

Configuration Manual

MSc Research Project

Cloud Computing

Venkata Sai Chara n V in n amuri

StudentID:221 56461

School of Computing

National College of Ireland

Supervisor: Jitender Kumar Sharma

National College of Ireland

Project Submission Sheet School of
Computing

Student Name: Venkata Sai Charan Vinnamuri

Student ID: 22156461

Programme: Cloud Computing

Year: 2023

Module: MSc Research Project

Supervisor: Jitender Kumar Sharma

Submission Due Date: 16/09/2024

Project Title: Novel Approaches for Real-Time Detection of DDoS Attacks in
Cloud Computing Environments Using Advanced Machine

Learning Techniques

Word Count:

Page Count:

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other

author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Vinnamuri Venkata Sai Charan

Date: 16th September, 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □

Attach a Moodle submission receipt of the online project submission, to each

project (including multiple copies).
□

You must ensure that you retain a HARD COPY of the project, both for your own

reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on

computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Venkata Sai Charan

22156461

1. Introduction

This document provides the steps to create and install the required softwares, tools and

files to perform the research mentionted in research report with title “Novel Approaches

for Real-Time Detection of DDoS Attacks in Cloud Computing Environments Using Advanced

Machine Learning Techniques”.

 2.Prerequisites

Before setting up and running the project, import all necessary libraries using below

commands:

import pandas as pd

from sklearn.model_selection import train_test_split from

sklearn.preprocessing import StandardScaler, MinMaxScaler from

sklearn.ensemble import RandomForestClassifier, VotingClassifier

from sklearn.svm import SVC

from sklearn.metrics import confusion_matrix, accuracy_score, precision_score,
recall_score, f1_score, roc_auc_score import time

3.Load and Explore the Dataset
Read the csv datafile “DDoS Dataset.csv” and load the traffic dataset into pandas dataframe

which is table-like data structure with rows and columns, ideal for data manipulation and

analysis. Next print few rows of the structured dataset to see the attributes and information

of the data and few rows of the structured dataset.

Figure 1

The above code in the figure 1 prints the data information and first 5 rows of the dataset.

 4. Run the data preprocessing cells
 4.1 Handle the missing values if any:
Ensure that the dataset is free of missing values by replacing them with 0. Handling the

missing values ensures the data consistency and data integrity.

Figure 2

The DataFrame now contains no “NaN” values, which prevents potential issues during model

training or analysis.

4.2 Feature selection

Drop the unnecessary features like “source_IP”, “Destination_IP” in ‘X’ using drop function as

they don’t need to train the model.

Define the target variable ‘y’.

Figure 3

4.3 Split the data

Using the function ‘train_test_split()’ from the ‘sklearn.model_selection’ module in

Scikitlearn split data into test subsets.

First split: Split the data into training (70%), temp(30%)

Second split: validation (15%), and testing (15%) sets

Figure 4

4.4 Feature Scaling
 Apply Min-Max scaling to normalize the feature values between 0 and 1. Create an

instance of the MinMaxScaler from the sklearn.preprocessing module using scaler =

MinMaxscaler() syntax. Fitting and Transforming the Training Data using fit() and transform()

function. Finally transform the validation and test data.

Figure 5

5. Train the models

5.1 Train with Random forest model

Initialize and train the Random Forest model with 100 decision trees. Below is the code to

train the model:

rf_model = RandomForestClassifier(n_estimators=100, random_state=42)

rf_model.fit(X_train_scaled, y_train)

Output:

Figure 5

5.2 Train the dataset with SVM model

Initialize and train the Support Vector Machine model with a linear kernel.

Code: svm_model = SVC(kernel='linear', probability=True,

random_state=42) svm_model.fit(X_train_scaled, y_train)

output:

Figure 6

6. Hybrid Model - Ensemble Learning

 6.1 Create a Voting Classifier
 Combine the Random Forest and SVM models using a soft voting approach.

 Code:

 hybrid_model = VotingClassifier(estimators=[('rf', rf_model), ('svm', svm_model)],

voting='soft')

 hybrid_model.fit(X_train_scaled, y_train) # Train the hybrid model

Output:

Figure 7

7. Evaluate the model

 7.1 Evaluate on the Validation Set for Random Forest

 You should assess your model's performance after it has been trained. Metrics like

accuracy, precision, recall, F1-score, and potentially a confusion matrix are usually used for

this.

Figure 8

Fig 8 evaluates and prints metrics like confusion matrix, accuracy, precision, recall, F1-score,

ROC AUC score.

 7.2 Evaluate on the Validation Set for SVM

Classify the different classes and get insights of number of true positives, true negatives,

false positives, and false negatives using confusion matrix

Figure 9

Fig 9 prints the computed metrics with two decimal points of precision for easier

interpretation.

7.3 Evaluate on the Validation Set

 Predict labels for the validation set using the trained hybrid model

 y_val_pred = hybrid_model.predict(X_val_scaled)

7.4 Generate the confusion matrix to evaluate the performance of the model

conf_matrix = confusion_matrix(y_val, y_val_pred)

print("\nHybrid Model Confusion Matrix:") print(conf_matrix)

 Classification Metrics:

 Calculate and print key performance metrics: Accuracy, Precision, Recall, F1-Score, and

ROC AUC Score

8. Real-Time Performance Evaluation

 8.1 Latency Measurement
 Measure the time taken by the model to make predictions on the test set with the below

syntax.

start_time = time.time() # Start timer

y_test_pred = hybrid_model.predict(X_test_scaled) # Predict test labels end_time

= time.time() # End timer

latency = end_time - start_time # Calculate latency print(f"\nLatency:

{latency:.4f} seconds") # Print latency

8.2 Throughput Measurement
 Calculate the throughput as the number of samples processed per second.

throughput = len(X_test) / latency

print(f"Throughput: {throughput:.2f} samples per second") # Print throughput

