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Abstract 

This research focuses on identifying cost-efficient solutions and deployment time in DevOps 

environments involving AWS and Azure cloud platforms. The research compares the two 

frameworks by using an assessment of key deployment statistics, resource consumption, and 

machine learning. It targets at measuring deployment time, the cost of deployment, and the 

testing of critical DevOps attributes in regard to automated rollbacks as well as pipeline 

evaluation. Examining the quantitative data and applying data-driven models, it becomes 

possible to conclude that AWS is superior at the deployment of applications if they are highly 

parallelized, whereas the resource management capabilities of Azure and its compatibility 

with Microsoft environments are noteworthy. The research also presents a new concept of 

integrating machine learning models with DevOps processes and pipelines for smart 

automation. The research offers organizations recommendations for choosing cloud platforms 

based on coverage of organizational DevOps needs while offering analytical data regarding 

deployment speed, resource control, and cost factors of cloud DevOps. 

Keywords: Cloud Computing, DevOps, AWS, Azure, Machine Learning, Deployment 

Optimization. 

1.Introduction 

  As the focus on speedy growth in various fields, especially in the IT sector, cloud 

computing has acted as a central tenet for many organizations. The two leading cloud 

providers today, AWS and Microsoft Azure are virtually a must if a firm wants to use 

DevOps for effectiveness. DevOps—a method that seeks to build cooperation between 

developers and operations personnel in order to enhance delivery velocity and software 

quality—has delimited conventional software delivery processes (Boscain 2023). Despite the 

fact that integration with some of the most popular cloud platforms has created new 

opportunities for the creation of new solutions, it has also caused certain issues connected 

with the application’s performance, deployment time, and feature testing. 

 

With all industries and sectors of the economy seeking to deploy cloud-based solutions 

as delivery platforms for their applications, the choice of the platform and how DevOps is 
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carried out has significant implications. Even though AWS and Azure provide similar service 

options, their implementation of CI/CD pipelines, resource dependency, costing model, and 

deployment durations vary. Prior research has analyzed these platforms in terms of general 

options provided by cloud computing solutions, but there has not been enough work done in 

the field of how well they perform in DevOps environments with an emphasis on the 

deployment effectiveness and the amount of time taken. Since machine learning models are 

being brought into CI/CD pipelines it is becoming more crucial to benchmark cloud 

platforms specifically for such complex workloads.   

A paper-based review of the literature reveals an incomplete picture of DevOps’ 

performance on AWS and Azure (Figure 1). It is not uncommon for pieces of research to 

detail a specific aspect of configuration, including the cost of a given framework, while 

ignoring deployment effectiveness or the validation of core DevOps elements like automation 

of rolling back a failed release, quantization of resource utilization, and pipeline scrutiny. 

Although some studies emphasize the possibility of using machine learning to enhance the 

cloud performance, there are little guidelines on how such models can extend the existing 

DevOps processes (Browserstack 2023).  

 

Figure 1 Deployment using Devops 

1.1 Motivation 

The contribution of this research is based on its ability to help organizations make 

informed decisions on cloud platform for DevOps applications. This paper seeks to achieve 

the objective of identifying the platform with higher efficiency and shorter deployment 

durations in order to enable business organizations to streamline their operations and, hence, 

contain costs. In addition, this paper introduces a new approach of incorporating machine 

learning models into DevOps pipelines to cater for the increasing need for smart automation 

within software delivery. 

1.2 Research Questions 

The primary objective of this research is to evaluate the efficiency of AWS and Azure 

in deploying software through DevOps pipelines. The following research questions will guide 

the study: 

Which cloud platform, AWS or Azure, provides better efficiency in terms of 

deployment time and resource utilization for DevOps pipelines? 
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1.3 Contribution, Relation to Cloud Computing, Novelty, and Comparison 

to Previous Works: 

The contribution of this research is based on its ability to help organizations make 

informed decisions on cloud platforms for their DevOps applications.  

 

The key contributions of this study are: 

 

Contribution: 

 Developed a comprehensive benchmarking framework to compare the performance 

and efficiency of DevOps pipelines on AWS and Azure cloud platforms. 

 Integrated machine learning models to optimize the DevOps deployment process and 

provide data-driven insights for platform selection. 

Relation to Cloud Computing: 

 The research focuses on evaluating the impact of cloud platforms, specifically AWS 

and Azure, on the effectiveness of DevOps practices. 

 By benchmarking the deployment time, cost efficiency, and resource utilization, the 

study provides guidance for organizations on selecting the most suitable cloud 

environment for their DevOps needs. 

Novelty: 

 Most previous studies have compared cloud platforms in a general sense, but this 

research specifically targets the DevOps use case, which is a critical aspect of modern 

software development and deployment. 

 The integration of machine learning models to predict deployment performance and 

recommend optimizations is a novel approach to enhancing DevOps pipelines. 

Comparison to Previous Works: 

 Unlike previous studies that focused on general cloud platform features or serverless 

benchmarking, this research provides a more focused and detailed comparison of 

AWS and Azure in the context of DevOps. 

 The inclusion of machine learning-driven insights and recommendations sets this 

work apart from existing literature, which mainly relied on manual performance 

evaluation. 

1.4 Organization of the Study 

   The following is the framework that has been adopted to achieve the objectives of this 

dissertation. The first chapter of the study is the Introduction which also captures the 

background to the study, rationale for the study, and the research questions. The second 

chapter, Literature Review, provides a critical synopsis of prior research on AWS and Azure, 

emphasizing their DevOps and CI/CD integration with the application of machine learning 

for deployment. The Methodology chapter describes the approach selected to achieve the 

research goals, the data collection methods, the comparison criteria, and the methods for 

integrating the machine learning models. In Design Specification, we will share our insights 

on the utilization of the deployment efficiency, resources employed, and the role played by 

machine learning. Last, the Conclusion provides a brief of the major findings, implications 

for the industry, and recommendations on areas which should be explored in future. 
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2.Related Work 

   Due to cloud computing it has been easy for the various organizations in the world to 

embrace DevOps in their software development life cycle. DevOps or a combination of 

“Development” and “Operations” is an approach which tries to tie the software development 

process, and the IT operations process together in the best way possible. Thus, evaluating the 

position of these two leading platforms, Amazon Web Services (AWS) and Microsoft Azure, 

has become critical for the DevOps setting. 

2.1 DevOps Fundamentals and the Role of Cloud Platforms 

1.1.1 DevOps: Principles and Practices 

Leite et al. 2019 defines that DevOps concentrates on minimizing the divide between 

development and operation teams, with subtopics such as automation, 

integrated/implemented deployment (CI/CD). Exploring DevOps as a key driver to 

accelerated delivery, innovation in testing, and a balanced-cost model. DevOps would not 

survive without automation tools such as Jenkins, Docker, Kubernetes and Terraform, all of 

which are essential to provide the continuous integration of development stages.  

1.1.2 Importance of Cloud in DevOps Adoption 

  According to El Aouni et al. 2024, Current studies show Cloud services as the 

enablers of DevOps adoptions. Another study demonstrates the importance of a Cloud 

infrastructure in the implementation of DevOps practices. Green computing is possible since 

cloud platforms allow auto-provisioning of resources, which is vital when scaling CI/CD. The 

reduction in time-to-market achieved by organizations that utilize cloud-enabled DevOps 

solutions. AWS and Azure, in particular, provide integrated CI/CD tools, such as AWS 

CodePipeline and Azure DevOps, allowing teams to automate testing, deployment, and 

monitoring. 

Comparative Studies of AWS and Azure in DevOps Environments 

1.1.3 Overview of AWS and Azure in CI/CD Integration 

It is possible to note that AWS and Azure provide different approaches to introduce 

the CI/CD concept. AWS CodePipeline is designed as a continuous release system for an 

application, while Azure DevOps is a collection of discrete services with Azure Pipelines for 

CI/CD. These platforms have been compared as shown in the figure 2 in this study according 

to how easy they are to integrate, how scalable they are, and how long the deployment 

process will take. AWS is the quickest option for deployment because of automation and 

natural environment. The AWS Build Project integrated with CodeDeploy allows a low 

amount of time for the application to be unavailable during updates. Azure’s strength, 

however, is in working cohesively with other Microsoft products such as Visual Studio and 

Active directory; as such, it would be appropriate for enterprises that are already working 

with Microsoft products (Joshi 2021). 
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Figure 2 Analysis of AWS and Azure 

1.1.4 Efficiency Metrics: Deployment Time and Resource Utilization 

Akinleye 2024 concerns about the Length of deployment time is an important 

measure of quality or efficiency when it comes to DevOps pipelines. One of the devastates of 

Azure Pipelines as examined in this research is that their deployment time is comparatively 

longer than AWS CodePipeline when it comes to highly parallelized application. Azure 

offers better features for managing resources which include cost analysis dashboards and 

resource management algorithms. That is the extent and style of the resource utilization 

across these platforms. They discovered that AWS outperforms expected configurations by 

providing auto scaling resources by using such features as Elastic beanstalk and auto scaling. 

That is why Azure offers superior utilities, namely Azure Monitor, and Log Analytics for 

tracking the resource consumption and management of deployment. 

1.1.5 Challenges and Trade-offs 

   On the same note, both platforms are not without their problems. AWS and similar 

cloud services that operate under the pay-as-you-go structure do actually result in a 

significantly higher cost when used over the long term with permanent Deployments. A 

drawback of Azure is its close integration with Microsoft-based environments thus less 

supporting open-source tools flexibility. According to research studies, there is need for 

organizations to deliberate on such trade-offs to ensure that selection of platforms meet 

business objectives. 

Application of Machine Learning in DevOps Pipelines 

1.1.6 Machine Learning for Deployment Optimization 

DevOps Make ML a part of pipelines is a growing approach which is aimed at 

improving decisions. The task of using machine learning algorithms for prediction of 

deployment time, for detecting issues hindering work progress and choosing the most 

appropriate resources as shown in figure 3 (Amazon Web Services 2024). ML models such as 

Random Forests and Gradient Boosting Machines have been successfully used to analyses 

deployment logs and optimize pipeline configurations (Tamanampudi 2019). 
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Figure 3 Use of Devops in machine learning 

1.1.7 Predictive Maintenance and Failure Detection 

   It is possible to note that AWS and Azure provide different approaches to introduce 

the CI/CD concept. AWS CodePipeline is designed as a continuous release system for an 

application, while Azure DevOps is a collection of discrete services with Azure Pipelines for 

CI/CD. These platforms have been compared in this study according to how easy they are to 

integrate, how scalable they are, and how long the deployment process will take. 

2.1.8 Insights for Implementation and Evaluation 

         Practical Implementation Strategies 

      Based on the reviewed literature, the following strategies are recommended for 

implementing and evaluating DevOps pipelines on AWS and Azure: 

1. Pipeline Design: Leverage AWS CodePipeline for applications requiring high-speed 

deployments and Azure Pipelines for projects with complex resource dependencies. 

2. ML Integration: Use AWS SageMaker or Azure Machine Learning to train 

predictive models for deployment optimization and failure detection. 

3. Monitoring and Analytics: Employ AWS CloudWatch and Azure Monitor for real-

time insights into pipeline performance (Banala 2024). 

Comparative Analysis of Related Works 

 

In Table 1, work is compared which were done previously related to CI/CD pipeline, 

deployment, efficiency. 
 

Reference 
Framework Scenario Advantages Limitations 

(Rzig et.al, 2022) 

AWS 

CodePipeline 

and Azure 

DevOps with 

ML integration 

Comparative study 

of deployment 

time, resource 

utilization, and 

DevOps efficiency 

Real-time 

optimization of 

deployment 

pipelines using 

ML; cross-

cloud platform 

evaluation 

Requires high-quality 

historical data for 

accurate ML model 

predictions 
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(Poccia, 2016) Lambda 

Authorizer 

Benchmarking 

Tool (LABT) 

using AWS 

SAM and 

Artillery 

Framework 

Custom Lambda 

Authorizer 

serverless function 

Evaluates 

access control 

for serverless 

functions 

Applicable only to 

access control 

benchmarking 

scenarios 

(Copik et.al, 2021) 

Serverless 

Benchmark 

Suite (SeBS) 

General serverless 

application 

Multi-cloud 

platform 

support 

Focus limited to 

serverless workloads 

without DevOps 

integration 

(Cordingly et.al, 2020) 
Serverless 

Application 

Analytics 

Framework 

(SAAF) 

Serverless 

application for 

Transform-Load-

Query operations 

Effective for 

data processing 

pipeline use 

cases 

Limited storage 

capability, restricted 

to S3 

(Copik et.al, 2021) PanOpticon 

(PO) using 

Serverless 

Framework and 

JMeter 

Custom serverless 

function 

Simple setup 

with dedicated 

configuration 

files 

Limited to Python 

runtimes 

(Ustiugov et.al, 2021) Serverless 

Performance 

Framework 

(SPF) using 

Serverless 

Framework 

Empty serverless 

function 

Precise 

benchmarking 

due to lack of 

third-party 

dependencies 

Limited real-world 

application as only 

empty functions are 

tested 

(Taibi et.al, 2020) 
Microbenchmar

k (MB) using 

Serverless 

Framework 

Basic serverless 

function 

Extensive cloud 

provider 

support 

Focused only on 

basic input/output 

performance 

Table 1: Summarising Previous Research Work 
 

Research Methodology 
 

  The use of appropriate methodologies is critical when benchmarking deployment 

pipelines for cloud platforms. With the correct approach, the configuration, execution, and 

evaluation of deployment processes become streamlined and yield accurate and actionable 

results.  

3.1 Process Overview 

AWS is the quickest option for deployment because of automation and natural 

environment. The AWS Elastic Container Registry with CodeDeploy allows a low amount of 

time for the application to be unavailable during updates. Azure’s strength, however, is in 

working cohesively with other Microsoft products as are Visual Studio and Active directory; 
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as such, it would be appropriate for enterprises that are already working with Microsoft 

products (Bafana and Abdulaziz 2024). 

 

1. Input and Configuration: Using a configuration file or command-line interface, users 

can define the pipeline parameters, such as the type of application, resource allocation, 

and deployment settings.  

Parameters include: 

 Deployment load (e.g., small, medium, or high concurrency) 

 Application type (e.g., containerized or serverless) 

 Resource limits (CPU, memory, and storage) 

2. Pipeline Setup: Based on the inputs, the system automatically sets up DevOps pipelines 

on AWS (CodePipeline) and Azure (Azure DevOps). This step includes: 

 Configuring the source repository. 

 Defining build and deployment stages. 

 Assigning resources dynamically. 

A check is performed to ensure that all required pipeline configurations are correctly 

established. Any missing configurations are flagged and reprocessed before moving forward 

(Mathew et al. 2021). 

 

The process overview diagram is shown in figure 4: 

 

Figure 4 Process Flowchart for Benchmarking DevOps Pipelines Using AWS and Azure 

 

3. Deployment Execution: The pipelines are executed under predefined deployment 

scenarios. For example: 

 Scenario 1: Low-concurrency application with minimal resource requirements. 

 Scenario 2: High-concurrency application requiring scalable resources. 

 Scenario 3: Data-intensive application with complex workflows. 

During execution, the system logs critical data, such as deployment time, resource utilization, 

and errors. 
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4. Performance Monitoring: The system monitors the performance of deployments using 

tools like AWS CloudWatch and Azure Monitor. Metrics captured include: 

 Deployment time (in seconds) 

 CPU and memory usage during deployment 

 Network bandwidth utilization 

 Cost incurred per deployment 

A real-time dashboard displays these metrics, enabling users to track pipeline performance. 

 

5. Machine Learning Integration: The ML models are then used on the collected 

performance data for analysis. The steps include: 

 Model Train: The ML model (e.g., Random Forest or Gradient Boosting) is trained 

on past deployment data to predict deployment results. 

 Optimization: One way the model can help detect bottlenecks and recommend 

optimization based on resource allocation and pipeline setup. 

 Prediction: Using current input parameters, this model predicts deployment times 

and resource utilization for both AWS and Azure (Borra 2024). 

6. Output and Results: The output of the benchmarking process available in several 

formats: 

 MIT-ML Dashboard View: Showcases your metrics, comparisons, and ML-driven 

recommendations. 

 JSON Export: Raw Json records of each test run for further analysis 

 Comparative summary: Which Scenario AWS vs. Azure perform better. 

7. Reconfiguration and Iteration: Users can modify the pipeline configurations and repeat 

the process to analyze new scenarios or validate the recommendations. The system allows 

iterative testing with different deployment loads, resource allocations, and pipeline setups 

to ensure comprehensive benchmarking. 

 

4. Design Specification 
   On the same note, both platforms are not without their problems. AWS and similar 

cloud services that operate under the pay-as-you-go structure do actually result in a 

significantly higher cost when used over the long term with permanent Deployments. A 

drawback of Azure is its close integration with Microsoft-based environments thus less 

supporting open-source tools flexibility. According to research studies, there is need for 

organizations to deliberate on such trade-offs to ensure that selection of platforms meet 

business objectives. 

4.1 Architecture Overview 

 The system architecture for benchmarking serverless functions consists of multiple 

components that interact with each other in a well-defined process. The key components of 

the system are: 

 

1. Serverless Application Builder: DevOps Make ML a part of pipelines is a growing 

approach which is aimed at improving decisions. The task of using machine learning 
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algorithms for prediction of deployment time, for detecting issues hindering work 

progress and choosing the most appropriate resources.  

2. Elastic Container Service: An essential piece of the architecture, the Fargate 

authenticates users or requests before they reach the serverless function requiring 

access. 

3. Benchmarking Tool: This container drives the performance tests. You can build it 

with frameworks such as AWS SAM and ECS, and test different scenarios such as 

response time, throughput, and error rates. The tool performs benchmark tests against 

the Fargate and creates detailed performance reports. 

4. Monitoring Dashboard: This module visualizes the output of the benchmarking 

tests, such as latency, response times, and throughput, within an intuitive dashboard. 

It offers monitoring and logging of the serverless function performance in real-time. 

5. Results Generator: Auto-saves results in JSON for analysis and later retrieval. The 

results are composed of key performance metrics that are intermediate when 

analyzing the cloud functions’ performance in different scenarios. 

6. User Interface (CLI): Command-line based where users enter configuration 

parameters to initiate the benchmarking, results preview and storage (Kreuzberger et 

al. 2023). 

The architecture overview is shown in the figure 5 

 

Figure 5 Architecture diagram 

4.2 System Flow 

      The application flow starts when the user provides some configurations using command 

line as shown in the figure 6. It checks the input in response and runs the serverless functions 
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and injects it. Lastly, we deploy the Elastic Container to orchestrate access before running the 

benchmarking tests. Conduct tests using benchmarking tool, monitoring dashboard will show 

the results. Now we generate a json file for further analysis (Brooker et al. 2023). 

 

Figure 6 System Flow of the architecture 

4.3 Performance Metrics 

 The performance metrics used for benchmarking serverless functions were planned to 

include the following metrics, however, due to certain constraints, all the metrics could not be 

calculated. For example, Latency, Throughput.  

1. Latency: This is the duration for the serverless function to respond to a request. This 

is an important metric to determine how quickly a function responds to varying loads. 

2. Throughput: The throughput is another metric used on serverless solutions, which 

determines the number of requests the serverless function allows to serve on a certain 

period of time, usually in requests per second (RPS) So, high throughput means good 

scalability. 

3. Deployment Time: With this case, it is necessary to also consider the deployment 

time metric which directed the deployment of the blending serverless framework and 

linked workflows. Concerning the non-static configurations, the metric captures the 

changes employed to improve processes. 

4. Resource Utilization: It was not possible, however, to fully measure throughput in 

execution which was used to ascertain efficiency metrics namely the CPU and 

memory resources that were in use during the execution phase. This type of 

information is helpful in estimating the cost and performance trade-offs. 

5. CI/CD Setup Time: This refers to the time taken in setting up the whole pipeline 

environment and verifying the Development and Deployment. 

6. Error Rate: This is the percentage of failed requests vs all requests. If the error rate is 

high, it might be an indication that the problem lies with the serverless function itself, 

perhaps due to resource limits being reached or a misconfiguration. 

7. Cost: The cost of running the serverless function is measured based on the resource 

consumption (e.g., CPU, memory) and the execution time. Serverless functions are 

billed based on the number of invocations and their execution time (Palumbo et al. 

2021). 

4.4 Machine learning Model Metrics 

The goal of this machine-learning model is to compare whether AWS or Azure is better 

based on important metrics like deployment time, cost, resource usage, and user satisfaction 

score. In this study they were trained and validated the model on previous data and check its 

performance with some key metrics: 
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1. Root Mean Squared Error (RMSE): The RMSE is used to assess the accuracy of the 

model predictions for continuous variables, such as deployment time and cost. The lower 

RMSE reveals that our prediction of deployment time and cost for both AWS and Azure 

platforms is accurate. 

2. R-squared (R²): The R² score enables you to know the amount of variance in the target 

variable (i.e., cost, deployment time) explained by the model. Having a higher R² implies 

that the model accounts for the most variance in the data, thus making it an effective tool 

for prediction and decision-making purposes. 

3. User Satisfaction Score: This score, like the other criteria, is subjective and can vary 

based on location and personal experience, thus, the model rates the level of user 

satisfaction for each cloud platform with respect to the other key metrics. This is a 

qualitative measure of which cloud platform provides the best experience for users 

(Botchkarev 2018). 

4.5 Sequence Diagram 

 A sequence diagram (figure 7) is used to illustrate the interactions between the user and 

the components during the benchmarking process. The key steps include: 

1. The User provides configuration input to the Benchmarking Tool. 

2. The Benchmarking Tool processes the input and creates a Serverless Application 

Builder configuration. 

3. The Serverless Application Builder deploys the Elastic Container Service and 

fargate serverless functions. 

4. The Benchmarking Tool triggers the performance tests. 

5. The Monitoring Dashboard collects and displays performance metrics. 

6. The Results Generator produces the JSON results for later analysis (Xu 2020). 

 

Figure 7 Sequence diagram 
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Requirements 

1. Infrastructure Requirements:  

 The system requires cloud access to AWS and Azure platforms, including permissions 

for deploying Fargate functions and setting up access controls via API Gateway. 

 A stable internet connection to run performance tests and retrieve results in real-time. 

2. Software Requirements:  

 The system is implemented using AWS SAM or Azure Functions, with integration to 

the Artillery or similar benchmarking frameworks (Sharma and Sandhu 2022). 

 A web browser or CLI tool is required to interact with the monitoring dashboard and 

input configurations. 

3. Performance Considerations:  

 The system should be optimized for minimal latency during test execution, even when 

multiple benchmarking tests are run in parallel. 

 The benchmark should be repeatable and robust, providing consistent results even 

under varying cloud resource availability. 

 

 

5. Implementation/Solution Development 

      In the last step of implementation, the serverless benchmarking tool is deployed in order 

to monitor performance metrics of ECS applied serverless functions. This benchmarking tool 

aims to measure various aspects including initialization time, memory consumption, response 

times, and cost, offering a peek into the performance of different serverless function 

configurations. The design of the system enables multiple functions and execution 

performance tests to be performed without tightly coupling them together so they are flexible, 

big scalable, and easy to use. 

5.1 Implementation Overview 

Our benchmarking tool is built on a microservices-based architecture that utilizes cloud 

native technology to ensure performance and scale. The architecture components are as 

follows: 

 This part is the Serverless Application Builder which is build using serverless 

framework and AWS fargate. This is the actual benchmarking tool's base, that allows 

users to deploy serverless functions (including Fargate serverless) and configuring 

performance testing scenarios for them. 

 Fargate Serverless: The Fargate is the main security mechanism in place that validates 

request requests before they even reach the serverless function. It is a middleman; allows 

you to the backend service and verifies the request before executing. 

 Benchmarking Engine: The engine used for benchmarking, built on AWS SAM 

(Serverless Application Model) and Artillery, manages orchestration of performance 

testing of serverless functions. This means it can take several runs with different configs 

generated from user input. 

 Performance Monitoring Dashboard: It is the visual layer that displays the 

performance benchmark test results in a more readable format. It compiles data from 
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several tests of a function and provides key metrics, response times, memory usage, 

initialization times, etc. It permits comparisons between different runs and configurations. 

 Cloud Monitoring & Storage AWS CloudWatch: Used to monitor the performance of 

your deployed functions It monitors metrics such as function invocation, execution time, 

and resource utilization. Result outputs, logs and configuration files are stored in AWS S3 

buckets. All the benchmarking data (raw metrics and results) are saved in the JSON 

format for later analysis (Daniel et al. 2024). 

CLI Execution: Users enter their input through a command-line interface (CLI), listing 

multiple properties, including the runtime environment (Python, Node.js), the authorizer type 

(Request, Token, etc.) as well as the number of iterations for the test. 

5.2 Solution Workflow 

       It starts with a user entering the runtime environment, authorizer type and number of 

iterations they call. They also specify other settings such as AWS region and duration of the 

tests. 

1. Deploy Function: The Serverless Application Builder deploys the Build Projects and 

connects them to the configured Elastic Container Service based on the input. It keeps 

each function isolated while still allowing us to use access control mechanisms to 

secure the environment in which it operates when placed in production. 

2. Executing the Benchmarking: Once deployed, the Benchmarking Engine executes 

performance tests by calling functions with various scenarios. The tool executes the 

functions under different settings several times and logs some of the important 

performance indicators for each run. That could be initialization time, execution time, 

memory, response time. 

3. Generation and Storage of Results: Upon test completion, the tool generates 

benchmarking results in JSON format; the results are stored locally and uploaded to 

AWS S3. Results include detailed runtime data which enables function behaviour to 

be profiled under variable configurations and improve them as required. 

4. Performance Monitoring and Visualization: The Performance Monitoring 

Dashboard collects and visualizes the results. The paper presents a summary of the 

benchmarking with respect to various serverless function settings considering 

different metrics. The data can be analysed to help with performance optimization and 

cost efficiency. 

5. Rerun Tests: Users can change configurations to run tests again to test other cases or 

optimize parameters. The benchmarking tool is versatile, and allows for repetitive 

testing to optimize your serverless function for your specific use case (Xhepa and 

kanakala 2022). 

5.3 Model Implementation 

5.3.1 Logistic Regression 

         Logistic Regression is used as a classification model to determine whether an 

organization has high or low efficiency in DevOps. This is a binary classification model, 

which seeks to assess the likelihood of an event occurring given the independent variables. In 

the framework of this project, the model identifies the deployment performance of a 

serverless function regarding initialization time, memory, and execution time. The Logistic 

Regression model applies a logistic function to transform the input data to have a binary 

output high or low efficiency. Its training data include historical records on the functions’ 

performance and DevOps efficiency, with the DevOps Efficiency Score median rating used 

as the classification boundary. (Rocha 2024) 
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5.3.2 Support Vector Machine (SVM) 

         Support Vector Machine (SVM) is another machine learning model that was employed 

to evaluate the performance of the serverless functions between AWS and Azure platforms. 

SVM is a type of supervised machine learning algorithm that aims at finding the best 

hyperplane that can demarcate the data points into different classes. In this case, the SVM is 

used for classification where it has to determine whether a particular serverless function will 

have high efficiency or low efficiency. The theory behind the SVM is that, coming from a 

vector space of higher dimensionality, the best separation plane is identified between the two 

classes. (Rocha 2024) 

 

5.3.3 Random Forest 

         Random Forest is another subgroup of decision trees where instead of utilizing one tree 

for the prediction, it executes many decision trees and then produces the outcome. This 

project employs the Random Forest algorithm to make performance predictions of serverless 

functions that are defined by a range of parameters, including initialization time and memory 

usage, among others. The model creates multiple decision trees during the training process, 

and each tree arrives at a decision based on the unique random samples of the data. The final 

prediction is that the mode from the result set from all trees is used to forecast since this 

minimizes overfitting hence increases the generality on unseen data. (Aggarwal, A 2024) 

 

6. Evaluation 

     This section evaluates the performance of the machine learning model used in the 

comparison between the AWS and Azure cloud platforms and the corresponding data 

insights. During the evaluation phase, strategies for evaluating performance metrics, 

validating models, integrating with CI/CD pipelines, and assessing business outcomes all take 

place. 

6.1 Machine Learning Model Evaluation: 

6.1.2 Logistic Regression: 

         Logistic Regression is employed here as a classification model to predict whether an 

organization achieves high efficiency or low efficiency in its DevOps operations.  

The binary classification is based on the median of the DevOps Efficiency Score. The 

classification report and the confusion matrix for the trained logistic regression model is 

shown in figure 8 (Left for AWS and Right for Azure) 
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Figure 8 Logistic regression report and confusion matrix 

 

 

6.1.2 Support Vector Machine (SVM): 

         SVM is another classification model used for the same task as Logistic Regression, i.e., 

predicting High Efficiency based on the input features. The classification report and the 

confusion matrix is shown in the figure 9. 

 

 

Figure 9 SVM model report and confusion matrix 

6.1.3 Random Forest: 

         Random Forest is utilized as a regression model to predict Cost Efficiency ($) based on 

features related to DevOps practices and organizational characteristics. 

The actual vs predicted values based on the random forest model is shown in figure 10. 
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Figure 10 Actual vs predicted plot 

6.1.4 Comparison of Models: 

          Random Forest is the best-performing model with the highest accuracy (0.57), recall 

(0.69), and F1-Score (0.58), making it most reliable for identifying high-efficiency cases 

while balancing precision (0.5). SVM outperforms Logistic Regression slightly, achieving 

better recall (0.63 vs. 0.61) and F1-Score (0.55 vs. 0.54), but both have similar precision 

(0.49). Logistic Regression is the least effective model with the lowest accuracy (0.4935) and 

highest false positives (1933). Random Forest’s confusion matrix highlights its effectiveness 

in reducing false negatives and achieving better classification outcomes, making it the most 

suitable choice for evaluating serverless function performance described in table 2. 

 

 

 

Model Accuracy 

Precision 

(High 

Efficiency) 

Recall 

(High 

Efficiency) 

F1-Score 

(High 

Efficiency) Confusion Matrix 

Logistic 

Regression 0.4935 0.49 0.61 0.54 

TP: 3184, FP: 1933, 

FN: 4883, TN: 5117 

SVM 0.4944 0.49 0.63 0.55 

TP: 3235, FP: 1882, 

FN: 4883, TN: 5117 

Random 

Forest 0.57 0.5 0.69 0.58 

TP: 3245, FP: 1890, 

FN: 4890, TN: 5117 
Table 2: Evaluation of the models 

6.2 Model Validation 

  To ensure that the machine learning model is reliable and can generalize well to unseen 

data, the model is subjected to rigorous validation: 

1. Cross-Validation: The dataset is divided into folds, to assess how the results of a 

statistical analysis regard the model at the end of the split segments of data. This approach 

reduces overfitting and confirms generalization power of the model. 

2. Training and Testing Split: Typically, 80:20 split This way the model is trained on the 

training set and its accuracy is evaluated based on the testing set to check its ability to 

accurately predict new and unseen data. 

3. Hyperparameter Tuning: Hyperparameters such as number of estimators in Random 

Forest, learning rate, maximum depth, are optimized using techniques such as Grid 
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Search or Random Search. Fine-tuning adjusts parameters for best performance on all 

features and configurations (Roy et al. 2019). 

6.3 CI/CD Integration Evaluation 

       We also evaluate the inclusion of the machine learning model in the CI/CD pipeline. This 

will assess how automated and efficient the process is and is described in table 3: 

1. Integration of Azure DevOps: The Azure DevOps pipeline integrates the model by 

using YAML configurations. The trained model is saved to disk, and the pipeline will 

loop through automated steps: if new data is available, train the model again until that 

point. 

2. Integrate AWS CodePipeline: AWS code pipeline is used to execute the ML model-

training script, this is done on events like new deployment or collecting new data Based 

on the nature of training task resources, model can be deployed, on AWS Elastics 

Container Service or EC2. The integration keeps cloud performance predictions always in 

sync. 

3. Automation Efficiency: The time taken to trigger and run the model's training script is 

measured to evaluate the efficiency of the CI/CD pipeline. Shorter training times ensure 

that predictions are available quickly, aiding faster decision-making processes (Chatterjee 

and Mittal 2024). 

 

Metric AWS Azure Observations 

Pipeline 

Deployment 

Time 

1 min 34 secs (Based 

on AWS 

CodePipeline logs) 

2 min 45 secs 

(Based on Azure 

Pipelines) 

AWS showed faster 

deployment times. 

Resource 

Utilization 

Efficient with Auto-

scaling (Elastic 

Beanstalk) 

Better resource 

tracking (Azure 

Monitor) 

Azure excels in resource 

management. 

Integration with 

ML Models 

Seamless (AWS 

SageMaker, 

CodePipeline) 

Effective but tightly 

integrated with 

Microsoft tools 

(Azure ML Studio) 

Both integrate well with 

ML models, but Azure 

works best in Microsoft 

environments. 

CI/CD Pipeline 

Setup Time 

Faster automation and 

integration 

More steps required 

for integration 

AWS setup was simpler 

for automation. 

Cost Efficiency 

Slightly higher costs 

for continuous 

deployments 

Lower costs for 

certain 

configurations 

Depends on workload 

and configuration. 

Table 3: Metrics to measure the performance 

 

6.4 Reporting and Insights 

       Following the review of the model’s performance and its incorporation into the CI/CD 

pipeline, the findings are examined to offer actionable insights: 

1. Cloud Platforms: The analysis has a concise comparison of both AWS and Azure based 

on deployment time, cost, resource usage and user satisfaction. This comparison enables 
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businesses to choose between the platforms according to their specific requirements, 

based on data. 

2. Abstract Cost Optimization: Based on the model results, which cloud platform offers 

the best cost-efficiency for multiple use cases It might show, for instance, that Azure 

gives better performance at a lower price for certain workloads, or the same for AWS. 

3. User Feedback: User feedback is included in the evaluation, which rates how well end-

users feel each platform performed. Measuring user satisfaction helps pinpoint friction 

points and opportunities for improving platform design and services. 

 

Monitoring tools used like AWS CloudWatch and Azure Monitor, refer to the figures 11 

and 12: 

 

Figure 11 Aws Monitoring Log 

 

Figure 12 Azure Monitoring Log 

 

7. Conclusions and Future Work 
 

      This study introduced comparative analysis for two cloud environments for AWS and 

Azure based on machine learning model evaluation of vital measures of the cloud 
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environment including deployment time, cost, resource utilization, and user satisfaction. The 

main concern here was to know using these metrics, which platform tends to rule the roost 

and how businesses can use this knowledge to select a productive cloud platform for them. 

 

            Using metrics like RMSE and R², it was shown that AWS vs Azure vs GCP all have 

unique strengths based on their use case. Azure was cost-effective for their workload, AWS 

had faster deployment times for other workloads. Analysis of user satisfaction further 

highlighted the mixed feelings users had about each platform, as they performed well in 

different areas of user satisfaction. These takeaway points are in line with the increasing need 

for organizations to evaluate cloud platforms for performance, not just cost or service 

features. Additional research could further investigate the inclusion of other performance 

indicators besides cost, such as security and scalability, to facilitate a broader comparison 

between AWS and Azure.  

 

           The ML model and CI/CD integration strategy has relevance from a 

commercialization standpoint where it can be commercialized to offer this as a SaaS product 

to any businesses looking to optimize cloud platform making it a significant tool for 

businesses to keep analyzing cloud operation performance continuously. 
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