. N

'\’
National
College

Ireland

Optimization of Static Code Analysis for
Carbon Footprint Reduction in DevOps
Pipeline

MSc Research Project
Cloud Computing

Srishti .
Student ID: 23189053

School of Computing
National College of Ireland

Supervisor: Sudarshan Deshmukh

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Srishti .
Student ID: 23189053
Programme: Cloud Computing
Year: 2024
Module: MSc Research Project
Supervisor: Sudarshan Deshmukh
Submission Due Date: 12/12/2024
Project Title: Optimization of Static Code Analysis for Carbon Footprint
Reduction in DevOps Pipeline
Word Count: 7273
Page Count:

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Srishti

Date: 29th January 2025

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Optimization of Static Code Analysis for Carbon
Footprint Reduction in DevOps Pipeline

Srishti .
23189053

Abstract

Over the past few years, Cloud computing has attracted significant attention.
Many organizations have adopted this way of computing due to its on-demand ser-
vices, cost savings and scalability which led to rapid expansion of Data Centers
consuming huge amount of energy. This increased energy consumption has led to
increased carbon emissions, which is significant threat to the environment. The
research addresses the need of incorporating green cloud computing practices by
identifying and minimizing the carbon footprint associated with DevOps activities
widely used in cloud computing. The focus is on optimizing the Continuous In-
tegration/Continuous Delivery (CI/CD) pipeline, specifically static code analysis
stage as it is the primary contributor of generating carbon footprint. The static
code analysis stage helps in checking any static errors, vulnerabilities or security
issues in the workspace. We have proposed the optimization of Pylint, which is a
static code analysis tool for reducing its impact on environment, without sacrificing
performance. The results show that our optimization helped lowering the carbon
footprint associated with static code analysis, contributing to Green DevOps. The
proposal aims to benefit organizations by reducing their environmental impact and
support corporate social responsibility. However, further research can be done for
optimizing other stages of the pipeline.

1 Introduction

In the last few years, a lot of organizations have adopted cloud computing technologies.
Cloud computing offers various benefits, the primary benefit being that services can be
used anytime from anywhere and organizations will only be charged for the services used.
After adopting cloud computing, organization do not have to invest on the physical setup
that helps achieving cost savings. As cloud computing offers various benefits, the demand
is increasing, causing rapid expansion of Data Centers. These data centers are known to
consume high amounts of energy especially for cooling them. A recent Greenpeace re-
search claims that carbon footprint generated by (Information Technology) IT activities
accounts for around 2% of global CO2 emissions. The increasing carbon footprint gave
rise to Green Computing. Green Computing includes use of eco-friendly practices so en-
vironmental impact of carbon footprint can be reduced |[Rawas et al.| (2015). These Green
computing practices have gained a lot of attention in past few years. Many organizations
are getting aware of the impact of IT on environment and working on implementing
green computing practice to reduce this impact. Green Computing can be further classi-
fied as a Green Cloud, Green IoT, Green IoT, and more. The research focuses on Green

DevOps area. DevOps involve processes that combines software development and op-
erations for quicker deployment of applications. Green DevOps refers to implementing
sustainable practices in DevOps processes. These practices are targeted to minimize the
energy consumption and optimizing the resource utilization in order to decrease the car-
bon footprint generated by DevOps practices. DevOps pipelines i.e. CI/CD pipelines
are major contributors for generating Carbon Footprint. The pipeline is responsible for
releasing software to market that includes building, testing and deploying of application.
The energy consumption while building, testing and deployment processes is responsible
for generation of Carbon Footprint. As the demand for DevOps practices is increasing, it
is important to work on reduction of carbon footprint generated by these activities. Vari-
ous researches have been performed in green computing field that proposed strategies
for reducing this carbon footprint. The strategies include infrastructure optimization,
dynamically scaling of resources and Virtual Machine Migration.

Many researches have been conducted for reduction of carbon footprint. The studies
mainly worked on optimizing the energy consumed by data centers via creation of energy-
efficient algorithms. According to[Shu et al.|(2014) and |Hussein et al.| (2014)), optimization
of server response time and improvement in power efficiency can be achieved by alloc-
ation of resources and managing the power. However, no studies have been conducted
for optimization of CI/CD pipeline. This is the identified gap from the review of related
work. This research focuses on filling this gap and optimizing the CI/CD pipeline.

Table 1: Objectives

Objectives Explanation

Analysis of Related Work Review of ex%sting studies in green computing, green
cloud computing and green DevOps

Detection of Carbon gas Emissions generated by cloud

computing practices

Reducing Environmental | CO2 Emissions reduction for decreasing the Environ-

impact of Cloud Computing | mental impact

Optimizing Static Code

Analysis

Detecting Carbon Footprint

Pylint optimization for reducing the Carbon footprint

Static code analysis is a useful tool for developers for early detection of bugs. It
computes the program without the need of running the program. The analysis of code
offers multiple benefits including Early code detection, improved code quality, enhanced
security, and more. Currently, there are various tools in the market that can be used for
doing static code analysis of the application code. The most widely tools used are Pylint,
SonarCloud, SonarQube, etc. These tools helps checking any syntax errors, vulnerabilit-
ies, security issues, and potential bugs. Static code analysis is often integrated in CI/CD
pipeline for ensuring the code quality before deploying it. This helps in early detection
of bugs which can be fixed before deploying the application to production. But these
benefits comes with a cost of increased computational overhead. When implemented in
DevOps pipeline, these tools consume high amounts of energy and hence contribute to
carbon footprint production. The proposed methodology works optimization of Pylint

tool and decreasing the carbon footprint of overall CI/CD pipeline. Pylint is a most
widely used tool often integrated in CI/CD pipeline for static code analysis and detect-
ing errors in Python code. It analyses all files for any syntax errors, unused import,
undefined variables, etc. Optimizing pylint can contribute to overall reduction in carbon
footprint generated by CI/CD pipeline.

Table (1] includes the objectives of the paper. Main objectives being reducing the car-
bon footprint associated with DevOps pipeline and optimizing static code analysis. A
novel technique is introduced in the paper for reducing the carbon emissions generated
by DevOps pipelines.

Research Question: The research questions proposed for addressing these challenges
are as follows:

RQ: How does the integration of real-time carbon intensity data using the CO2Signal
API and integrating GitHUB Actions workflow with Pylint can detect and reduce carbon
footprint generated by CI/CD pipelines in DevOps processes? How can organizations be-
nefit from monitoring and reducing their carbon footprint?

Sub-RQ: To what extent the proposed approach can reduce the carbon footprint com-
pared to traditional approaches?

The proposed research methodology aims to detect and reduce the carbon footprint gen-
erated by DevOps activities. CO2Signal API has been used for fetching the Carbon
Intensity data of specific region. The pipeline is continuously monitored for resource util-
ization metrics. By making use of the Carbon Intensity data and the utilization metrics
carbon footprint can be detected. The optimization of Pylint can be done by integrat-
ing GitHub actions with it so that Pylint analysis in only done on files that have been
updated in previous run rather than linting all files. This solution will help reducing the
carbon footprint effectively.

The research solution contributed towards Green DevOps by introducing a solution to
reduce carbon footprint in CI/CD pipelines. The research also integrates a C02Signal
API to calculate the total carbon Intensity. Lambda function is also integrated for cal-
culation of carbon footprint by using the metrics obtained from cloudwatch. Also, the
research contributed towards optimizing static code analysis stage using Pylint and usage
of less cloud resources by decreasing the total execution time taken by the CI/CD pipeline.

The proposal continues the following structure: Section 2 of this study discusses the Re-
lated work by reviewing existing works and identifying the research gap. The purpose of
this section is to give a summary of the existing works in green computing fields. Section
3 discusses the proposed methodology, which includes the proposed solution and tools.
Section 4 discusses the Design Specifications and Architecture of the proposed solution.
Section 5 covers the implementation of the proposed solution. Section 6 demonstrates
the experiments conducted during the research followed by discussion of results obtained
from experiments. The proposed research is then concluded highlighting its limitation
and future work.

2 Related Work

This section outlines the literature review performed in the Static Code Analysis, Green
Computing, Green Cloud Computing and Green DevOps areas. The section is organ-
ized into four sub-sections that gives a comprehensive overview of existing studies. The
initial section provides insights on Static code analysis in DevOps pipeline. The second
section highlights the strategies & various initiatives in the Green computing field which
is necessary to comprehend the importance of Green Computing. Third section provides
an overview on various techniques and technologies implemented in previous studies for
reduction of carbon emissions and contribute towards Green Cloud Computing. Last sec-
tion explores the contributions done in Green DevOps area. A detailed analysis of existing
techniques is conducted, focusing on reducing carbon emissions from devops practices.

2.1 Importance of Static Code Analysis

The usefulness of the static code analysis stage in the software development lifecycle is
demonstrated in the paper Nikoli¢ et al.| (2021]) by comparing three different static code
analysis techniques namely CppCheck, FindBugs and SonarQube. The techniques are
compared based on four set of features out of which SonarQube performs the best with
69.61%. The study illustrates the importance of static code analysis stage but fails to
provide a concrete evidence using experiments on real world applications.

Importance of using static code analysis during the software development process has
been discussed in the paper |Yeboah and Popoola (2023) and [Kannan et al.| (2022) . The
paper discusses the widely used static code analysis tools such as MLSmellHound, Son-
arQube, PMD, Checkstyle and FindBugs and evaluate the performance of the analysis
tools by detecting software defects. Experiments conducted using multiple datasets and
metrics on these static code analysis tools found that the SonarQube outperforms other
static analysis tools in terms of efficiency and reliability. The study is useful to the field
of research in establishing the importance of static code analysis stage in software devel-
opment lifecycle.

Integration of Static Application Security Testing (SAST) tool, and automating the SAST
tool output into the developer issue tracking software has been proposed by |Wadhams
et al. (2024), Stanciu and Ciocarlie| (2023)) and Marandi et al. (2023) . This study is
aimed towards automating the software development processes along with emphasizing
the significance of static code analysis which detects code smells, vulnerability and se-
curity issues. The author demonstrated an experiment using SonarQube in a GitLab
environment but fails to illustrate the approach using other tools or workspaces.

This section discussed the importance of static code analysis in DevOps pipeline but
at the cost of increased computational overhead. This is a clear gap where the proposed
research works upon.

2.2 Shift towards Green Computing

With the increasing demand of cloud technologies, a significant rise in data centers has
been observed. These data centers consumes high amounts of energy, leading to increased

carbon footprint production. The study highlights how the rapid extension of data cen-
ters amplifies energy consumption and increasing carbon emissions Kinkar et al.| (2022).
The paper emphasizes on importance of adopting energy efficient techniques known as
"Green Computing’ for minimizing these environmental impacts.

Potential of green computing activities to address the escalating environmental impact
of Information and Communication Technology (ICT) has been discussed in the paper
Patel et al.| (2024). Green computing focuses on minimizing the carbon footprint of by
reducing energy consumption and pollution and promotes eco-friendly strategies. The pa-
per examines the potency of of green computing practices in reducing carbon emissions
generated from ICT’s. The study emphasizes the importance of applying green com-
puting strategies in businesses and industries for achieving the global carbon reduction
goals. It also acknowledges the implementation challenges in adopting green computing
practices on a global scale. The paper highlights the benefits offered by adopting green
computing which include cost savings, business continuity and enhanced corporate image.

Impact of Information technology (IT) on Environment is increasing day by day. The
paper states that this impact can be reduced by adopting novel strategies for improving
energy efficiency Rajal (2021]). The paper discusses a real life example on carbon footprint
analysis that demonstrates how individual I'T usage contributes to carbon footprint. The
author monitored power consumption of various devices such phones, laptops, and mi-
crowaves. The study shows that microwaves consume maximum energy among all devices,
and devices like Wii consoles consume minimum energy. The scenario offered individual
energy consumption patterns and environmental impact associated. Using sleep modes
or hibernation, power management and employing energy efficient practices can lower the
impact and contribute to Green computing.

Drastic growth in technology has led to a significant rise in the use of computers and
other resources such as sensors, data centers, and storage devices Agarwal et al.| (2021)
and |Badhoutiyal (2022). This has resulted in higher power consumption and carbon
footprints which is contributing to environmental concerns of global warming. For ad-
dressing these concerns, the author emphasizes on including green computing which can
be done by focusing on optimizing resource utilization and reducing individual energy
usage. Ways recommended by author for reducing include opting for energy-efficient
laptops over desktops, smaller screen sizes, and using Ink Jet printers for lower energy
consumption. The paper concludes that by combing individual efforts with industry in-
novation, it is possible to achieve green computing.

This section targeted on the importance of adopting green computing practices and
provided ways for achieving the same. The review showed how many cloud providers
like AWS, Google and IBM are working on lowering the environmental impact of IT by
including green computing strategies. Next section is focused on reviewing works done
in reducing carbon emission specifically in Green Cloud Computing.

2.3 Advancements in Green Cloud Computing

A novel fuzzy logic based resource management algorithm has been discussed in the paper
Hussein et al.| (2020). The algorithm works on enhancing VM allocation and migration

policies by employing a Fuzzy Rule Based System (FBRS) for VM placement during re-
source allocation. Experimental results claim that the power consumption was reduces by
30-40% compared to conventional methods but with a limitation of increased execution
times. The paper also highlights the need for optimizing the execution time to address
performance concerns.

Different approaches for achieving Green cloud computing have been discussed in the
paper Sailesh et al. (2023) and Suratia et al.| (2023)). It includes strategies like upgrading
old data centers to modern for lesser heat generation, heat reuse and power management
techniques. The study highlights the burden on computer server due to increased use of
virtualized environments. It also discusses the strategies of Virtual Machine load man-
agement and efficient job allocation for minimizing the energy consumption. The author
emphasizes on adopting Green cloud computing activities by focusing on energy efficiency
and optimizing resource utilization.

A significant drawback in cloud computing is the under utilization of resources. When
cloud provides the services to end users, some services may remain underutilized. As per
the paper Jayalath et al.| (2019)), since some services are not used to their full potential,
energy usage is done in an inefficient way which results in increased carbon emissions. The
paper includes the methods for mitigating the under-utilization of resources to achieve
green cloud computing. The study also highlights the that major cloud providers like
Google, Microsoft, AWS and IBM have are actively working towards adopting green com-
puting by working on developing energy efficient and green practices.

The research provides a novel algorithm of dealing with energy consumed by Idle Virtual
Machines. Author claims that idle VM consumes around 50-70% of total server energy as
stated Hossain et al.[(2020]). To address this issue, a novel Active & Idle Virtual Machine
Migration (AIVMM) algorithm has been implemented that reduces the energy consumed
by idle Virtual Machines. It also addresses the Virtual Machine Placement (VMP) prob-
lem along with reduction in energy consumption. The new approach efficiently migrates
the idle virtual machines from an actively working server and places them in an in-active
server with the objective of reducing power interruption for the active machines. Findings
show that the AIVMM has achieved the objectives of improving resource utilization, and
reducing energy consumption and achieving green cloud computing.

Various Load balancing techniques have been analysed in the paper for enhancing the
performance metrics. A correlation between green cloud computing and load balancing
is explored in the paper Girsa et al.| (2023)). Optimizing load balancing algorithms can
help achieving resource efficiency and minimizing the impact on environment. Overall,
the author explains the relation between load balancing and green cloud computing and
emphasizes on adopting green cloud strategies.

The major contributor of carbon emissions is the inefficient use of power during transmis-
sion of data, data storage and data handling. The paper Mehta et al.| (2023)) introduces a
new approach for reducing the power usage by implementing various techniques. These
techniques include software optimization, Network optimization and hardware optimiz-
ation. Software optimization approach aims to improve software efficiency by shutting
down under-utilized servers. Hardware optimization technique adjusts the server’s com-

putational capacity by optimizing the frequency and voltage. Energy usage can be re-
duced by minimizing the 'Network Traffic’ across servers. Adopting these Green Cloud
Computing techniques for reducing energy consumption can decrease the environmental
impact of cloud technologies.

The section emphasized on techniques for reducing the energy consumption specific to
Green Cloud Computing. The techniques involve Load balancing, task scheduling and
Virtual Machine Migration. In next section, studies focusing on Green DevOps have been
covered.

2.4 Advancements in Green DevOps

Rifa et al.| (2021) introduced sustainable testing methods in CI/CD pipelines which con-
tribute in the field of Green DevOps. This research introduced a novel approach where a
machine learning model which classifies the tools and the test cases in the testing stage,
which results in a perfection of the test results. The model focused on optimization of
the testing procedure and tools which lowers the energy consumption, hence reducing the
carbon generated and contributing to the field of Green DevOps.

There are various techniques for testing in CI/CD pipelines which result in the gen-
eration of a significant amount of carbon footprint Nayak et al.| (2024) among which one
is Green Continous Test (Green CT). It was observed that by decreasing the number of
application test cycles reduced the carbon generated without impacting the performance
efficiency. The study highlights three main strategies for Tests which reduce the carbon
footprint significantly - "Design and optmization’, ’Automation and its scripting and exe-
cution time’ and ’Management for continuous corpus management and for maintaining it
relevancy and status’ but the study only emphasises on the testing phase in the pipeline
and other stages remain uncovered.

This section covered the studies related to Green DevOps field. From the literature
review, it is evident that most of the researches do not focus on the code analysis which
is the identified gap we have worked upon in the proposed research.

2.5 Summary of Literature Review

Each article in the overall literature review of the related studies mainly focused on the
importance and adoption of green computing which lowered down the carbon footprint
generated. But it could also be observed that the studies lack in enough practical ap-
proaches for Green DevOps. They focus more on reducing generated carbon with testing
techniques but in this research an emphaisis on code analysis is also done which helps in
filling a clear gap in the contributions in Green DevOps field.

3 Methodology

This section outlines the detailed methodology and research tools and methods used
in addressing the issue of increased carbon footprint associated with CI/CD pipeline,
especially during the code analysis stage. To reduce the impact on environment, various

tools and techniques have been integrated to measure, monitor, and reduce the carbon
emissions.

3.1 Code analysis stage in CI/CD Pipeline

Before deployment of the software to the production environment, analysis of code is
done for ensuring the code quality. The analysis checks for any security issues, syntax
errors, unused imports and undefined variables. This is a basic procedure for checking
code quality and is included in almost every CI/CD pipeline. This can be done by using
various tools available in the market such as Pylint, SonarQube, SonarCloud, and more.
In our research we have used Pylint as the Static Code Analysis tool. Pylint is a most
widely used tool that checks for any syntax errors, undefined variables and unused im-
ports in the python code. Whenever the Pylint stage in pipeline gets initiated, it checks
all the files for any errors in the code and logs the errors in the log file. As the pylint
checks all the files, it consumes high amounts of energy especially in large applications
with around 1000 code files. This results in increased carbon footprint. The research
aims to reduce this carbon footprint by optimizing pylint.

3.2 Optimizing Code Analysis

As discussed earlier, the code analysis stage consumes high amounts of energy and is the
major contributor to increased carbon footprint in CI/CD pipeline. Since our research
uses pylint as the analysis tool we have worked on optimizing pylint. Pylint works by
checking all the code files for any syntax or unused imports errors. Optimization of pylint
can be done by reducing the number of files pylint checks whenever the pipeline gets initi-
ated. The proposed solution includes the integration of GitHub Action with pylint, that
enables Pylint to check only the files which have been modified in the last push rather
than checking all the files. This will have huge impact on large application with around
1000 files. Suppose out of these 1000 files only 100-150 files have been updated in last
push, the pylint now checks only those modified 100-150 files rather than checking all
1000 files. This solution helps in decreasing the amount of energy consumed and hence,
carbon footprint is significantly reduced.

3.3 Research Tools

This section describes the tools used in conducting the research. The tools used along
with their purpose is included in Table.

3.3.1 AWS Cloud9

Cloud based IDE that enables developers to write, test and run code in multiple program-
ming languages without the need of local setup. In our reseaarch AWS Cloud9 has been
used to develop the Application under test. The application is developed using Django
framework.

Table 2: Summary of Tools Used

Tools Purpose
AWS Cloud9 IDE for developing the Application under test
AWS CodePipeline To build, analyse code and deploy application under test
Pylint For code analysis stage in CI/CD pipeline
GitHUB Actions Helps in pylint optimization
CO2Signal API APIT integrated with lambda for detecting real time carbon emissions
AWS Lambda Fetches carbon footprint generated by CI/CD pipeline
AWS CloudWatch Monitors CPU usage, Memory usage for CI/CD pipeline
Elastic Beanstalk Used in deployment stage for deploying the application under test

3.3.2 AWS CodePipeline

CodePipeline is a continuous integration and continuous delivery (CI/CD) tool that helps
automating the steps required in release process. A CI/CD pipeline consists of various
stages. Our pipeline includes three stages namely source, code analysis and deploy. The
first stage being the source stage is connected with a private GitHub repository, which
gets initiated whenever a code push is made to the pipeline. The next stage is the code
analysis stage integrated with pylint for static code analysis. Last stage is the Deploy
stage integrated with Elastic Beanstalk for deploying the application.

3.3.3 Pylint

Pylint is a static code analysis tool used for detecting issues in python code. The tool usu-
ally checks for any syntax errors, undefined variables and unused imports. It is integrated
with the CI/CD pipeline for ensuring code quality before deployment.

3.3.4 GitHub Actions

GitHub Actions is mainly used for automating workflows. In our research it is integrated
with pylint for optimizing the code analysis stage in CI/CD pipeline.

3.3.5 CO2Signal API

A third-party API that provides real time carbon intensity data based on electricity
consumed in a given region. Integrated with lambda function it helps detecting the
carbon footprint generated by CI/CD pipeline.

3.3.6 AWS Lambda

Lambda is a serverless computing service that enables developers to run the code without
provisioning or managing servers [[| The Lambda function fetches the CPU usage,
Memory usage and runtime minutes metrics from the CI/CD pipeline and calculates
carbon footprint generated by pipeline by using the carbon intensity data fetched from
the API.

Thttps://docs.aws.amazon.com /lambda/latest /dg/welcome.html

3.3.7 AWS CloudWatch

CloudWatch is a tool for monitoring application performance. It automatically collects
metrics from various services such as Lambda, Build, EC2, and more. CPU utilization,
Memory Utilization, Storage Read/Write consumed by CI/CD pipeline can be monitored
using CloudWatch.

3.3.8 Elastic Beanstalk

Beanstalk is a Platform as a service (PaaS) that is responsible for deploying applications
quickly in the cloud. This is integrated in the last stage of pipeline for deploying the
Application under test.

4 Design Specification

The proposed research methodology is based on systematic integration of various tools
and services for optimizing the code analysis stage of CI/CD pipeline. Objective is to
minimize the carbon emissions generated from CI/CD pipeline. This section outlines the
Design Specification, Architecture and techniques used during the research.

4.1 Architecture Design

Figure 1 represents the architecture design of the proposed methodology. As shown in
the figure, Cloud9 is used as IDE for development of the application under test which
is connected to GitHub. The source code of the application under test is stored in a
GitHub repository. Each time code change is pushed to repository, CI/CD pipeline gets
triggered. CI/CD pipeline comprises of three stages mainly Source, Build and Deploy
stage.

Whenever a change is made to the application’s source code stored, the modified code
is pushed to the private GitHub repository. This triggers the pipeline, and initiates the
source stage which is the first stage of the pipeline. The source stage fetches the code
from the repository. After the completion of source stage the pipeline then moves to the
next stage of the pipeline, the Build stage. For build stage we have used AWS CodeBuild.
This stage is code analysis stage which is integrated with pylint that ensures the code
quality by checking for any syntax errors, unused imports and more in the code. When
the build stage gets initiated, pylint comes into action and starts checking all the files
for errors and logs the detected errors in the log file. AWS CodeBuild requires a build
specification file to be included in the build project. This file contains the commands and
settings that AWS CodeBuild uses to build and package the code. A buildspec.yml file
for pylint contains the build steps and configuration commands.

As per the proposed methodology, pylint is configured with GitHub actions to only
analyze modified files, that optimizes the process and avoids the unnecessary checks which
in return decrease the energy consumed by pylint. The pylint should be able detect
the modified files and perform the analysis only on these modified files. The resource
utilization from the code build stage can be monitored using AWS CloudWatch. After
the successful completion of code analysis stage, the last stage that is the deploy stage

10

m AWS CI/CD Pipeline

/ M= Code Build
.........................
2 :
4 buildspec File '
') H
i 1. INSTALL DEPENDENCIES :
: 2. GITHUB ACTIONS :
H 3.INVOKE PYLINT '
] _
H Modified Files ' <
: | .
. H H
Cloudg GitHUB ' STATIC CODE ANALYSIS ! Code Deploy
' ON MODIFIED FILES !
' 1
H 1
1
v

R

CloudWatch
For Monitoring Metrics (CPU
Utilization, Memory Usage)

Metrics

Oa°°
-, - coz@.,
o
CO2SIGNAL API LAMBDA FUNCTION CARBON FOOTPRINT
For Calculating Carbon From Pipeline

Footprint

Figure 1: Architecture of Proposed Solution

gets initiated. For deploying the application we have implemented Elastic beanstalk that
automatically deploys the application to the cloud.

4.2 Lambda Function and Carbon Footprint Detection

The main aim the research is the detection of carbon footprint associated with CI/CD
pipeline, specifically from the CodeBuild. We have implemented a lambda function for
detection of carbon footprint. The function makes use of CO2Signal API that provides
the Carbon Intensity (gCO2/kWh) for a specific region. This intensity is used to calculate
the Carbon Footprint generated by the build stage of the pipeline. Resource Utilization
of build stage is monitored using CloudWatch and metrics like CPU Utilization, Memory
usage and more, can be collected from the CloudWatch. These metrics are then sent as
test event into the Lambda Function and by using these metrics we can calculate the
Energy Consumption (in kwH) as mentioned in the equation [1]

OPUusage

EnergyConsumption(kwh) = (100

X 0.1) + (Memoryysage % 0.05) (1)

After the calculation the Energy consumption by code analysis stage, the carbon
footprint can be calculated using this energy consumption and the carbon intensity as
stated in equation

CarbonFootprint(gCO2) = EnergyConsumption(kwh)x CarbonIntensity(gCO2/kwh)
(2)

11

pre_build:

commands :
echo "Reinitializing Git repository in CodeBuild environment”
git init # Initialize a new Git repository
git remote add origin Github Repo
git fetch origin main # Fetch the main branch
git clean -fdx # Clean working directory to prevent conflicts
git checkout -b main origin/main # Check out the main branch
echo "Fetching updated Python files from the last Git push"
git diff --name-only HEAD~1 HEAD > changed files.txt # Find updated files
echo "Files detected for linting:"
cat changed files.txt

build:
commands :

- echo "Running Pylint on updated Python files"

-
exit code=0
pylint --disable=R0903,R0901,E1101 --output-format=colorized §$(cat changed files.txt) ||
exit_code=§7?
echo "Pylint completed with exit code: §exit code"”
exit $exit_code

Figure 2: buildspec.yml File

5 Implementation

The proposed novel technique aims to detect and reduce the carbon footprint by optimiz-
ing the code analysis stage of the pipeline. To implement this, pylint was integrated with
GiHub actions that enables pylint to check only the files which have been updated in
last git push. This decreased the CPU and Memory Utilization consumed by pylint. For
detection of carbon footprint these metrics were passed as test event to the Lambda func-
tion. Let’s delve deeper into the implementation of GitHub Actions, pylint and Lambda
function.

5.1 Integration of GitHub Actions with Pylint in CI/CD Pipeline

A build specification file is a configuration file used by AWS CodeBuild that includes the
steps which should be performed during the build process. The file is written in YAML
format and defines various phases such as, installation, pre-build, build and post-build.
Whenever a build is triggered, AWS CodeBuild uses the instructions in the buildspec.yml
file and executes each phase in sequence. The install phase installs all the dependencies,
the build phase runs the build commands, and the post-build phase can be used for other
tasks. A code snippet of buildspec file is depicted in Figure 2]

The above buildspec.yml file defines two phases; pre-build and build. These phases
collectively initializes a Git repository, fetch the modified files from the latest Git push,
and then run Pylint only on the updated Python files.

Pre-build phase: This phase includes the steps necessary for preparing the environ-
ment and identifying which files needs to linted by pylint. The phase starts by initializing
and setting up of Git repository. It fetches the main branch of the repository to ensure
the latest version of the code is available. After the Git setup, the code then checks for
files which have been modified in the last push by using the ”git diff” command that
compares the current commit (HEAD) with the previous commit (HEAD 1) and lists the
updated files. These files are then saved in a text file named ”changed_files.txt” file. This
ensures that only the modified files are considered for linting.

12

Fetch carbon intensity data from CO2Signal API

headers = {'auth-token': CO2SIGNAL_API_TOKEN}

url = f"https://api.co2signal.com/vl/latest?countryCode={region_iso}"

response = requests.get(url, headers=headers)

response.raise_for status()

Parse API response

data = response.json()

carbon_intensity = data.get('data', {}).get('carbonIntensity', 'N/A')

fossil fuel percentage = data.get('data', ({}).get('fossilFuelPercentage', 'N/A')

Log the fetched carbon intensity data

logger.info (f"Region: {region_iso}")

logger.info (f"Carbon Intensity: {carbon_ intensity} gCO2/kWh")

logger.info (f"Fossil Fuel Percentage: {fossil fuel percentage}%")

cpu_energy kwh = (cpu usage / 100) * 0.1 * (runtime minutes / 60) # Convert resource utilization to energy consumption (kWh)
memory energy_kwh = memory usage gb * 0.05 * (runtime minutes / 60) # CPU power consumption = 0.1 kWh per 10% CPU usage per hour|
total_energy_ kwh = cpu_energy kwh + memory energy kwh # Memory power consumption = 0.05 kWh per GB per hour
carbon_footprint = total_energy_kwh * float(carbon_intensity) # Calculate the carbon footprintin grams of CO2

Log the energy consumption and carbon footprint

logger.info (f"Total Energy Consumption: {total_energy kwh} kWh")

logger.info(f"Calculated Carbon Footprint: {carbon_footprint} gC02")

Figure 3: Lambda Function

Build phase: In this phase, pylint is invoked and runs the analysis only on the
updated files identified in the text file. This ensures Pylint only lints the updated files,
reducing unnecessary linting of unchanged files. Pylint now runs on the modified files
and checks for coding errors.

5.2 Monitoring CI/CD pipeline Metrics

After the integration of Github Actions with Pylint, the next step is to monitor the energy
consumption of the pipeline, specifically in the build stage where pylint is integrated.
Whenever a pipeline is triggered and build stage gets initiated, pylint starts analyzing
the files for any potential and erros. As pylint is incorporated with Github Actions, it lints
only files which have been updated in last git push. For this stage, the metrics such as
CPU utilization and memory utilization are continuously monitored using CloudWatch.
These values are necessary for the calculation of energy consumption. These values are
then passed to Lambda function for detection of Carbon Footprint.

5.3 Populating Lambda Function with Pipeline Metrics for Car-
bon Footprint Detection

For detection of Carbon Footprint associated with the pipeline, a Lambda function is
created. The function uses CO2Signal API to fetch the carbon intensity as per the
specified region. The carbon intensity data obtained is then used for the calculation
of carbon footprint. For detecting the Carbon footprint produced from the pipeline,
calculations are performed on the Carbon Intensity information retrieved from CO2Signal
API and the metrics obtained from the pipeline. A test event is created where the metrics
(CPU utilization, runtime minutes, memory usage) obtained from the pipeline are passed

13

to the Lambda function. A code snippet of Lambda Function is shown in Figure [3] that
starts with fetching the carbon intensity data from CO2Signal API. Then, the pipeline
values which were passed through the test event are used for the calculation of Total
energy consumption which is the sum of CPU utilization (kwh) and Memory utilization
(kwh). The value obtained for Total energy consumption is then multiplied with carbon
intensity to get the Carbon Footprint (gCO2) produced by the pipeline.

6 Evaluation

This section covers the experiments conducted during the research. The experiments
evaluates how Integration of pylint in CI/CD pipeline affect resource utilization and
what is the effect of integrating Github actions on resource utilization in the CI/CD
pipeline compared to using Pylint alone.

6.1 Experiment 1: Pipeline without Pylint vs. Pipeline with
Pylint

In this experiment, we monitored the Resource Consumption of pylint when incorpor-
ated in CI/CD pipeline. This experiment compares the resource usage between two
pipelines where both pipelines are connected to same Github repository and gets triggered
whenever the code change is made and pushed into Github repository.

1. Pipeline without Pylint: This pipeline runs normally without the code analysis
during build process.

2. Pipeline with Pylint: This pipeline performs code analysis using Pylint during
the build process.

During the execution of both the pipelines, metrics such as CPU utilization and
memory usage were monitored continuously using Cloudwatch. The values obtained are
shown in Table [3

Table 3: Values obtained from conducting Experiment 1

. Pipeline Pipeline with
Metric without Pylint | Pylint
Average CPU Utilization (%) 10.7 15.1
Average Memory Usage (MB) 69 78

These values are then passed as a test event to the lambda function for the calculation
of Carbon Footprint. The lambda function uses the Carbon intensity data provided by
CO2Signal API for a specific region, and the metrics values received from pipeline. Value
Carbon Intensity obtained from CO2Signal API for region Ireland (IE) while conducting
the experiment was 627 gCO2/kwh. The values for total energy consumption and Carbon
footprint (grams per CO2) obtained from all the pipelines is mentioned in Table [

14

6.2 Experiment 2: Pipeline with Pylint vs. Pipeline with Pylint
and GitHub Actions Integrated

As per the second experiment, two pipelines were created both with pylint included in
the build process. In one of the pipelines, we integrated Github Actions with pylint which
allows pipeline to analyze only the files updated in last push.

1. Pipeline with Pylint: This pipeline has pylint integrated into the build process
of pipeline.

2. Pipeline with Pylint and Github Actions: This pipeline has pylint integrated
along with Github actions.

During the execution of both the pipelines, metrics such as CPU utilization and

memory usage were monitored continuously using Cloudwatch. The values obtained are

shown in Table [4]

Table 4: Values obtained from Experiment 2

.4 . Pipeline with
Metric g‘y‘iierlllne With | b lint & Git-
hub Actions
Average CPU Utilization (%) | 15.1 12.9
Average Memory Usage (MB) | 78 75

The values obtained are then passed as a test event to the lambda function for the
calculation of Carbon Footprint. The lambda function uses the Carbon intensity data
provided by CO2Signal API for a specific region, and the metrics values received from
pipeline. Value Carbon Intensity obtained from CO2Signal API for region Ireland (IE)
while conducting the experiment was 627 gCO2/kwh. The values for total energy con-
sumption and Carbon footprint (grams per CO2) obtained from all the pipelines is men-
tioned in Table [Bl

Table 5: Carbon Footprint Values obtained from Lambda Function

. 1 . . . Pipeline with
Mot P | e S Byt Gir
y y hub Actions
Total Energy Consumption (kwh) 0.00023583 0.00095 0.0008325
Carbon Footprint (gCO2) 0.1478675 0.59565 0.521977

6.3 Discussion

With reference to the experiments conducted, it is evident that integrating static code
analysis tools in the pipeline can lead to increased resource utilization. According to
values of metrics obtained from Experiment 1, it can be seen that the integration of Pylint
increased the average CPU utilization by 4.4% and increased average memory usage by

15

70

70
60

60
50

50
40 40
30 30
20 20
) - -)

0 0

@ Average CPUULtilizedPercent in Pipeline with Pylint and Github Actions @ Average CPUULtilizedPercent in Pipeline with Pylint
@ Average MemoryUtilized in Pipeline with Pylint and Github Actions @ Average MemoryUtilized in Pipeline with Pylint

Figure 4: Metrics values obtained from Experiment 2

Total Energy Consumption Across Pipelines Carbon Footprint Across Pipelines

0.000950 .64 0.595650

0.000833 0.521977
0.0008

0.0006

0.0004

Total Energy Consumption (kWh)
Carbon Footprint (gC02)

0.000236 0.147868
0.0002

0.0000

B Pipeline without Pylint Pipeline with Pylint Pipeline with Pylint & Github Actions m Pipeline without Pylint = Pipeline with Pylint [Pipeline with Pylint & Github Actions.

Figure 5: Total Energy Consumption and Carbon Footprint across pipelines

9 MB. This shows that Pylint contributes to increased CPU and memory consumption,
leading to increased carbon emissions.

As per the results obtained from Experiment 2, it can be deduced that integration of
Github actions with pylint reduced the average CPU consumption by 2.2% and memory
usage by 3 MB. The results for Experiment 2 are shown in the Figure [d This shows that
limiting the analysis to modified files is a more efficient way to use resources.

The values of metrics obtained from CI/CD pipeline were then passed as test event
in Lambda for calculation of carbon footprint. The results obtained for total energy
consumption and carbon footprint are shown in Table |5} Visual representation of results
can be seen in Figure[)] The percentage savings calculated for values obtained for carbon
footprint is 12.36%. This is the result for a simple application, if the proposed method
is applied to large codebases it will have huge impact.

The integration of GitHub Actions with Pylint reduced both CPU and memory usage,

16

thereby reducing carbon footprint. By only running Pylint on updated files, we effectively
reduced the number of code files for analysis by Pylint, leading to a more efficient CI/CD
pipeline. The results will have more improvement in Large complex applications where
running static analysis only on the updated files rather than entire repository can lead
to decreased computational overhead.

In the related work review, studies on CI/CD pipelines focused on the trade-offs
between resource consumption and code quality. Using static analysis tools like Pylint
in pipeline improves the reliability and maintainability of software but leads to increased
computational overhead, especially in large applications. The proposed novel solution
effectively decrease this overhead by running Pylint only on modified files, eliminating
the need to compromise between code quality and resource consumption.

7 Conclusion and Future Work

The literature review conducted confirms that Cloud Computing technologies contrib-
utes to global Carbon Footprint. Due to the increasing demand for cloud computing
technologies, resulting in increased carbon footprint. Many organizations are adopt-
ing various green computing strategies for reducing the environmental impact. A novel
research methodology is proposed in the paper for minimizing the carbon footprint as-
sociated with DevOps activities. The results obtained from the experiments conducted
show that optimizing code analysis stage in CI/CD pipeline effectively reduces the carbon
emissions. This will help organization to decrease the carbon footprint and contribute
towards corporate social responsibility (CSR).

However, the solution is implemented on a simple application. This can be extended to
complex applications such as CPU Intensive applications, Machine learning applications
and comparison can be done among the results obtained.

This approach can further be extended to optimize other static code analysis tool like
Pixy, ESLint, or SonarCloud for increasing the versatility and applicability of solution.

References

Agarwal, V., Sharma, K. and Rajpoot, A. K. (2021). A review: Evolution of technology
towards green it, 2021 International Conference on Computing, Communication, and
Intelligent Systems (ICCCIS), pp. 940-946.

Badhoutiya, A. (2022). Green cloud computing- next step towards eco-friendly work sta-
tions, 2022 6th International Conference on Electronics, Communication and Aerospace
Technology, pp. 809-813.

Girsa, D., Chauhan, D. and Sharma, D. (2023). Optimised load balancing for green cloud
computing, 2023 13th International Conference on Cloud Computing, Data Science
Engineering (Confluence), pp. 171-175.

Hossain, M. K., Rahman, M., Hossain, A., Rahman, S. Y. and Islam, M. M. (2020). Active
idle virtual machine migration algorithm- a new ant colony optimization approach
to consolidate virtual machines and ensure green cloud computing, 2020 Emerging
Technology in Computing, Communication and FElectronics (ETCCE), pp. 1-6.

17

Hussein, S. R., Alkabani, Y. and Mohamed, H. K. (2014). Green cloud computing: Data-
centers power management policies and algorithms, 2014 9th International Conference
on Computer Engineering € Systems (ICCES), IEEE, pp. 421-426.

Hussein, S. R., Alkabani, Y. and Mohamed, H. K. (2020). Green cloud computing: Data-
centers power management policies and algorithms, 2020 9th International Conference
on Computer Engineering Systems (ICCES), pp. 421-426.

Jayalath, J. M. T. I., Chathumali, E. J. A. P. C., Kothalawala, K. R. and Kuruwitaarach-
chi, N. (2019). Green cloud computing: A review on adoption of green-computing at-
tributes and vendor specific implementations, 2019 International Research Conference
on Smart Computing and Systems Engineering (SCSE), pp. 158-164.

Kannan, J., Barnett, S., Cruz, L., Simmons, A. and Agarwal, A. (2022). Mlsmellhound:
A context-aware code analysis tool, 2022 IEEE/ACM 44th International Conference
on Software Engineering: New Ideas and Emerging Results (ICSE-NIER), pp. 66-70.

Kinkar, K., Bhosale, P., Kasar, A. and Gutte, V. (2022). Carbon footprint analysis:
Need for green cloud computing, 2022 International Conference on Electronics and

Renewable Systems (ICEARS), pp. 1-6.

Marandi, M., Bertia, A. and Silas, S. (2023). Implementing and automating security
scanning to a devsecops ci/cd pipeline, 2023 World Conference on Communication
Computing (WCONF), pp. 1-6.

Mehta, D., Tripathi, A. K. and Moazzam, J. (2023). An extensive review of optim-
ized energy saving approaches for green cloud computing (gec), 2023 International
Conference on Advances in Computation, Communication and Information Techno-

logy (ICAICCIT), pp. 1270-1274.

Nayak, K., Route, S., Sundararajan, M., Jain, A. and R, S. (2024). Sustainable continuous
testing in devops pipeline, 2024 1st International Conference on Communications and
Computer Science (InCCCS), pp. 1-6.

Nikoli¢, D., Stefanovié¢, D., Daki¢, D., Sladojevi¢, S. and Risti¢, S. (2021). Analysis
of the tools for static code analysis, 2021 20th International Symposium INFOTEH-
JAHORINA (INFOTEH), pp. 1-6.

Patel, U. A., Patel, S. and Nanavati, J. (2024). Towards a greener future: Harnessing
green computing to reduce ict carbon emissions, 2024 7th International Conference on
Circuit Power and Computing Technologies (ICCPCT), Vol. 1, pp. 960-969.

Raja, S. P. (2021). Green computing and carbon footprint management in the it sectors,
IEEE Transactions on Computational Social Systems 8(5): 1172-1177.

Rawas, S., Itani, W., Zaart, A. and Zekri, A. (2015). Towards greener services in cloud
computing: Research and future directives, 2015 International Conference on Applied
Research in Computer Science and Engineering (ICAR), pp. 1-8.

Rifa, P., Rakesh, V. and Kumar, S. S. (2021). Building sustainable software testing
using machine learning for green engineering, TERI Information Digest on Energy and
Environment 20(4): 431-441.

18

Sailesh, C., Praneeth, V. S., Koushik, S. S., Sai, V. G. N., Vurukonda, N. and Burugari,
V. K. (2023). A review on adoption of green cloud computing, 2023 7th International
Conference on Computing Methodologies and Communication (ICCMC), pp. 1-6.

Shu, W., Wang, W. and Wang, Y. (2014). A novel energy-efficient resource allocation
algorithm based on immune clonal optimization for green cloud computing, EURASIP
Journal on Wireless Communications and Networking 2014: 1-9.

Stanciu, A.-M. and Ciocarlie, H. (2023). Analyzing code security: Approaches and tools
for effective review and analysis, 2023 International Conference on FElectrical, Com-
puter and Energy Technologies (ICECET), pp. 1-6.

Suratia, N., Thakkar, P., Sheth, K., Ramoliya, D. and Patel, A. K. (2023). An extens-
ive analysis of green cloud computing: Overview, associated challenges and research
directions, 2023 3rd International Conference on Innovative Mechanisms for Industry
Applications (ICIMIA), pp. 1147-1152.

Wadhams, Z., Reinhold, A. M. and Izurieta, C. (2024). Automating static code analysis
through ci/cd pipeline integration, 2024 IEEE International Conference on Software
Analysis, Evolution and Reengineering - Companion (SANER-C), pp. 119-125.

Yeboah, J. and Popoola, S. (2023). Efficacy of static analysis tools for software defect
detection on open-source projects, 2023 International Conference on Computational
Science and Computational Intelligence (CSCI), pp. 1588-1593.

19

	Introduction
	Related Work
	Importance of Static Code Analysis
	Shift towards Green Computing
	Advancements in Green Cloud Computing
	Advancements in Green DevOps
	Summary of Literature Review

	Methodology
	Code analysis stage in CI/CD Pipeline
	Optimizing Code Analysis
	Research Tools
	AWS Cloud9
	AWS CodePipeline
	Pylint
	GitHub Actions
	CO2Signal API
	AWS Lambda
	AWS CloudWatch
	Elastic Beanstalk

	Design Specification
	Architecture Design
	Lambda Function and Carbon Footprint Detection

	Implementation
	Integration of GitHub Actions with Pylint in CI/CD Pipeline
	Monitoring CI/CD pipeline Metrics
	Populating Lambda Function with Pipeline Metrics for Carbon Footprint Detection

	Evaluation
	Experiment 1: Pipeline without Pylint vs. Pipeline with Pylint
	Experiment 2: Pipeline with Pylint vs. Pipeline with Pylint and GitHub Actions Integrated
	Discussion

	Conclusion and Future Work

