latency can be traced to the on-demand nature of serverless
functions, that intend to reduce cost by releasing resources when functions are not active.
While this approach maximizes cost efficiency it sacrifices real-time responsiveness due
to the time required for re-provisioning. A study by (Zhou et al.j 2024) revealed that
cold start latency can be significant with delay reported between 1.3 to 166 times the
function execution time, depending on several factors such as the function’s runtime
environment, size, dependencies as well as the cloud service provider’s infrastructure.
The time needed to fetch the function code alone can represent a significant portion of
the total cold start delay, potentially comprising 47% to 89% of the whole delay. They
indicated that initialization time is contingent upon the chosen programming language
for function creation; for instance, functions developed in interpreted languages such
as Python generally exhibit shorter initialization times compared to those created in
compiled languages like Java, which can account for up to 45% of the total cold startup
duration.

1.4 Research Objectives

To address the questions and challenges above, this research introduces an edge-based
resource allocation technique, where resources are provisioned on-demand, utilizing a
custom location-aware algorithm to deliver improved responsiveness for applications and
businesses that require real-time processing. The algorithm first maps a geofence area to
predict user mobility patterns which are then used to manage the provisioning of resources
to execute serverless functions at the edge node closest to the user. It also leverages pre-
warming functionalities to reduce the occurrence of cold starts during critical periods.

This solution is limited to evaluating the proposed method in contrast with a baseline
configuration. While also leveraging real-world datasets to yield realistic results, it re-
mains important to acknowledge the limitations of simulation, especially the difficulty
of precisely reflecting the complexities of an actual deployment. Therefore, the research
findings will be interpreted within the framework of these restrictions and the limitation
will be an area of focus in the future works of this study. The main contributions of this
research work are laid out below:

e Propose a location-aware algorithm that triggers prewarming and allocates re-
sources based on user proximity to optimize cold start latency.

e Conduct extensive simulation experiments with real-world datasets to simulate
practical serverless behavior and user mobility patterns using official Microsoft
Azure functions and Mobility datasets respectively.

e Evaluation of performance metrics in baseline serverless platform against the edge-
based solution to verify the effectiveness of the proposed algorithm.



1.5 Research Structure

The rest of this research is organized as follows: Section [2| discusses the existing ap-
proaches like function caching, machine learning, and prewarming techniques to reduce
cold start latency in serverless computing, analyzing their effectiveness and limitations.
Also, specific works that used Edge computing to execute serverless functions closer to
the user in line with this research technique were examined. In Section |3| the proposed
solution is laid out including the preprocessing of real-world world mobility and serverless
functions datasets, as well as tools and technologies used. Section {4|introduces the system
architecture, experimental setup, and the location-aware algorithm solution for the alloc-
ation of resources at the edge. Section |5 discusses the implementation of the proposed
solution followed by the analysis of the trace-driven simulations to assess the performance
of the proposed algorithm empirically in Section[6] Finally Section[7]addresses the future
work and conclusion.

2 Related Work

This literature focuses on cold start latency in serverless architecture and its integration
with Edge computing platforms. Serverless architecture is a modern-day approach that
allows the developer to run services without requiring the management of the underlying
infrastructure. In recent years the collaboration between serverless architecture and Edge
computing has shown promising potential as well as multiple setbacks (Hu et al.; |2023).
Cold start latency can be described as one of the prominent issues that can limit the
instantaneous initialization of a new execution environment for serverless functions. The
initialization process involves multiple steps including the function codes and dependen-
cies. Setting up containers can also be a time-consuming and demanding task in terms
of resource allocation. These steps can result in delays, which in turn can undermine
performance (Gackstatter et al.; [2022). This section explores the existing solutions to
analyse the cold start latency issues and different mitigation approaches proposed by past
research work. It will further analyse their methodologies and identify the limitations of
their solutions. The research gap and niche also focus on these limitations and propose a
solution that can ensure a feasible collaboration between serverless architecture and edge
computing platforms.

2.1 Cold Start Latency

Cold latency has both direct and indirect impacts on the serverless architectures. It
affects different key performance indicators such as throughput, response time, and avail-
ability. Businesses that use the serverless platforms are already paying a high cost. Cold
start handling can cause additional resource consumption leading to cost inefficiencies
(Hu et al.f 2023)). A systematic literature analysis evaluated past research works on cold
start latency and its impact on cloud-based architecture. The authors evaluated 23 re-
search papers focusing on multiple aspects such as the impact on QoS parameters and
factors influencing the latency parameters. The results from this study were classified
into multiple solutions based on caching, AI/ML techniques, and optimization. The re-
view described edge computing as a suitable mitigation technique as the functions are
deployed closer to the end user proving its effectiveness in overcoming latency. These
strategies can be used to predict workload and initialize containers before future requests



(Golec et al.; 2024).

Function code loading is another reason behind the cold start-up time. During the
memory setup, all function codes and their relevant dependency must be loaded into
the memory. Some functions have many dependencies and loading them can be a time-
consuming task. (Lee et al.; 2021) in their research article proposed a function fusion
approach to deal with cold start latency. In their proposed strategy, combining mul-
tiple functions into a single function can help in eliminating cold starts. However, one
issue with this strategy is that parallel functions will become significantly slow due to
the sequential execution. Security overhead is another reason behind cold start latency.
Functions like token validation, identity authentication, and other encryption procedures
contribute to delayed operations. These operations are important for regulatory compli-
ance, but they still play their role towards cold start latency (Palade et al.; 2019). It
is worth noting that even though cold start latency happens for a short period, still it
has multiple direct and indirect consequences. These aspects impact the user experience,
application performance, and the overall adoption of serverless computing (Liu et al.;
2023).

2.2 Existing Mitigation Strategies

Several researchers have proposed unique solutions that can be employed to deal with the
impact of cold start latency. Long Short-Term Memory model (LTSM) is a prediction
model that can be used to mitigate cold startup time. The technique was utilized in col-
laboration with the function scaling and was discovered that the model could deliver up
to 95% prediction accuracy when trained on real-world datasets. The author described it
as a useful approach that keeps the container warm or alive for a short span of time even
after serving an invocation. The research work used different container characteristics
such as invocation frequency and resource footprints to guide caching decisions. LTSM
as a predictive algorithm anticipates the resource allocation demands which in turn helps
in countering cold starts (Chen et al.; 2023)).

Another effective strategy that can be used to mitigate cold starts is the traffic shifting
technique. The author of this research work utilized a publicly available dataset con-
taining 1.98 million invocations. Experimental logs generated further datasets enabling
the researchers to predict invocations. According to the results, if an infrastructure can
direct a small amount of traffic towards a function, it will keep it warm to handle any
subsequent requests (Bannonj 2022). Similarly, a research work further examined an ap-
proach based on predicting traffic volumes, it was focused on Quality of Service (QoS)
parameters. The authors also discussed a similar concept in their work known as scaling
latency. They noted that due to cold starts, users often provision GPUs for peak volume
traffic. Since GPU hosting is significantly more expensive compared to CPU-Based mi-
croservices, it is ideal to start pods and make predictions for the function’s latency. This
method avoids the need for warm pods (Golec et al.; 2024).

Further mitigation strategy was to identify different trends in serverless computing and
their interactions with cold starts. The result showcased that while adopting serverless
computing and other modern paradigms, developers don’t have to manage their servers.
The research paper also discussed several mitigation strategies that can be used to deal



with cold starts. The paper proposed optimized runtimes and hybrid architectures as
a mitigation strategy. The author concluded that I/O-intensive functions have a longer
cold start-up time compared to CPU-intensive functions. Customized runtime with ad-
justed bootstrapping can enhance the overall infrastructure performance (Eismann et al.;
2020). As far as the comparative analysis of these mitigation strategies is concerned it
can be seen that even though pre-warming can eliminate cold starts, it can prove to be
a cost inefficient solution. On the other hand, reactive measures are a more cost-efficient
mitigation technique. However, under some conditions, these measures might not be able
to completely mitigate the high demand scenarios (Zhao et al.; [2023]).

2.3 Serverless Edge Computing

Edge computing is a networking philosophy that creates a link between data sources and
computing. This process reduces the latency and bandwidth requirements. (Liu et al.;
2023)) in their work described Edge computing as a method that runs fewer processes in
the cloud. This method moves these processes to local places such as servers, IoT devices,
or computers. Edge computing can be described as a method that processes data closer
to its origin. This in turn allows the functions to process data at greater volume and
speeds. The advantage of Edge computing is that it does not require a separate network.
It can easily be located on individual router devices (Nastic et al.; 2017). In this section,
this research work will explore past literature that analyzed the collaboration between
serverless architecture and Edge computing.

A platform design approach evaluated the efficiency and feasibility of cloud and edge
networks. The research work was implemented in .NET and Microsoft Azure and ex-
plored the reliability and fault tolerance of both cloud and edge networks. The author
did find evidence that the integration of serverless computing and edge computing can
achieve better performance and efficiency. However, it was seen that the serverless plat-
forms do not care about fault tolerance which is extremely critical in IoT applications.
Since edge-based and IoT applications operate in real-time, handling fault tolerance is
critical, and ignoring it can be disastrous (Palade et al.; [2019)).

An empirical study analyzed the characteristics, motivation, and implementation of
serverless applications. The research work describes the collaboration between Edge
computing and serverless environments as a double-edged sword. The author stated that
using serverless architecture in an Edge computing environment can help reduce energy
consumption. This in turn will be effective for cost efficiency. However, serverless ar-
chitecture adoption and its associated delays can lead to performance degradation and
cannot be used for latency-sensitive IoT applications. The author also gave the example of
a driverless car and claimed that we cannot prioritize cost efficiency over safety (Eismann
et al.; 2020). Another key consideration is the energy and resource efficiency of Edge
computing and cloud-based architecture. (McGrath and Brenner; 2017)) implemented a
prototype design and implementation approach. A prototype was developed in .NET
and implemented in Microsoft Azure. The research work highlighted several benefits of
serverless architecture and its deployment with Edge computing. This collaboration al-
lows developers to focus more on code instead of infrastructure. Another notable benefit
was seamless integration with other cloud-based platforms. As far as the limitations are
concerned, the author noted in their work that cloud-based offerings are often conscious



of memory and CPU use. On the other hand, for Edge-based services, energy and delays
are major concerns. In order to use serverless architecture at the edge, it is necessary to
use energy aware functions.

Cost efficiency has been described as a significant constraint by multiple research works.
A cost modeling study evaluated the feasibility of serverless computing and its adop-
tion in edge computing. In their research work, the authors stated that the adoption of
serverless architecture will not be suitable for continuous workload. If continuous function
invocations are required, then the cost efficiency of serverless architecture will diminish.
This will be even more evident if the functions are long-running. Moreover, the obtained
latency will also increase during continuous workloads due to stateless executions (Lin
and Khazaei; 2020). (Deng et al.; [2020)) in their work implemented a theoretical and
analytical approach. The paper focused on predictive IoT solutions and edge Al. The
authors have utilized methods like model splitting and knowledge distillation. The find-
ings of their research work showed that utilizing cloud-based services with long-running
Al tasks will be inefficient in terms of cost. Network security is another concern while es-
tablishing collaboration between serverless platforms and edge-based networks. Features
like multi-latency and distributed microservices can make their interactions vulnerable.
It is important to ensure security guarantees before enabling serverless architecture at
the edge (Ahmadi; 2024)).

2.4 Comparison Table

Table |1 contains a breakdown of methodologies from related work compared against this
study.

Table 1: Comparison table

Referonces Prewarming | Real Data | Location-Aware
Technique | Simulations Policy

[ (Chen et al}[2023) v

| (Bannon; 2022) v v

| (Golec et all; [2024) v

| (Zhao et all [2023) v v

| (Nastic et al.; [2017) v

| (Palade et al}[2019) v

| (Eismann et al ; 12020)) v

| (Lin and Khazael ; 12020) v

| (Hu et al; [2023) v v

| (Lee et al., 2021) v

| This study v v v

2.5 Research Gap and Niche

The literature analysis has highlighted how serverless computing has faced several chal-
lenges in edge environments. The cold start seemed to be one of the most prominent
challenges and this research work aims to propose a location-aware algorithm that will



use user mobility patterns to address the cold start latency issue. Based on the liter-
ature analysis it can be seen that resource allocation is quite complicated due to dy-
namic workloads (Chen et al.; [2023). There are several mitigation methods proposed
by existing research work but most of them had significant limitations. The container
pre-warming technique is widely adopted in serverless and Edge computing environments
but the primary concern with this technique is that it would result in increased cost
and inefficient resource utilization. Intelligent scheduling was another solution proposed
by several authors but it was seen that it displays poor mobility awareness. This issue
becomes even more pronounced in dynamic environments. Similarly, edge cloud collabor-
ation would result in increased network overhead (Golec et al.; 2024 |Chen et al.; 2023).
Based on these findings, this research work has noted that there is a lack of context or
location-aware resource allocation among the existing approaches. The existing mitiga-
tion techniques don’t account for user mobility, resulting in inefficient resource allocation.
Pre-warming which has been described as a reliable mitigation technique, has its associ-
ated setbacks. Over-pre-warming results in resource wastage, while under-pre-warming
can cause latency issues (Liu et al.; 2023|). This research work proposes a location-aware
resource allocation algorithm. The algorithm aims to improve the efficiency of resource
utilization which mitigation the latency issues. The proposed algorithm can identify user
mobility patterns and allocate resources at the edge accordingly. Optimal resource place-
ment will be achieved by identifying the most suitable node to execute a function. The
algorithm will also enable the function to decide when to pre-warm a container without
unnecessary resource allocation.

3 Methodology

3.1 Data Collection

The initial step in implementing the proposed solution of this research work is rooted in
ethical data collection from various sources and figure [1| describes the process flow of the
approach taken in the methodology of this research work. The Microsoft Azure Function
trace and T-Drive data were identified as suitable input workloads for the simulation of
the system carried out, not only for their relevance to the research but also for their inher-
ent ethical attributes as they do not contain sensitive personal information. This careful
decision emphasizes the importance of ethical data management and provides an ethical
framework for this research. The datasets are provided by Microsoft and sourced from
Github and Kaggle, they are made publicly available under the Creative Commons Attri-
bution 4.0 License (Microsoft-Research; 2019) and Microsoft Research License Agreement
(Microsoft-Researchj; 2011)) respectively.

The Azure Functions trace, collected in July 2019, is a subset of the dataset analyzed in
the study by (Shahrad et al.;|2020) and consists of three main related datasets: Function
invocation counts and triggers, Function execution duration, and Application memory
allocation distributions which were integral in reflecting the real-world workload patterns
of serverless functions in the simulation. They cumulatively amount to approximately
1.49 million rows of data. In the same way, the T-Drive data is a subset of the dataset
used in the study carried out by (Yuan et al.; 2010, 2011)). It contains GPS traces of
10,357 taxis that were collected between the period of February 2 to February 8 2008 in
Beijing totalling around 15 million geo-points. Each geo-point contains fields like taxi



id, date time, longitude, and latitude which were crucial in simulating real-world user
mobility patterns for the proposed algorithm.
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Figure 1: Methodology Process Flow Diagram

3.2 Data Preprocessing and Transformation

After carefully gathering the data required for the research work, the next important
phase is to process the data into a structured format in line with this research analysis
and simulation goals. The preprocessing approach taken in this research work was in-
formed by insights drawn from a previous study by (Shahrad et al.; [2020) where they
highlighted how periodic patterns, function execution patterns, and memory utilization
impacted resource management policies. Likewise, this research expanded on these prin-
ciples to design a reliable data pipeline for preparing the Azure Function and T-Drive
datasets in a suitable way for modeling and simulation in CloudSim and iFogSim as well
as the proposed location-aware algorithm aimed at optimizing cold starts at the edge.
The data processing was conducted using Python libraries like Pandas and Numpy.

The Azure Functions trace consists of three categories of log files which will be fur-
ther discussed in detail. The grouping is based on a set of related characteristics of the
serverless workload which are listed below:

e Function invocation counts and triggers
e Function execution time distributions

e Application memory allocation distributions



Early exploration of the serverless workload granularity revealed that the functions in
the Azure Functions trace are fundamentally grouped into applications, with all data
pertaining to an application and its functions encapsulated within that application. Ap-
plications are characterized as the unit of resource allocation indicating decisions about
functions warm-up are done at the application level, and memory allocation is assessed
by the application, rather than by function. The trace schema defined unique fields for
each log file category, but common key fields were used to correlate related functions and
applications, as detailed below:

e 'HashOwner’- unique id of the application owner
e 'HashApp’- unique id for application name

e 'HashFunction’- unique id for the function name within the app

3.2.1 Function Invocation Distribution

The Function invocation trace contains 14 log files, one for each 24 hour period, with the
schema key fields including the Triggers and the Invocation data columns in addition to
the previously described common fields present in all log files. The Triggers define the
event type responsible for executing the function based on different invocation sources
(orchestration, http, queue, event, etc). The Invocation columns provide minute by
minute breakdown of function invocation that occurred in a day. Each of the invocation
data columns is numbered from 1 to 1440 representing a minute within a 24-hour period
(1440 minutes total). To simplify the modeling of the workload pattern for the simulation
of the proposed system, the invocation distribution was aggregated on an hourly basis by
summing up every 60-minute interval (columns 1-60, 61-120, and so on) to get 24 hourly
invocation distributions.

60(h-+1)

H(hy= > I()

t=60h+1

Where:
e H(h): Total invocations in hour h.
e /(t): Number of invocations at minute ¢.
e h: Hour index, ranging from 0 to 23.
e t: Minute index, ranging from 1 to 1440.

The analysis further revealed significant variations in the invocation distribution
across the hours of the day which led to the identification of peak hours for the func-
tions, conducted by calculating the hours with the highest invocation count. The top
3 peak hours were selected and combined in a new column for the research simulation.
This is important for understanding when to pre-warm containers, as frequent invocation
patterns can indicate a need for pre-warming to reduce latency.

Peak_Hours = argmax,,, ,, ». {H () | h € [0,23]}
Where:

10



e Peak Hours: List of the three hour indices (hy, ho, h3) with the highest values of
H(h).

e H(h): Hourly invocation count.

3.2.2 Function Duration Distribution

Similar to the invocation distribution, the Function duration trace contains serverless
function execution time over a 24-hour period for 14 days. Each of the data represents
the performance of a specific function within an application for a given day offering both
aggregated and percentile-based execution metrics. The schema provided the following
distinct metrics all within 24 hours:

e 'Average’ - The average execution time in milliseconds across invocations.
e 'Count’ - The total number of function invocations.

e 'Minimum’ & "Maximum’ - The shortest and longest execution time recorded within
24 hours.

e 'Percentile Average’ - Granular breakdown of the execution time from Oth, 1st,
25th, 50th up to the 100th percentile.

The data were modified by selecting a subset to model execution time, simplifying the
simulation setup while preserving data authenticity. The ’Average’ column was selected
and renamed to ’Average Execution Time’; the ’Minimum’ and ’Maximum’ columns were
renamed to 'Minimum Execution Time’ and "Maximum Execution Time,’” respectively.
The "Percentile Average 50" was renamed to 'Median Execution Time,” and the "Percentile
Average 99’ was renamed to 'Peak Execution Time.” The columns were renamed to be
more descriptive for ease of use in the simulation.

3.2.3 Memory Allocation Distribution

The Memory allocation distribution provides insight into the memory usage metrics of
each application over a period of 24 hours, represented as averages and percentiles. The
key columns in the schema are SampleCount which contains the total number of memory
samples recorded for an application and the AverageAllocatedMb which provides the
average memory consumption trends of each application. They are broken down into
the 1st percentile up to the 100th percentile. The memory allocation data for each of
the functions were analyzed and a subset of the data was selected to model the resource
allocation patterns required for the research simulation. Specific columns such as Avera-
geAllocatedMb_pctb0, AverageAllocatedMb_pct95 and AverageAllocatedMb_pct99 were
extracted and modified to Median memory usage, High memory usage, and Peak memory
usage respectively for easier use.

3.3 Simulation Environment

The simulation environment of this research was based on the iFogSim simulation toolkit.
It is an extension of the widely adopted CloudSim simulator commonly used in the mod-
eling and simulation of cloud computing environments. It allows for the definition of
infrastructure, service placement, and resource allocation policies for edge computing
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without prior knowledge of CloudSim simplifying its usability. Its extensive use in simu-
lating latency, mobility, and resource management scenarios made it the preferred tool for
this study. The components of the simulator follow a layered architecture characterized
by namespaces, classes, and entities which are discussed below.

3.3.1 Sensors

Sensors are defined as an essential part of the iFogSim architecture’s physical layer that is
responsible for handling user or physical interaction with the outside world. These are the
devices that generate data commonly referred to as tuples (stream of data) in iFogSim.
Data generation is event-driven so when configuring sensors in this framework the interval
between these iterations must be specified. Specifically, the GPS sensor was used together
with the T-Drive dataset to generate mobility events required for establishing when to
prewarm containers and the best location closest to the user to execute the serverless
functions.

3.3.2 Actuators

An actuator is a device that takes streams of data generated by sensors and processes
them into an output result. It is an important physical component that completes the
simulation loop by interpreting sensor events and generating feedback.

3.3.3 FogDevice

The FogDevice is a physical component of the iFogSim simulator that is responsible for
hosting application modules. They represent the physical servers or any device that
connects the data generation layer over a network in the cloud computing paradigm. Fog
devices possess distinct hardware characteristics, including MIPS (Million Instructions
Per Second), RAM (random access memory of the fog node), bandwidth, and various
computing resources, to mimic actual fog nodes. Fog devices can act as regular datacenter
or edge servers as in the case of this research to execute serverless functions and prewarm
containers.

3.3.4 Monitoring Service

This layer manages resource availability, utilization, and power consumption. It feeds
this information to the subsequent layer, the resource management module, and can be
accessible to other devices when required (Yousuf Khan et al.; 2022)

3.3.5 Resource Management

The resource management layer is the fundamental component of the iFogSim layered
architecture, it is responsible for managing the system resources, maintaining the quality
of service needed by the application layer, and governing the scheduling policies (edgeward
or cloud) of applications.

3.3.6 Application

The Application layer is a logical component of the simulator that models the server-
less function’s execution. This module comprises the AppModule, AppEdge, and the
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AppLoop. Each application often consists of several interconnected AppModules, as this
module signifies the processing components of the application by providing an isolated en-
vironment, like a container or virtual machine, necessary for executing serverless functions
or any processing operations (Buyya and Srirama; [2019)). It is defined by properties like
RAM, CPU cores, storage, and other resources required for processing operations. The
AppEdge defines the data flow among different AppModule entities, while the AppLoop
is tasked with setting process control loops for additional functionality (Yousuf Khan
et al.; 2022).

3.4 Validation Criteria

To obtain definitive conclusions and metrics related to the research findings, it is im-
portant to compare the implementation with a baseline configuration as outlined in the
research questions. The evaluation of the key metrics with and without the location-
aware policy solution will validate the cold start-up time optimization goals in line with
the research objectives highlighted in section clarifying the evaluation framework of
this research. Due to the cost implication and complexity of provisioning a live edge
server the iFogSim simulator was used to conduct modeling and simulation of executing
serverless functions at the edge network using the Microsoft Azure Functions dataset to
mimic a real-world serverless workload. The location-aware scheduling also leveraged
the T-Drive dataset for realistic mobility patterns. The evaluation focuses on three key
performance metrics:

e Execution time: The aggregate time taken for function execution.

e Cold start latency: The overhead incurred due to delay in the initialization
process of function execution.

e Resource consumption: The memory utilization by the serverless functions.

The validation of the experiment carried out was achieved through a common Edge
computing environment and the first experiment was carried out against a baseline with
default configuration simulating all functions across peak and non-peak hours. The second
experiment included location-aware policy components like the custom prewarm module
and mobility pattern module to schedule the execution of serverless functions to achieve
the research goals and findings.

4 Design Specification

This section discussed the architectural framework utilized in this research work. An
overview of the experimental setup is presented, utilizing the tools and technologies high-
lighted in Table 2| Figure [2]illustrates the system architecture, outlining different layers
of the architecture from the physical layer to the edge layer along with the configuration
in figure and location-aware algorithm applied.

4.1 Experimental Setup

The setup necessary for the implementation of the research is seen in the above table.
The simulation framework (iFogSim) is a Java-based opensource toolkit that comprises of
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different classes (logical components) to model and simulate Fog and Edge environments.
The GPS sensor at the data generation layer generates the required mobility events.
The physical layer models the infrastructure at the edge network and the cloud. These
devices or nodes are configured with a 64-bit system architecture running the Linux
operating system. The virtualized environment was created using the Xen hypervisor
abstracting the underlying hardware resources required for the containerized execution
of the serverless functions.

4.2 Tools & Technologies

Table below outlines the fundamental tools and technologies used to conduct the
research experiment.

Table 2: Tools and Technologies

H Type ‘ Tool/Technology | Description H
Simulation framework iFogSim Simulation framework for fog & edge
computing
Programming Language Java For implementing simulation en-

vironment and location-aware al-
gorithm and resources

Data Preparation Python, Pandas | Used for preprocessing and visualiza-
tion datasets
Version Control Git & Github Managing source code

4.3 Configuration

The project architecture relies on some fundamental configurations for different layers
of the iFogSim architecture. The Cloud infrastructure was provisioned with high MIPS
(10000), RAM (40 GB), storage (1 TB), and bandwidth (1 Gbps) while the Edge node
was provisioned with lower MIPS (2000), RAM (4 GB), storage (200 GB), and bandwidth
(200 Mbps) to reflect real-world representation.
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4.4 Architecture Diagram

Figure [2| below illustrates the key components and overall perspective of this study sys-
tem’s architecture.
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Figure 2: Architecture Diagram
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4.5 Algorithm

The algorithm developed and implemented in this study examines some elements of the
research carried out by (Sethunath and Pengj [2022), and extends it to align with the re-
search objectives. According to the goals, the location-aware algorithm takes the required
input of the T-Drive mobility datasets and Azure functions datasets to model real-world
workloads. The prewarm container module was programmed for the reusability of re-
sources in peak hours and the default geofence is defined to indicate best-fit location for
function execution based on generated mobility events. When function execution requests
are sent it checks if a warm container is available and executes functions instantaneously
otherwise functions are rerouted. Idle containers are then released to maintain resource
consumption of the edge environment.

Algorithm 1 Location-Aware Algorithm

Require: M: User mobility dataset, F: Serverless functions dataset, G: Geofences,
C: Pre-warm containers, F: Simulation environment, PreWarmedContainers: Map
tracking pre-warmed containers

Ensure: Log performance metrics: cold-start latency, execution time, resource utiliza-
tion

1: Initialize M, F', G, and simulation environment F with fog devices and cloud servers

2: Initialize PreWarmedContainers and execution counter execCounter to 0
3: repeat
4:  for each sensor s in sensors do
g < Check if the current location of s is within any geofence in G
if g # null and ¢ is not pre-warmed then
PreWarmContainer(s, g)
else if g = null then
CleanUpContainers()
10: end if
11:  end for
12:  for each request r in requests do

13: if r is not executed then

14: Calculate and log cold-start or warm-start latency for r
15: Execute r on the appropriate edge server

16: Increment execCounter

17: end if

18: end for

19: until all requests are executed or simulation ends

20: function PreWarmContainer (sensorld, geofenceName):
21: if sensorld not in PreWarmedContainers then

22:  Create and start a pre-warmed container for sensorld in geofenceName
23:  Add the container to PreWarmedContainers

24: end if

25: end function

26: function CleanUpContainers():

27: remove unused containers from PreWarmedContainers

28: end Function
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5 Implementation

The implementation of this research work was based on iFogSim. This is an open-source
Java-based toolkit that leverages the Sense-Process-Actuate framework and a distributed
dataflow model to simulate application scenarios within a fog and edge computing envir-
onment (Buyya and Srirama; 2019) with each layer of the environment customizable as
they are presented as entities and classes. At the resource management layer, the custom
location-aware scheduling policy was orchestrated following the algorithm discussed in
Section {4.5[ scheduling function execution closest to the user by integrating the mobility
module, and prewarm module. These custom modules and classes collectively with other
iFogSim modules facilitated the deployment of the research implementation laying a solid
foundation for benchmarking the findings against the baseline configuration. Also, the
development of the custom scheduling policy was programmed on the IntelliJ IDEA CE
IDE, and the simulation was run on the macOS Sequoia operating system with the Apple
M1 Pro chip. Further details are discussed in the following sections.

5.1 iFogSim

The first phase of the configuration of the iFogSim simulator started with the integration
of the preprocessed datasets using the OpenCSV library. The library was used in the
ingestion of the required columns of the datasets to ensure that geo-data, invocation data,
memory usage percentiles, execution times, and relevant data were accurately represented
as inputs of the simulation. These inputs were then mapped to the iFogSim entities such
as Sensors and FogDevices using Java classes. Also, to model the hierarchical topology of
the edge environment, different instances of the FogDevice class were created to represent
the cloud and edge layers or nodes. The configuration of these nodes was illustrated in
Section and modeled such that cloud nodes possessed higher computational capacities
and edge nodes were optimized instances for latency-sensitive applications reflecting the
real-world serverless-edge environment. While the baseline configuration used the default
scheduling policy (Time-shared/Space-shared), the location-aware policy handled the re-
source management layer for the main experiment by instantiating Fog devices based on
the input data, this was achieved by linking the geofence data to fog devices such that
each function execution is mapped to individual edge nodes based on the the user’s loca-
tion. The Function Profile class was then dedicated to store execution metric summaries
which are then output to the console.

5.2 Custom Modules

Extending the iFogSim simulator was necessary for the implementation of the location-
aware policy and this was achieved through three main interconnected modules: The
Mobility pattern module, the Prewarm module, and the Serverless Application module
outlined below.

5.2.1 Mobility Pattern Module

This module is the core component of the location-aware scheduling algorithm. The
longitude, latitude, and user ID columns of the T-Drive datasets are first parsed to an
entity modeling the user movement pattern as a sequence of geolocations creating the
basis for discovering edge nodes that are closest to the user. Geofences are defined around
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each of the edge nodes creating the area in which users can be served by the node. The
area the geofence covers is controlled by the geo-points (latitude and longitude) that have
been predefined. The Haversine formula was used to calculate the distance between the
predefined geofence and the user’s current location and if the computation is less than
the geofence radius the user is considered to be within the node coverage area. Events are
subsequently generated based on entry and exit within this area to dynamically allocate
resources to run the function and either warm or release the container of the node.

5.2.2 Prewarm Module

The prewarm module was developed to proactively manage resource allocation of the
containers on the edge nodes. It receives a geofence entry event from the Mobility Pattern
Module and checks if a container is available for function execution in the prewarm pool
for the user in the geofence otherwise it initializes a new container based on the memory
allocation pattern of the Azure functions datasets and applies a delay of 2 seconds logged
as cold startup time. It also monitors the pool for idle containers ensuring that when a
geofence exit event is received or the idle threshold is exceeded the containers are released
to free up resources on the edge node.

5.2.3 Serverless Execution Module

This module integrates the output of both the mobility and prewarm modules to execute
serverless functions. When a function execution request is sent it leverages the mobility
module to detect the user’s location and best execution node to fulfill the request. If a
container is available in the prewarm pool it executes the functions immediately otherwise,
it initializes a new container for execution. It also integrates the Functions Profile that
maintains all the execution metrics logs from cold start latency to resource consumption
metrics used in benchmarking the performance of the research algorithm.

6 Evaluation

The research evaluation was focused on different workload patterns and the scheduling
of serverless functions, both with and without the location-aware algorithm, defining
two distinct execution environments which are the baseline and the solution the study
explored. The initial simulation iteration was conducted on the serverless functions work-
load during off-peak hours, whereas the subsequent experiment took place during peak
hours. The serverless functions were executed hourly according to the workload, with
results derived from the cumulative execution summaries of all executed functions. The
research findings are categorized according to the validation criteria set out in Section
and are analyzed as follows.

6.1 Experiment 1

The simulation of the vanilla configuration shows a total cold start latency average of
all function execution during peak hours at 395,104,500 ms and off-peak hours results
were significantly higher at 2,765,731,500 ms as illustrated in Figure [3] It was examined
that the wide margin in the cold start latency could be attributed to the unpredictable
invocation of functions leading to a high frequency of cold starts.

18



Cold Start Latency Comparison

@3 vanilla Configuration
@ custom Configuration

2500000000 -

2000000000 -

1500000000 -

Cold Start Latency (ms)

1000000000 -

500000000 -

Peak Hours Non-Peak Hours

Figure 3: Bar chart of cold start latency comparison

With the location-aware algorithm scheduling the latency drastically reduced to 115,198,950
ms during peak hours reflecting a 70.8% improvement and to 788,191,650 ms during non-
peak hours, achieving a 71.5% improvement. This further substantiates that dynamically
pre-initializing containers in edge nodes nearer to users was an efficient proactive strategy
to optimize cold start latency, and it also demonstrated effectiveness in workloads with
unexpected patterns.

6.2 Experiment 2
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Figure 4: Execution Time Line graph comparison
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Figure [ revealed in a line graph the average total execution times of all functions at
73,419,040.79 ms during peak hours and 166,613,190.57 ms during off-peak hours for the
vanilla or baseline configuration. Simulation iterated with the location-aware algorithm
highlighted improved execution times at 71,011,427.06 ms during peak hours, reflecting
about 3.3% improvement, and 157,094,302.70 ms during non-peak hours revealed an
improvement of about 5.7%. This is due to the location-ware algorithm prewarming
strategy’s ability to trigger execution based on geo-location data ensuring containers are
initialized in advance based on the event generated upon entry or exit of geofences around
the edge nodes reducing the execution delay for subsequent invocations.

6.3 Experiment 3

The last part of the experiment examines the resource consumption of the proposed solu-
tion benchmarked against the vanilla configuration that utilized the default scheduling
of the iFogSim edge environment. The simulation of serverless functions conducted with
the vanilla configuration resulted in significant resource consumption of 282,619,880 MB
during peak hours and 1,965,965,804 MB during non-peak hours. This reflects the de-
fault scheduling is often not suitable for handling container initialization and releasing
resources, especially during spiky workloads and when containers are not actively in use
during off-peak periods. Executing the same functions with the location-aware algorithm
reduced resource consumption by 75.5% at 69,092,972 MB during peak hours and about
76% reduction during non-peak hours at 471,277,448 MB as illustrated in Figure[5] The
significant improvement can be attributed to the location-aware algorithm’s prewarming
strategy ability to dynamically allocate or deallocate resources of containers in the edge
nodes based on the event generated at entries and exits of the geofence defined around
the nodes ensuring resources are not wasted while maintaining readiness for execution of
serverless requests.

Resource Consumption Comparison
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Figure 5: Resource Consumption comparison

20



6.4 Discussion

The research finding evaluated the location-aware algorithm and revealed significant im-
provement in cold start latency in workload patterns off and on peak hours. The result
demonstrated and justified the effectiveness of the solution the research introduced by an
approximate margin of 70.8% at peak period and 71.5% off-peak period addressing one
of the most critical challenges in serverless computing in accordance with the research
objectives. However, the difference between peak and non-peak hours indicates room for
improvement, especially in optimizing pre-warming techniques for sporadic invocation
patterns. Functions execution time also saw measurable improvements from 73,419,040.79
ms to 71,011,427.06 ms in peak hours and 166,613,190.57 ms to 157,094,302.70 ms off-peak
periods. Although the improvement was relatively small compared to cold start latency,
it proved the indirect benefit of reducing cold starts which typically lead to extended
execution time. The use of real-world mobility data from the T-Drive dataset confirmed
that the results were rooted in realistic contexts reinforcing the credibility of the research
findings. The slight improvement revealed also indicates the need for additional optimiz-
ation for low-traffic workload patterns even though the algorithm performed well during
high-traffic periods. The resource consumption saw the biggest improvements with the
custom algorithm which is down to the adaptive prewarm technique used in reducing the
chances of over-provisioning resources for function execution.

Overall, the simulation experiments highlighted the practicality of the location-aware
algorithm in real-world contexts. And while the location-aware strategy aligns well with
existing literature advocating edge computing’s proximity benefits, the dependence on
predefined static geofences used in the implementation of the algorithm may not fully
capture real-world mobility complexities necessitating a dynamic geofence approach to
accurately model real-time user behavior and network conditions. Additionally, the lack
of testing in real-world edge infrastructure limits the broader applicability of the conclu-
sions as this is a common limitation in many simulation scenarios.

7 Conclusion and Future Work

This research aimed to optimize serverless computing by addressing key challenges such
as serverless functions cold start latency, execution time, and resource consumption as
this has been a major blocker in its adoption especially in latency-sensitive applications
such as IoT, gaming, and healthcare. The methodology and architecture were based
on the simulation of real-world serverless workload and mobility patterns from datasets
provided by Microsoft through the iFogsim simulator toolkit making the research unique
compared to other related works. Performance evaluation of the proposed location-aware
algorithm was benchmarked against a baseline scheduling policy in the simulator. Key
findings included a reduction in cold start latency of over 70% during both peak and non-
peak hours, with the most significant improvement observed during peak hours and the
research objectives were successfully achieved as the algorithm demonstrated improve-
ments across the validation metrics when compared to the baseline configuration.

Beyond the research achievements, it comes with some limitations. The static geofence

model while effective falls short in handling off-boundary users outside the predefined
geofences and taking into consideration temporary events in real-world, ever-changing
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environments. Moreover, the algorithm performance under real-world edge infrastruc-
ture remains untested leaving gaps in applicability evaluation.

Future work would focus on addressing these limitations by developing a dynamic model
that integrates real-time mobility tracking, and predictive analytics that could improve
the algorithm. Evaluating the algorithm in fault-tolerant scenarios and deploying it across
various real-world edge environments would provide deeper insights into its applicabil-
ity. In conclusion, this research has made an important contribution to the optimization
of serverless computing by demonstrating the potential of location-aware scheduling at
the edge of the network. Although improvements are necessary, the results confirm the
algorithm’s effectiveness and can promote further advancements in this field.
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