

Configuration Manual

MSc Research Project

MSc Cloud Computing

Johns Thomas

Student ID: 22203389

School of Computing

National College of Ireland

Supervisor: Sai Emani

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

JOHNS THOMAS

Student ID:

22203389

Programme:

MSc Cloud Computing

Year:

2024

Module:

Research Project

Lecturer:

Sai Emani

Submission

Due Date:

12th August 2024

Project Title:

Configuring serverless functions using Q learning and Deep Q

learning algorithms

Word Count:

1538 Page Count: 7

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Date:

12th August 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Johns Thomas

Student ID: 22203389

1 Introduction

This manual provides detailed explanation and instructions for setting up, configuring, and

running Q learning and Deep Q-learning agents to support serverless function configuration.

It is intended to ensure the reproducibility of the work and for researchers and developers

interested in similar applications. The manual covers the installation of necessary software,

configuration of learning parameters, execution of the agents in AWS lambda, and evaluation

of results.

2 System Requirements

2.1 Hardware Requirements

 CPU: AMD Ryzen 7 or equivalent.

 Memory: Minimum 16 GB RAM.

 Storage: At least 10 GB of available space.

2.2 Software Requirements

Operating System Windows 11 or similar

Serverless Environment AWS Lambda

Programming Language Python 3.11 or later

Logging & Monitoring Service AWS CloudWatch

Python libraries Boto3, Numpy, Pandas, TensorFlow 2.x

Object Storage AWS S3

Table 1: Components and corresponding software used in project

Table 2 gives the overview of the artifacts developed and available in github repository

https://github.com/johns-thomas/ric_implementation.git

qlearning_agent.py Python code for training the Q-learning agent

dqn.py Python code for training the Deep Q-

Learning agent

helper.py Utility methods for invoking lambda

functions and retrieving logs.

https://github.com/johns-thomas/ric_implementation.git

2

graph.py, graph-2.py Contains code for evaluating the results

image_processing_tasks/* Folder containing image processing tasks

used for training the RL agents.

Table 2: Details of artifacts

3 Installation and Set Up

This section will guide you through the setting up the environment required for the training of

Q-learning and Deep Q-learning agents. Also, instructions on how to install the software

dependencies are included.

3.1 AWS Resource Setup

This section assumes that the user has AWS account and appropriate permissions to create

and manage AWS Lambda, S3, and CloudWatch resources.

3.1.1 AWS S3 bucket

The purpose of the S3 bucket is to store the images required for processing by serverless

functions. AWS S3 bucket n.d.

Step 1: Log in to the AWS Management Console.

Step 2: Navigate to the S3 service and create a new bucket, say ‘my_imagebucket’. The

bucket name must be unique.

Step 3: To my_imagebucket’, upload images of different sizes from Flickr-Faces-HQ image

dataset.

3.1.2 AWS Lambda

 In this research project, AWS lambda acts as the serverless environment for the Q learning

and Deep Q-learning agent to interact with and learn. You must deploy the image processing

functions given in the folder image_processing_tasks under github repository as AWS

lambda functions. The following steps will walk you through the process. The steps have

been followed as per the documentation given in AWS lambda documentation n. d.

Step 1: Navigate to the AWS Lambda Console.

Step 2: From console choose ‘Create function’:

a. Select "Author from scratch".

b. Enter a function name denoting the image processing function you are about to

deploy.

c. Choose Python 3.11 for the runtime.

d. Set up the execution role with appropriate permissions (Lambda, S3,

CloudWatch). You can choose ‘Create a new role with basic Lambda

permissions’ and later add permissions for S3 and CloudWatch to this role.

e. Click ‘Create function’ Refer Figure 1.

Step 3: Copy the rotate_image.py function from the folder image_processing_tasks under

github repository and paste it into the Code source section of newly created lambda

function.

3

Figure 1: Creating Lambda function on AWS

Step 4: Now for the image processing tasks, python library has to be added as dependency.

In AWS lambda, dependency libraries can be added using layers. Under layers section,

choose ‘Add a Layer’. Refer Figure 2.

Figure 2: Adding layers in AWS lambda function

4

Step 5: Choose option Specify an ARN and give the following ARN “arn:aws:lambda:ap-

south-1:770693421928:layer:Klayers-p311-Pillow:4”

Step 6: Click verify. Once verified click Add. Now the lambda function is ready for

execution and you view the layer in the layers section, Figure 3.

Figure 3: Layer in Lambda function

Repeat the Steps for each of the image processing functions in the image_processing_tasks

folder.

3.1.3 AWS CloudWatch

The CloudWatch collects the logs of the execution of lambda function. Follow the given

steps as well as consult the AWS CloudWatch documentation n.d.

Step 1. Navigate to CloudWatch console.

Step 2. Go to Log groups

Step 3. Create new log group with name /aws/lambda/<lambda funciton name>

Ensure that lambda function has proper rights to write to the CloudWatch log group created.

3.2 Installation guide

Step 1. Install Python 3.11 from python.org.

Step 2. Optional, Create and activate python virtual environment

Step 3. Install TensorFlow using pip : pip install tensorflow

Step 4. Install numpy, pandas and matpltlib : pip install numpy pandas matplotlib

Step 5. Verify that Tensorflow and other libraries are installed properly

Step 6. Ensure that git is available in the system. Now clone the project artifact from Github

repository by executing git clone https://github.com/johns-

thomas/ric_implementation.git

4 Configuration Settings

The Q-learning and Deep Q-learning agents can be configured using various parameters.

These parameters affect the training time as well as the resultant models.

The following section discusses the parameters used during the training of the Q-learning and

Deep Q learning agents.

https://www.python.org/downloads/
https://github.com/johns-thomas/ric_implementation.git
https://github.com/johns-thomas/ric_implementation.git

5

4.1 Q learning agent configuration

Various configurations available for Q learning agent present in qlearning_agent.py is shown

in Figure 4.

Variable q_table_file_path is the name for the Q-table generated during the training, which is

saved in .npy format.

Variable state_data_path saves the state data during the training of Q -learning agent for

future reference in text format.

Figure 4: Configurations for Q learning agent

Variable results_file represents name of the results of training in a json file, which has data

like episode number, reward, memory configurations, timeout, cost incurred.

The learning rate of the q learning can be configured by setting variable learning_rate. In the

research learning rate is taken as 0.1. The discount factor for Q learning agent is taken as 0.9

by setting the variable discount_factor. Additionally, you can configure epsilon which

controls the exploration rate of the q learning agent. In the project it is taken to be 0.01. Also,

depending on the need, the number of episodes can also be increased.

The name of the serverless function and its associated cloudwatch log group name can be

configured by setting variable func_name and log_group_name respectively. The S3 bucket

containing the images can be configured by setting variable bucket_name and folder_path.

folder_path is just the name of the images folder.

4.2 Deep Q-learning agent (DQN) configuration

Various configurations available for Deep Q learning agent present in qlearning_agent.py is

shown in Figure 5.

The learning rate of the DQN learning agent can be configured by setting variable

learning_rate and is taken as 0.1. Discount factor for Deep Q learning agent is taken as 0.9 by

setting the variable gamma. Additionally, you can configure epsilon which controls the

exploration rate of the DQN learning agent. In the project it is taken to be 0.1. The

exploration rate can be decayed over episodes. epsilon_decay determines how to reduce the

6

exploration value and epsilon_min determines minimum possible exploration rate for the

training.

The name of the serverless function and its associated cloudwatch log group name can be

configured by setting variable func_name and log_group_name respectively. The S3 bucket

containing the images can be configured by setting variable bucket_name and folder_path.

folder_path is just the name of the images folder.

Figure 5: Configuration options for DQN learning agent

The model_filename represents the deep neural network undergoing the training and it can be

saved for running long training cycles. The target_model_file variable represents the actual

deep neural network which holds the information about the Q-table. When training of DQN

agent finishes it is stored as ‘.h5’ file. This deep neural network model file can be deployed to

candidate serverless functions to optimize their configurations.

5 Running the Software

To run the training of Q learning agent.

Step 1: Ensure that you have set up AWS credentials to use AWS SDK in your system.

Step 2: Go to command line

Step 3: Run python qlearning_agent.py

Step 4: Wait until the training finishes, it may take up to 24 hours to complete 100 episodes

Step 5: After the training, use new_results_q.json for analysis, also you can find the qtable

with name q_table-new.py which can be used for configuring other serverless functions.

To run the training of DQN learning agent.

7

Step 1: Ensure that you have set up AWS credentials to use AWS SDK in your system.

Step 2: Go to command line

Step 3: Run python dqn.py

Step 4: Wait until the training finishes, it may take upto 28 hours to complete 100 episodes

Step 5: After the training, use dqn_results.json for analysis.

Step 6: Use the dqn_new_model for configuring other serverless functions.

Note: The q learning and DQN learning agent take some iterations to optimally configure

unseen serverless functions not used while training as in the case of any reinforcement

learning algorithm.

Using the results.json file obtained after the completion of learning by RL agents, you can

analyse the performance of the Q learning and Deep Q learning in terms of rewards colled per

episodes, cost incurred , execution duration, memory configured, memory used and timeouts.

References

AWS CloudWatch documentation n.d.
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-
streams.html Accessed on August 3, 2024.

AWS Lambda (2024), ‘AWS Lambda’, https://aws.amazon.com/lambda/. Accessed: July 15,

2024.

AWS Lambda (2024) documentation n.d.,
https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html ,Accessed on August 3,
2024.

AWS S3 bucket n.d. https://docs.aws.amazon.com/AmazonS3/latest/userguide/creating-
bucket.html , Accessed on August 3, 2024.

Flickr-Faces-HQ Dataset (FFHQ), https://github.com/NVlabs/ffhq-dataset?tab=readme-ov-

file#readme Accessed: July 17, 2024.

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html
https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/creating-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/creating-bucket.html
https://github.com/NVlabs/ffhq-dataset?tab=readme-ov-file#readme
https://github.com/NVlabs/ffhq-dataset?tab=readme-ov-file#readme

