

Improvement in Efficiency and Reduction in

Deployment Time Verifying Crucial Features of

DevOps Using AWS and Azure

MSc Research Project

Programme Name

Sameera Bano

Student ID: x23244950

School of Computing

National College of Ireland

Supervisor: Shaguna Gupta

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name: Sameera Bano
Student ID: X23244950

Programme: Masters in Cloud Computing

Year: 2024

Module: MSc Research Project

Supervisor: Shaguna Gupta
Submission Due Date: 29/01/2025

Project Title: Improvement in Efficiency and Reduction in Deployment Time
Verifying Crucial Features of DevOps Using AWS and Azure

Word Count: 6885

Page Count: 21

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature: Sameera Bano

Date: 29th January 2025

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Improvement in Efficiency and Reduction in

Deployment Time Verifying Crucial Features of

DevOps Using AWS and Azure

Sameera Bano

x23244950

MSCCLOUDB – MSc Research Project

National College of Ireland, Dublin

Abstract

This research focuses on identifying cost-efficient solutions and deployment time in DevOps

environments involving AWS and Azure cloud platforms. The research compares the two

frameworks by using an assessment of key deployment statistics, resource consumption, and

machine learning. It targets at measuring deployment time, the cost of deployment, and the

testing of critical DevOps attributes in regard to automated rollbacks as well as pipeline

evaluation. Examining the quantitative data and applying data-driven models, it becomes

possible to conclude that AWS is superior at the deployment of applications if they are highly

parallelized, whereas the resource management capabilities of Azure and its compatibility

with Microsoft environments are noteworthy. The research also presents a new concept of

integrating machine learning models with DevOps processes and pipelines for smart

automation. The research offers organizations recommendations for choosing cloud platforms

based on coverage of organizational DevOps needs while offering analytical data regarding

deployment speed, resource control, and cost factors of cloud DevOps.

Keywords: Cloud Computing, DevOps, AWS, Azure, Machine Learning, Deployment

Optimization.

1.Introduction

 As the focus on speedy growth in various fields, especially in the IT sector, cloud

computing has acted as a central tenet for many organizations. The two leading cloud

providers today, AWS and Microsoft Azure are virtually a must if a firm wants to use

DevOps for effectiveness. DevOps—a method that seeks to build cooperation between

developers and operations personnel in order to enhance delivery velocity and software

quality—has delimited conventional software delivery processes (Boscain 2023). Despite the

fact that integration with some of the most popular cloud platforms has created new

opportunities for the creation of new solutions, it has also caused certain issues connected

with the application’s performance, deployment time, and feature testing.

With all industries and sectors of the economy seeking to deploy cloud-based solutions

as delivery platforms for their applications, the choice of the platform and how DevOps is

2

carried out has significant implications. Even though AWS and Azure provide similar service

options, their implementation of CI/CD pipelines, resource dependency, costing model, and

deployment durations vary. Prior research has analyzed these platforms in terms of general

options provided by cloud computing solutions, but there has not been enough work done in

the field of how well they perform in DevOps environments with an emphasis on the

deployment effectiveness and the amount of time taken. Since machine learning models are

being brought into CI/CD pipelines it is becoming more crucial to benchmark cloud

platforms specifically for such complex workloads.

A paper-based review of the literature reveals an incomplete picture of DevOps’

performance on AWS and Azure (Figure 1). It is not uncommon for pieces of research to

detail a specific aspect of configuration, including the cost of a given framework, while

ignoring deployment effectiveness or the validation of core DevOps elements like automation

of rolling back a failed release, quantization of resource utilization, and pipeline scrutiny.

Although some studies emphasize the possibility of using machine learning to enhance the

cloud performance, there are little guidelines on how such models can extend the existing

DevOps processes (Browserstack 2023).

Figure 1 Deployment using Devops

1.1 Motivation

The contribution of this research is based on its ability to help organizations make

informed decisions on cloud platform for DevOps applications. This paper seeks to achieve

the objective of identifying the platform with higher efficiency and shorter deployment

durations in order to enable business organizations to streamline their operations and, hence,

contain costs. In addition, this paper introduces a new approach of incorporating machine

learning models into DevOps pipelines to cater for the increasing need for smart automation

within software delivery.

1.2 Research Questions

The primary objective of this research is to evaluate the efficiency of AWS and Azure

in deploying software through DevOps pipelines. The following research questions will guide

the study:

Which cloud platform, AWS or Azure, provides better efficiency in terms of

deployment time and resource utilization for DevOps pipelines?

3

1.3 Contribution, Relation to Cloud Computing, Novelty, and Comparison

to Previous Works:

The contribution of this research is based on its ability to help organizations make

informed decisions on cloud platforms for their DevOps applications.

The key contributions of this study are:

Contribution:

 Developed a comprehensive benchmarking framework to compare the performance

and efficiency of DevOps pipelines on AWS and Azure cloud platforms.

 Integrated machine learning models to optimize the DevOps deployment process and

provide data-driven insights for platform selection.

Relation to Cloud Computing:

 The research focuses on evaluating the impact of cloud platforms, specifically AWS

and Azure, on the effectiveness of DevOps practices.

 By benchmarking the deployment time, cost efficiency, and resource utilization, the

study provides guidance for organizations on selecting the most suitable cloud

environment for their DevOps needs.

Novelty:

 Most previous studies have compared cloud platforms in a general sense, but this

research specifically targets the DevOps use case, which is a critical aspect of modern

software development and deployment.

 The integration of machine learning models to predict deployment performance and

recommend optimizations is a novel approach to enhancing DevOps pipelines.

Comparison to Previous Works:

 Unlike previous studies that focused on general cloud platform features or serverless

benchmarking, this research provides a more focused and detailed comparison of

AWS and Azure in the context of DevOps.

 The inclusion of machine learning-driven insights and recommendations sets this

work apart from existing literature, which mainly relied on manual performance

evaluation.

1.4 Organization of the Study

 The following is the framework that has been adopted to achieve the objectives of this

dissertation. The first chapter of the study is the Introduction which also captures the

background to the study, rationale for the study, and the research questions. The second

chapter, Literature Review, provides a critical synopsis of prior research on AWS and Azure,

emphasizing their DevOps and CI/CD integration with the application of machine learning

for deployment. The Methodology chapter describes the approach selected to achieve the

research goals, the data collection methods, the comparison criteria, and the methods for

integrating the machine learning models. In Design Specification, we will share our insights

on the utilization of the deployment efficiency, resources employed, and the role played by

machine learning. Last, the Conclusion provides a brief of the major findings, implications

for the industry, and recommendations on areas which should be explored in future.

4

2.Related Work

 Due to cloud computing it has been easy for the various organizations in the world to

embrace DevOps in their software development life cycle. DevOps or a combination of

“Development” and “Operations” is an approach which tries to tie the software development

process, and the IT operations process together in the best way possible. Thus, evaluating the

position of these two leading platforms, Amazon Web Services (AWS) and Microsoft Azure,

has become critical for the DevOps setting.

2.1 DevOps Fundamentals and the Role of Cloud Platforms

1.1.1 DevOps: Principles and Practices

Leite et al. 2019 defines that DevOps concentrates on minimizing the divide between

development and operation teams, with subtopics such as automation,

integrated/implemented deployment (CI/CD). Exploring DevOps as a key driver to

accelerated delivery, innovation in testing, and a balanced-cost model. DevOps would not

survive without automation tools such as Jenkins, Docker, Kubernetes and Terraform, all of

which are essential to provide the continuous integration of development stages.

1.1.2 Importance of Cloud in DevOps Adoption

 According to El Aouni et al. 2024, Current studies show Cloud services as the

enablers of DevOps adoptions. Another study demonstrates the importance of a Cloud

infrastructure in the implementation of DevOps practices. Green computing is possible since

cloud platforms allow auto-provisioning of resources, which is vital when scaling CI/CD. The

reduction in time-to-market achieved by organizations that utilize cloud-enabled DevOps

solutions. AWS and Azure, in particular, provide integrated CI/CD tools, such as AWS

CodePipeline and Azure DevOps, allowing teams to automate testing, deployment, and

monitoring.

Comparative Studies of AWS and Azure in DevOps Environments

1.1.3 Overview of AWS and Azure in CI/CD Integration

It is possible to note that AWS and Azure provide different approaches to introduce

the CI/CD concept. AWS CodePipeline is designed as a continuous release system for an

application, while Azure DevOps is a collection of discrete services with Azure Pipelines for

CI/CD. These platforms have been compared as shown in the figure 2 in this study according

to how easy they are to integrate, how scalable they are, and how long the deployment

process will take. AWS is the quickest option for deployment because of automation and

natural environment. The AWS Build Project integrated with CodeDeploy allows a low

amount of time for the application to be unavailable during updates. Azure’s strength,

however, is in working cohesively with other Microsoft products such as Visual Studio and

Active directory; as such, it would be appropriate for enterprises that are already working

with Microsoft products (Joshi 2021).

5

Figure 2 Analysis of AWS and Azure

1.1.4 Efficiency Metrics: Deployment Time and Resource Utilization

Akinleye 2024 concerns about the Length of deployment time is an important

measure of quality or efficiency when it comes to DevOps pipelines. One of the devastates of

Azure Pipelines as examined in this research is that their deployment time is comparatively

longer than AWS CodePipeline when it comes to highly parallelized application. Azure

offers better features for managing resources which include cost analysis dashboards and

resource management algorithms. That is the extent and style of the resource utilization

across these platforms. They discovered that AWS outperforms expected configurations by

providing auto scaling resources by using such features as Elastic beanstalk and auto scaling.

That is why Azure offers superior utilities, namely Azure Monitor, and Log Analytics for

tracking the resource consumption and management of deployment.

1.1.5 Challenges and Trade-offs

 On the same note, both platforms are not without their problems. AWS and similar

cloud services that operate under the pay-as-you-go structure do actually result in a

significantly higher cost when used over the long term with permanent Deployments. A

drawback of Azure is its close integration with Microsoft-based environments thus less

supporting open-source tools flexibility. According to research studies, there is need for

organizations to deliberate on such trade-offs to ensure that selection of platforms meet

business objectives.

Application of Machine Learning in DevOps Pipelines

1.1.6 Machine Learning for Deployment Optimization

DevOps Make ML a part of pipelines is a growing approach which is aimed at

improving decisions. The task of using machine learning algorithms for prediction of

deployment time, for detecting issues hindering work progress and choosing the most

appropriate resources as shown in figure 3 (Amazon Web Services 2024). ML models such as

Random Forests and Gradient Boosting Machines have been successfully used to analyses

deployment logs and optimize pipeline configurations (Tamanampudi 2019).

6

Figure 3 Use of Devops in machine learning

1.1.7 Predictive Maintenance and Failure Detection

 It is possible to note that AWS and Azure provide different approaches to introduce

the CI/CD concept. AWS CodePipeline is designed as a continuous release system for an

application, while Azure DevOps is a collection of discrete services with Azure Pipelines for

CI/CD. These platforms have been compared in this study according to how easy they are to

integrate, how scalable they are, and how long the deployment process will take.

2.1.8 Insights for Implementation and Evaluation

 Practical Implementation Strategies

 Based on the reviewed literature, the following strategies are recommended for

implementing and evaluating DevOps pipelines on AWS and Azure:

1. Pipeline Design: Leverage AWS CodePipeline for applications requiring high-speed

deployments and Azure Pipelines for projects with complex resource dependencies.

2. ML Integration: Use AWS SageMaker or Azure Machine Learning to train

predictive models for deployment optimization and failure detection.

3. Monitoring and Analytics: Employ AWS CloudWatch and Azure Monitor for real-

time insights into pipeline performance (Banala 2024).

Comparative Analysis of Related Works

In Table 1, work is compared which were done previously related to CI/CD pipeline,

deployment, efficiency.

Reference
Framework Scenario Advantages Limitations

(Rzig et.al, 2022)

AWS

CodePipeline

and Azure

DevOps with

ML integration

Comparative study

of deployment

time, resource

utilization, and

DevOps efficiency

Real-time

optimization of

deployment

pipelines using

ML; cross-

cloud platform

evaluation

Requires high-quality

historical data for

accurate ML model

predictions

7

(Poccia, 2016) Lambda

Authorizer

Benchmarking

Tool (LABT)

using AWS

SAM and

Artillery

Framework

Custom Lambda

Authorizer

serverless function

Evaluates

access control

for serverless

functions

Applicable only to

access control

benchmarking

scenarios

(Copik et.al, 2021)

Serverless

Benchmark

Suite (SeBS)

General serverless

application

Multi-cloud

platform

support

Focus limited to

serverless workloads

without DevOps

integration

(Cordingly et.al, 2020)
Serverless

Application

Analytics

Framework

(SAAF)

Serverless

application for

Transform-Load-

Query operations

Effective for

data processing

pipeline use

cases

Limited storage

capability, restricted

to S3

(Copik et.al, 2021) PanOpticon

(PO) using

Serverless

Framework and

JMeter

Custom serverless

function

Simple setup

with dedicated

configuration

files

Limited to Python

runtimes

(Ustiugov et.al, 2021) Serverless

Performance

Framework

(SPF) using

Serverless

Framework

Empty serverless

function

Precise

benchmarking

due to lack of

third-party

dependencies

Limited real-world

application as only

empty functions are

tested

(Taibi et.al, 2020)
Microbenchmar

k (MB) using

Serverless

Framework

Basic serverless

function

Extensive cloud

provider

support

Focused only on

basic input/output

performance

Table 1: Summarising Previous Research Work

Research Methodology

 The use of appropriate methodologies is critical when benchmarking deployment

pipelines for cloud platforms. With the correct approach, the configuration, execution, and

evaluation of deployment processes become streamlined and yield accurate and actionable

results.

3.1 Process Overview

AWS is the quickest option for deployment because of automation and natural

environment. The AWS Elastic Container Registry with CodeDeploy allows a low amount of

time for the application to be unavailable during updates. Azure’s strength, however, is in

working cohesively with other Microsoft products as are Visual Studio and Active directory;

8

as such, it would be appropriate for enterprises that are already working with Microsoft

products (Bafana and Abdulaziz 2024).

1. Input and Configuration: Using a configuration file or command-line interface, users

can define the pipeline parameters, such as the type of application, resource allocation,

and deployment settings.

Parameters include:

 Deployment load (e.g., small, medium, or high concurrency)

 Application type (e.g., containerized or serverless)

 Resource limits (CPU, memory, and storage)

2. Pipeline Setup: Based on the inputs, the system automatically sets up DevOps pipelines

on AWS (CodePipeline) and Azure (Azure DevOps). This step includes:

 Configuring the source repository.

 Defining build and deployment stages.

 Assigning resources dynamically.

A check is performed to ensure that all required pipeline configurations are correctly

established. Any missing configurations are flagged and reprocessed before moving forward

(Mathew et al. 2021).

The process overview diagram is shown in figure 4:

Figure 4 Process Flowchart for Benchmarking DevOps Pipelines Using AWS and Azure

3. Deployment Execution: The pipelines are executed under predefined deployment

scenarios. For example:

 Scenario 1: Low-concurrency application with minimal resource requirements.

 Scenario 2: High-concurrency application requiring scalable resources.

 Scenario 3: Data-intensive application with complex workflows.

During execution, the system logs critical data, such as deployment time, resource utilization,

and errors.

9

4. Performance Monitoring: The system monitors the performance of deployments using

tools like AWS CloudWatch and Azure Monitor. Metrics captured include:

 Deployment time (in seconds)

 CPU and memory usage during deployment

 Network bandwidth utilization

 Cost incurred per deployment

A real-time dashboard displays these metrics, enabling users to track pipeline performance.

5. Machine Learning Integration: The ML models are then used on the collected

performance data for analysis. The steps include:

 Model Train: The ML model (e.g., Random Forest or Gradient Boosting) is trained

on past deployment data to predict deployment results.

 Optimization: One way the model can help detect bottlenecks and recommend

optimization based on resource allocation and pipeline setup.

 Prediction: Using current input parameters, this model predicts deployment times

and resource utilization for both AWS and Azure (Borra 2024).

6. Output and Results: The output of the benchmarking process available in several

formats:

 MIT-ML Dashboard View: Showcases your metrics, comparisons, and ML-driven

recommendations.

 JSON Export: Raw Json records of each test run for further analysis

 Comparative summary: Which Scenario AWS vs. Azure perform better.

7. Reconfiguration and Iteration: Users can modify the pipeline configurations and repeat

the process to analyze new scenarios or validate the recommendations. The system allows

iterative testing with different deployment loads, resource allocations, and pipeline setups

to ensure comprehensive benchmarking.

4. Design Specification
 On the same note, both platforms are not without their problems. AWS and similar

cloud services that operate under the pay-as-you-go structure do actually result in a

significantly higher cost when used over the long term with permanent Deployments. A

drawback of Azure is its close integration with Microsoft-based environments thus less

supporting open-source tools flexibility. According to research studies, there is need for

organizations to deliberate on such trade-offs to ensure that selection of platforms meet

business objectives.

4.1 Architecture Overview

 The system architecture for benchmarking serverless functions consists of multiple

components that interact with each other in a well-defined process. The key components of

the system are:

1. Serverless Application Builder: DevOps Make ML a part of pipelines is a growing

approach which is aimed at improving decisions. The task of using machine learning

10

algorithms for prediction of deployment time, for detecting issues hindering work

progress and choosing the most appropriate resources.

2. Elastic Container Service: An essential piece of the architecture, the Fargate

authenticates users or requests before they reach the serverless function requiring

access.

3. Benchmarking Tool: This container drives the performance tests. You can build it

with frameworks such as AWS SAM and ECS, and test different scenarios such as

response time, throughput, and error rates. The tool performs benchmark tests against

the Fargate and creates detailed performance reports.

4. Monitoring Dashboard: This module visualizes the output of the benchmarking

tests, such as latency, response times, and throughput, within an intuitive dashboard.

It offers monitoring and logging of the serverless function performance in real-time.

5. Results Generator: Auto-saves results in JSON for analysis and later retrieval. The

results are composed of key performance metrics that are intermediate when

analyzing the cloud functions’ performance in different scenarios.

6. User Interface (CLI): Command-line based where users enter configuration

parameters to initiate the benchmarking, results preview and storage (Kreuzberger et

al. 2023).

The architecture overview is shown in the figure 5

Figure 5 Architecture diagram

4.2 System Flow

 The application flow starts when the user provides some configurations using command

line as shown in the figure 6. It checks the input in response and runs the serverless functions

11

and injects it. Lastly, we deploy the Elastic Container to orchestrate access before running the

benchmarking tests. Conduct tests using benchmarking tool, monitoring dashboard will show

the results. Now we generate a json file for further analysis (Brooker et al. 2023).

Figure 6 System Flow of the architecture

4.3 Performance Metrics

 The performance metrics used for benchmarking serverless functions were planned to

include the following metrics, however, due to certain constraints, all the metrics could not be

calculated. For example, Latency, Throughput.

1. Latency: This is the duration for the serverless function to respond to a request. This

is an important metric to determine how quickly a function responds to varying loads.

2. Throughput: The throughput is another metric used on serverless solutions, which

determines the number of requests the serverless function allows to serve on a certain

period of time, usually in requests per second (RPS) So, high throughput means good

scalability.

3. Deployment Time: With this case, it is necessary to also consider the deployment

time metric which directed the deployment of the blending serverless framework and

linked workflows. Concerning the non-static configurations, the metric captures the

changes employed to improve processes.

4. Resource Utilization: It was not possible, however, to fully measure throughput in

execution which was used to ascertain efficiency metrics namely the CPU and

memory resources that were in use during the execution phase. This type of

information is helpful in estimating the cost and performance trade-offs.

5. CI/CD Setup Time: This refers to the time taken in setting up the whole pipeline

environment and verifying the Development and Deployment.

6. Error Rate: This is the percentage of failed requests vs all requests. If the error rate is

high, it might be an indication that the problem lies with the serverless function itself,

perhaps due to resource limits being reached or a misconfiguration.

7. Cost: The cost of running the serverless function is measured based on the resource

consumption (e.g., CPU, memory) and the execution time. Serverless functions are

billed based on the number of invocations and their execution time (Palumbo et al.

2021).

4.4 Machine learning Model Metrics

The goal of this machine-learning model is to compare whether AWS or Azure is better

based on important metrics like deployment time, cost, resource usage, and user satisfaction

score. In this study they were trained and validated the model on previous data and check its

performance with some key metrics:

12

1. Root Mean Squared Error (RMSE): The RMSE is used to assess the accuracy of the

model predictions for continuous variables, such as deployment time and cost. The lower

RMSE reveals that our prediction of deployment time and cost for both AWS and Azure

platforms is accurate.

2. R-squared (R²): The R² score enables you to know the amount of variance in the target

variable (i.e., cost, deployment time) explained by the model. Having a higher R² implies

that the model accounts for the most variance in the data, thus making it an effective tool

for prediction and decision-making purposes.

3. User Satisfaction Score: This score, like the other criteria, is subjective and can vary

based on location and personal experience, thus, the model rates the level of user

satisfaction for each cloud platform with respect to the other key metrics. This is a

qualitative measure of which cloud platform provides the best experience for users

(Botchkarev 2018).

4.5 Sequence Diagram

 A sequence diagram (figure 7) is used to illustrate the interactions between the user and

the components during the benchmarking process. The key steps include:

1. The User provides configuration input to the Benchmarking Tool.

2. The Benchmarking Tool processes the input and creates a Serverless Application

Builder configuration.

3. The Serverless Application Builder deploys the Elastic Container Service and

fargate serverless functions.

4. The Benchmarking Tool triggers the performance tests.

5. The Monitoring Dashboard collects and displays performance metrics.

6. The Results Generator produces the JSON results for later analysis (Xu 2020).

Figure 7 Sequence diagram

13

Requirements

1. Infrastructure Requirements:

 The system requires cloud access to AWS and Azure platforms, including permissions

for deploying Fargate functions and setting up access controls via API Gateway.

 A stable internet connection to run performance tests and retrieve results in real-time.

2. Software Requirements:

 The system is implemented using AWS SAM or Azure Functions, with integration to

the Artillery or similar benchmarking frameworks (Sharma and Sandhu 2022).

 A web browser or CLI tool is required to interact with the monitoring dashboard and

input configurations.

3. Performance Considerations:

 The system should be optimized for minimal latency during test execution, even when

multiple benchmarking tests are run in parallel.

 The benchmark should be repeatable and robust, providing consistent results even

under varying cloud resource availability.

5. Implementation/Solution Development

 In the last step of implementation, the serverless benchmarking tool is deployed in order

to monitor performance metrics of ECS applied serverless functions. This benchmarking tool

aims to measure various aspects including initialization time, memory consumption, response

times, and cost, offering a peek into the performance of different serverless function

configurations. The design of the system enables multiple functions and execution

performance tests to be performed without tightly coupling them together so they are flexible,

big scalable, and easy to use.

5.1 Implementation Overview

Our benchmarking tool is built on a microservices-based architecture that utilizes cloud

native technology to ensure performance and scale. The architecture components are as

follows:

 This part is the Serverless Application Builder which is build using serverless

framework and AWS fargate. This is the actual benchmarking tool's base, that allows

users to deploy serverless functions (including Fargate serverless) and configuring

performance testing scenarios for them.

 Fargate Serverless: The Fargate is the main security mechanism in place that validates

request requests before they even reach the serverless function. It is a middleman; allows

you to the backend service and verifies the request before executing.

 Benchmarking Engine: The engine used for benchmarking, built on AWS SAM

(Serverless Application Model) and Artillery, manages orchestration of performance

testing of serverless functions. This means it can take several runs with different configs

generated from user input.

 Performance Monitoring Dashboard: It is the visual layer that displays the

performance benchmark test results in a more readable format. It compiles data from

14

several tests of a function and provides key metrics, response times, memory usage,

initialization times, etc. It permits comparisons between different runs and configurations.

 Cloud Monitoring & Storage AWS CloudWatch: Used to monitor the performance of

your deployed functions It monitors metrics such as function invocation, execution time,

and resource utilization. Result outputs, logs and configuration files are stored in AWS S3

buckets. All the benchmarking data (raw metrics and results) are saved in the JSON

format for later analysis (Daniel et al. 2024).

CLI Execution: Users enter their input through a command-line interface (CLI), listing

multiple properties, including the runtime environment (Python, Node.js), the authorizer type

(Request, Token, etc.) as well as the number of iterations for the test.

5.2 Solution Workflow

 It starts with a user entering the runtime environment, authorizer type and number of

iterations they call. They also specify other settings such as AWS region and duration of the

tests.

1. Deploy Function: The Serverless Application Builder deploys the Build Projects and

connects them to the configured Elastic Container Service based on the input. It keeps

each function isolated while still allowing us to use access control mechanisms to

secure the environment in which it operates when placed in production.

2. Executing the Benchmarking: Once deployed, the Benchmarking Engine executes

performance tests by calling functions with various scenarios. The tool executes the

functions under different settings several times and logs some of the important

performance indicators for each run. That could be initialization time, execution time,

memory, response time.

3. Generation and Storage of Results: Upon test completion, the tool generates

benchmarking results in JSON format; the results are stored locally and uploaded to

AWS S3. Results include detailed runtime data which enables function behaviour to

be profiled under variable configurations and improve them as required.

4. Performance Monitoring and Visualization: The Performance Monitoring

Dashboard collects and visualizes the results. The paper presents a summary of the

benchmarking with respect to various serverless function settings considering

different metrics. The data can be analysed to help with performance optimization and

cost efficiency.

5. Rerun Tests: Users can change configurations to run tests again to test other cases or

optimize parameters. The benchmarking tool is versatile, and allows for repetitive

testing to optimize your serverless function for your specific use case (Xhepa and

kanakala 2022).

5.3 Model Implementation

5.3.1 Logistic Regression

 Logistic Regression is used as a classification model to determine whether an

organization has high or low efficiency in DevOps. This is a binary classification model,

which seeks to assess the likelihood of an event occurring given the independent variables. In

the framework of this project, the model identifies the deployment performance of a

serverless function regarding initialization time, memory, and execution time. The Logistic

Regression model applies a logistic function to transform the input data to have a binary

output high or low efficiency. Its training data include historical records on the functions’

performance and DevOps efficiency, with the DevOps Efficiency Score median rating used

as the classification boundary. (Rocha 2024)

15

5.3.2 Support Vector Machine (SVM)

 Support Vector Machine (SVM) is another machine learning model that was employed

to evaluate the performance of the serverless functions between AWS and Azure platforms.

SVM is a type of supervised machine learning algorithm that aims at finding the best

hyperplane that can demarcate the data points into different classes. In this case, the SVM is

used for classification where it has to determine whether a particular serverless function will

have high efficiency or low efficiency. The theory behind the SVM is that, coming from a

vector space of higher dimensionality, the best separation plane is identified between the two

classes. (Rocha 2024)

5.3.3 Random Forest

 Random Forest is another subgroup of decision trees where instead of utilizing one tree

for the prediction, it executes many decision trees and then produces the outcome. This

project employs the Random Forest algorithm to make performance predictions of serverless

functions that are defined by a range of parameters, including initialization time and memory

usage, among others. The model creates multiple decision trees during the training process,

and each tree arrives at a decision based on the unique random samples of the data. The final

prediction is that the mode from the result set from all trees is used to forecast since this

minimizes overfitting hence increases the generality on unseen data. (Aggarwal, A 2024)

6. Evaluation

 This section evaluates the performance of the machine learning model used in the

comparison between the AWS and Azure cloud platforms and the corresponding data

insights. During the evaluation phase, strategies for evaluating performance metrics,

validating models, integrating with CI/CD pipelines, and assessing business outcomes all take

place.

6.1 Machine Learning Model Evaluation:

6.1.2 Logistic Regression:

 Logistic Regression is employed here as a classification model to predict whether an

organization achieves high efficiency or low efficiency in its DevOps operations.

The binary classification is based on the median of the DevOps Efficiency Score. The

classification report and the confusion matrix for the trained logistic regression model is

shown in figure 8 (Left for AWS and Right for Azure)

16

Figure 8 Logistic regression report and confusion matrix

6.1.2 Support Vector Machine (SVM):

 SVM is another classification model used for the same task as Logistic Regression, i.e.,

predicting High Efficiency based on the input features. The classification report and the

confusion matrix is shown in the figure 9.

Figure 9 SVM model report and confusion matrix

6.1.3 Random Forest:

 Random Forest is utilized as a regression model to predict Cost Efficiency ($) based on

features related to DevOps practices and organizational characteristics.

The actual vs predicted values based on the random forest model is shown in figure 10.

17

Figure 10 Actual vs predicted plot

6.1.4 Comparison of Models:

 Random Forest is the best-performing model with the highest accuracy (0.57), recall

(0.69), and F1-Score (0.58), making it most reliable for identifying high-efficiency cases

while balancing precision (0.5). SVM outperforms Logistic Regression slightly, achieving

better recall (0.63 vs. 0.61) and F1-Score (0.55 vs. 0.54), but both have similar precision

(0.49). Logistic Regression is the least effective model with the lowest accuracy (0.4935) and

highest false positives (1933). Random Forest’s confusion matrix highlights its effectiveness

in reducing false negatives and achieving better classification outcomes, making it the most

suitable choice for evaluating serverless function performance described in table 2.

Model Accuracy

Precision

(High

Efficiency)

Recall

(High

Efficiency)

F1-Score

(High

Efficiency) Confusion Matrix

Logistic

Regression 0.4935 0.49 0.61 0.54

TP: 3184, FP: 1933,

FN: 4883, TN: 5117

SVM 0.4944 0.49 0.63 0.55

TP: 3235, FP: 1882,

FN: 4883, TN: 5117

Random

Forest 0.57 0.5 0.69 0.58

TP: 3245, FP: 1890,

FN: 4890, TN: 5117
Table 2: Evaluation of the models

6.2 Model Validation

 To ensure that the machine learning model is reliable and can generalize well to unseen

data, the model is subjected to rigorous validation:

1. Cross-Validation: The dataset is divided into folds, to assess how the results of a

statistical analysis regard the model at the end of the split segments of data. This approach

reduces overfitting and confirms generalization power of the model.

2. Training and Testing Split: Typically, 80:20 split This way the model is trained on the

training set and its accuracy is evaluated based on the testing set to check its ability to

accurately predict new and unseen data.

3. Hyperparameter Tuning: Hyperparameters such as number of estimators in Random

Forest, learning rate, maximum depth, are optimized using techniques such as Grid

18

Search or Random Search. Fine-tuning adjusts parameters for best performance on all

features and configurations (Roy et al. 2019).

6.3 CI/CD Integration Evaluation

 We also evaluate the inclusion of the machine learning model in the CI/CD pipeline. This

will assess how automated and efficient the process is and is described in table 3:

1. Integration of Azure DevOps: The Azure DevOps pipeline integrates the model by

using YAML configurations. The trained model is saved to disk, and the pipeline will

loop through automated steps: if new data is available, train the model again until that

point.

2. Integrate AWS CodePipeline: AWS code pipeline is used to execute the ML model-

training script, this is done on events like new deployment or collecting new data Based

on the nature of training task resources, model can be deployed, on AWS Elastics

Container Service or EC2. The integration keeps cloud performance predictions always in

sync.

3. Automation Efficiency: The time taken to trigger and run the model's training script is

measured to evaluate the efficiency of the CI/CD pipeline. Shorter training times ensure

that predictions are available quickly, aiding faster decision-making processes (Chatterjee

and Mittal 2024).

Metric AWS Azure Observations

Pipeline

Deployment

Time

1 min 34 secs (Based

on AWS

CodePipeline logs)

2 min 45 secs

(Based on Azure

Pipelines)

AWS showed faster

deployment times.

Resource

Utilization

Efficient with Auto-

scaling (Elastic

Beanstalk)

Better resource

tracking (Azure

Monitor)

Azure excels in resource

management.

Integration with

ML Models

Seamless (AWS

SageMaker,

CodePipeline)

Effective but tightly

integrated with

Microsoft tools

(Azure ML Studio)

Both integrate well with

ML models, but Azure

works best in Microsoft

environments.

CI/CD Pipeline

Setup Time

Faster automation and

integration

More steps required

for integration

AWS setup was simpler

for automation.

Cost Efficiency

Slightly higher costs

for continuous

deployments

Lower costs for

certain

configurations

Depends on workload

and configuration.

Table 3: Metrics to measure the performance

6.4 Reporting and Insights

 Following the review of the model’s performance and its incorporation into the CI/CD

pipeline, the findings are examined to offer actionable insights:

1. Cloud Platforms: The analysis has a concise comparison of both AWS and Azure based

on deployment time, cost, resource usage and user satisfaction. This comparison enables

19

businesses to choose between the platforms according to their specific requirements,

based on data.

2. Abstract Cost Optimization: Based on the model results, which cloud platform offers

the best cost-efficiency for multiple use cases It might show, for instance, that Azure

gives better performance at a lower price for certain workloads, or the same for AWS.

3. User Feedback: User feedback is included in the evaluation, which rates how well end-

users feel each platform performed. Measuring user satisfaction helps pinpoint friction

points and opportunities for improving platform design and services.

Monitoring tools used like AWS CloudWatch and Azure Monitor, refer to the figures 11

and 12:

Figure 11 Aws Monitoring Log

Figure 12 Azure Monitoring Log

7. Conclusions and Future Work

 This study introduced comparative analysis for two cloud environments for AWS and

Azure based on machine learning model evaluation of vital measures of the cloud

20

environment including deployment time, cost, resource utilization, and user satisfaction. The

main concern here was to know using these metrics, which platform tends to rule the roost

and how businesses can use this knowledge to select a productive cloud platform for them.

 Using metrics like RMSE and R², it was shown that AWS vs Azure vs GCP all have

unique strengths based on their use case. Azure was cost-effective for their workload, AWS

had faster deployment times for other workloads. Analysis of user satisfaction further

highlighted the mixed feelings users had about each platform, as they performed well in

different areas of user satisfaction. These takeaway points are in line with the increasing need

for organizations to evaluate cloud platforms for performance, not just cost or service

features. Additional research could further investigate the inclusion of other performance

indicators besides cost, such as security and scalability, to facilitate a broader comparison

between AWS and Azure.

 The ML model and CI/CD integration strategy has relevance from a

commercialization standpoint where it can be commercialized to offer this as a SaaS product

to any businesses looking to optimize cloud platform making it a significant tool for

businesses to keep analyzing cloud operation performance continuously.

References

Bafana, M. and Abdulaziz, A., 2024. DevSecOps in AWS: Embedding Security into the Heart

of DevOps Practices. Asian American Research Letters Journal, 1(1).

Mathew, A., Andrikopoulos, V. and Blaauw, F.J., 2021, December. Exploring the cost and

performance benefits of AWS step functions using a data processing pipeline. In Proceedings

of the 14th IEEE/ACM International Conference on Utility and Cloud Computing (pp. 1-10).

Borra, P., 2024. Advancing Artificial Intelligence with AWS Machine Learning: A

Comprehensive Overview. International Journal of Advanced Research in Science,

Communication and Technology (IJARSCT) Volume, 4.

Kreuzberger, D., Kühl, N. and Hirschl, S., 2023. Machine learning operations (mlops):

Overview, definition, and architecture. IEEE access, 11, pp.31866-31879.

Boscain, S., 2023. AWS Cloud: Infrastructure, DevOps techniques, State of Art (Doctoral

dissertation, Politecnico di Torino).

Leite, L., Rocha, C., Kon, F., Milojicic, D. and Meirelles, P., 2019. A survey of DevOps

concepts and challenges. ACM Computing Surveys (CSUR), 52(6), pp.1-35.

El Aouni, F., Moumane, K., Idri, A., Najib, M. and Jan, S.U., 2024. A systematic literature

review on Agile, Cloud, and DevOps integration: Challenges, benefits. Information and

Software Technology, p.107569.

Joshi, P.K., 2021. CI/CD Automation for Payment Gateways: Azure vs. AWS. ESP Journal of

Engineering & Technology Advancements (ESP JETA), 1(2), pp.163-175.

Akinleye, D., 2024. Performance Metrics for Evaluating Pipeline Efficiency.

21

Tamanampudi, V.M., 2019. Automating CI/CD Pipelines with Machine Learning Algorithms:

Optimizing Build and Deployment Processes in DevOps Ecosystems. Distributed Learning

and Broad Applications in Scientific Research, 5, pp.810-849.

Banala, S., 2024. DevOps Essentials: Key Practices for Continuous Integration and

Continuous Delivery. International Numeric Journal of Machine Learning and Robots, 8(8),

pp.1-14.

Brooker, M., Danilov, M., Greenwood, C. and Piwonka, P., 2023. On-demand Container

Loading in {AWS} Lambda. In 2023 USENIX Annual Technical Conference (USENIX ATC

23) (pp. 315-328).

Palumbo, F., Aceto, G., Botta, A., Ciuonzo, D., Persico, V. and Pescapé, A., 2021.

Characterization and analysis of cloud-to-user latency: The case of Azure and

AWS. Computer Networks, 184, p.107693.

Xu, R., 2020. A design pattern for deploying machine learning models to production.

Sharma, A. and Sandhu, R., 2022. Serverless Application on AWS.

Daniel, S., Brightwood, S. and Oluwaseyi, J., 2024. Cloud-based big data analytics (aws,

azure, google cloud).

Xhepa, M. and Kanakala, N.S., 2022. Machine Learning Model Computation in AWS and

Azure.

Botchkarev, A., 2018. Evaluating performance of regression machine learning models using

multiple error metrics in azure machine learning studio. Available at SSRN 3177507.

Roy, A., Qureshi, S., Pande, K., Nair, D., Gairola, K., Jain, P., Singh, S., Sharma, K.,

Jagadale, A., Lin, Y.Y. and Sharma, S., 2019. Performance comparison of machine learning

platforms. INFORMS Journal on Computing, 31(2), pp.207-225.

Chatterjee, P.S. and Mittal, H.K., 2024, April. Enhancing Operational Efficiency through the

Integration of CI/CD and DevOps in Software Deployment. In 2024 Sixth International

Conference on Computational Intelligence and Communication Technologies (CCICT) (pp.

173-182). IEEE.

Rocha, Á., Adeli, H., Dzemyda, G., Moreira, F., & Poniszewska-Marańda, A. (2024). Logistic

Regression and DevOps Integration. In Advances in Computing and Data Sciences.

Singh, A., & Aggarwal, A. (2024). Random Forest Models. In Advances in Computing and

Data Sciences.

BrowserStack. (2023). DevOps Lifecycle. BrowserStack.

Amazon Web Services. (2024). Well-Architected Machine Learning Lifecycle. Amazon Web

Services.

