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1. Introduction   
  
This document provides the steps to create and install the required softwares, tools and  

files to perform the research mentionted in research report with title “Novel Approaches  

for Real-Time Detection of DDoS Attacks in Cloud Computing Environments Using  Advanced 

Machine Learning Techniques”.   

  

 2.Prerequisites   
  

Before setting up and running the project, import all necessary libraries using below 

commands:  

  

import pandas as pd   

from sklearn.model_selection import train_test_split  from 

sklearn.preprocessing import StandardScaler, MinMaxScaler  from 

sklearn.ensemble import RandomForestClassifier, VotingClassifier  

from sklearn.svm import SVC   

from sklearn.metrics import confusion_matrix, accuracy_score, precision_score,  
recall_score, f1_score, roc_auc_score  import time  
  

3.Load and Explore the Dataset  
Read the csv datafile “DDoS Dataset.csv” and load the traffic dataset into pandas dataframe 

which is table-like data structure with rows and columns, ideal for data manipulation and 

analysis. Next print few rows of the structured dataset to see the attributes and information 

of the data and few rows of the structured dataset.  

  

  

Figure 1  

The above code in the figure 1 prints the data information and first 5 rows of the dataset.  



 4. Run the data preprocessing cells  
   4.1 Handle the missing values if any:  
Ensure that the dataset is free of missing values by replacing them with 0. Handling the 

missing values ensures the data consistency and data integrity.  

  

  
Figure 2  

  

The DataFrame now contains no “NaN” values, which prevents potential issues during model 

training or analysis.  

  

4.2 Feature selection  
  

Drop the unnecessary features like “source_IP”, “Destination_IP” in ‘X’ using drop function as 

they don’t need to train the model.  

Define the target variable ‘y’.  

  

  
Figure 3  

  

4.3 Split the data  
  

Using the function ‘train_test_split()’ from the ‘sklearn.model_selection’ module in 

Scikitlearn split data into test subsets.      

First split: Split the data into training (70%), temp(30%)   

Second split: validation (15%), and testing (15%) sets  

  

  
Figure 4  

  

4.4 Feature Scaling  
      Apply Min-Max scaling to normalize the feature values between 0 and 1. Create an 

instance of the MinMaxScaler from the sklearn.preprocessing module using scaler = 

MinMaxscaler() syntax. Fitting and Transforming the Training Data using fit() and transform() 

function. Finally transform the validation and test data.  

  



  
Figure 5  

  

  
5. Train the models  
  

5.1 Train with Random forest model  
  

Initialize and train the Random Forest model with 100 decision trees. Below is the code to 

train the model:  

  

  

rf_model = RandomForestClassifier(n_estimators=100, random_state=42) 

rf_model.fit(X_train_scaled, y_train)  

  

Output:  

  

  
Figure 5  

  

5.2 Train the dataset with SVM model  
  

Initialize and train the Support Vector Machine model with a linear kernel.  

  

Code:  svm_model = SVC(kernel='linear', probability=True, 

random_state=42) svm_model.fit(X_train_scaled, y_train)  

  

output:  

  

  
  



Figure 6  

  

6.  Hybrid Model - Ensemble Learning  
  

    6.1 Create a Voting Classifier  
         Combine the Random Forest and SVM models using a soft voting approach.  

  

        Code:   

         hybrid_model = VotingClassifier(estimators=[('rf', rf_model), ('svm', svm_model)], 

voting='soft')  

        hybrid_model.fit(X_train_scaled, y_train)  # Train the hybrid model  

  

  

Output:  

  

  
Figure 7  

  

  

7. Evaluate the model  
  

  7.1 Evaluate on the Validation Set for Random Forest  
  

   You should assess your model's performance after it has been trained. Metrics like 

accuracy, precision, recall, F1-score, and potentially a confusion matrix are usually used for 

this.  

  

  



  
Figure 8  

  

Fig 8 evaluates and prints metrics like confusion matrix, accuracy, precision, recall, F1-score, 

ROC AUC score.  

  

 7.2 Evaluate on the Validation Set for SVM  
    

Classify the different classes and get insights of number of true positives, true negatives, 

false positives, and false negatives using confusion matrix  

  

  
  

Figure 9  

  



Fig 9 prints the computed metrics with two decimal points of precision for easier 

interpretation.  

7.3 Evaluate on the Validation Set  
  
 Predict labels for the validation set using the trained hybrid model  

    

       y_val_pred = hybrid_model.predict(X_val_scaled)  

  

  

7.4 Generate the confusion matrix to evaluate the performance of the model  
  

conf_matrix = confusion_matrix(y_val, y_val_pred) 

print("\nHybrid Model Confusion Matrix:") print(conf_matrix)  

  

  

       Classification Metrics:  

        Calculate and print key performance metrics: Accuracy, Precision, Recall, F1-Score, and            

ROC AUC Score  

  

  
  

8. Real-Time Performance Evaluation  
  

   8.1 Latency Measurement  
 Measure the time taken by the model to make predictions on the test set with the below 

syntax.  

  

start_time = time.time()  # Start timer  

y_test_pred = hybrid_model.predict(X_test_scaled)  # Predict test labels end_time 

= time.time()  # End timer  

  

latency = end_time - start_time  # Calculate latency print(f"\nLatency: 

{latency:.4f} seconds")  # Print latency  

  



  

     

  

8.2 Throughput Measurement  
 Calculate the throughput as the number of samples processed per second.  

  

throughput = len(X_test) / latency  

print(f"Throughput: {throughput:.2f} samples per second")  # Print throughput  

  


