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Abstract 

Serverless functions attains great attention in recent years particularly because of its 

advantages like low administrative overhead, automatic scaling and fined grained control 

over billing. Developers can easily deploy service to cloud environments using 

serverless functions within seconds and are provided with few configuration options. 

Configuration like memory and timeout in commercial platforms like AWS Lambda 

directly affects performance and cost. Therefore, it is crucial to configure serverless 

functions with optimal parameters. Serverless function configuration becomes easy if the 

underlying relationship between configurations and cost is known. This research is an 

attempt to study the relationship between performance and configuration of a serverless 

function using reinforcement learning techniques such as Q learning and Deep Q 

learning. The Q learning and Deep Q learning agents have been developed and trained to 

learn the optimal configuration on serverless functions. This includes defining state and 

action space, reward function, and collecting the execution details of function execution 

after each invocation. Image processing functions deployed on AWS Lambda platform is 

used as the environment for the agents to interact with. Both Q learning and Deep Q 

learning agents have provided positive results in learning the relationship between 

performance and configuration of serverless function. The analysis of results show that 

Deep Q learning has edge in learning the relationship compared with Q learning. 

However, both agents can improve the performance by increasing state space by 

considering parameters like concurrency. 

 

 

1 Introduction 
 
Serverless Functions are the modern way of delivering software services without explicitly 
hosting a server and reducing the mundane tasks associated with managing and configuring 
backend servers. Large enterprises heavily invest in cloud automation and a growing trend is 
observed in the adoption of serverless architecture. As per Verified Market Research1 (2024), 
the serverless architecture market size valued 12.3 billion USD in 2023 and is expected to 
reach 42.4 billion USD by 2031. Autoscaling, reduction in maintenance and pay-per-use 
pricing lurks businesses to serverless architectures. Developers do not require to provision 
virtual machines or create containers for serverless functions. Programmers only must 
develop the business logic and set some configurations. The cloud providers are responsible 

 
 
1 https://www.verifiedmarketresearch.com/product/serverless-architecture-market/. 

https://www.verifiedmarketresearch.com/product/serverless-architecture-market/
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for managing and maintaining servers and charge the users for each second of execution time 
of serverless function. 
 
Although serverless computing reduces deployment time and maintenance; by eliminating the 
need for physical resource management and maintenance, configuration of memory and other 
parameters plays pivotal role in performance. Serverless platforms like AWS Lambda, 
Apache OpenWhisk explicitly provide option to configure memory, while others like Azure 
Functions and Google Cloud Functions hides it from users. The best configuration of memory 
and parameters like timeouts, concurrency of a serverless function plays a pivotal role in 
meeting cost, performance, and delay constraints. Earlier approaches to improve the 
serverless environments focussed on autoscaling, cold start latency reduction, function 
scheduling and so on. Only few studies such as Akhtar et al. (2020) and Wen et al. (2022) 
tried to model the relationship between configuration and performance (and cost). 
 
In this research, image processing is taken as an area of interest. The proliferation of image-
intensive applications has driven a surge in demand for efficient and cost-effective cloud-
based image processing solutions. Serverless functions are utilized for tasks like image 
resizing, rotation, grayscale conversion, image format conversion, thumbnail creation, 
filtering, watermarking and so on. The configuration of serverless functions involving these 
tasks is taken to study the relationship between configuration and performance. Because of 
the dynamic nature of serverless functions, reinforcement learning (RL) has been chosen to 
study the relationship between configuration and performance in this research. So, the study 
tries to answer the following research question. 
 
Along with the insights from literature survey conducted around the serverless environments 
gave rise to possibility of configuring serverless environments with reinforcement learning, 
formulates following research question. 
 
 Can reinforcement learning be used to model the relationship between performance 
(run-time, cost) and configurations of a serverless function to effectively configure 
resources? 
 
By addressing above research question, the following objectives are aimed to be satisfied: 

• Develop a reinforcement learning agent (in this case Q learning agent and Deep Q 
learning) capable of learning optimal serverless function configurations 

• Integrate the trained RL agent with real world serverless platform like AWS lambda. 
• Evaluate and compare the performance of the trained RL agents (Q learning & Deep 

Q learning agents) in terms of execution time, resource utilization, and cost-
effectiveness compared to traditional static configuration approaches. 

 
The project specifically focusses on image processing functions to avoid wide range of 
serverless functions deployed in different domains. It is not feasible to consider other 
applications in this scope of research. Also, memory is taken as the primary parameter which 
undergoes optimization during training. However other parameters like concurrency and cold 
start latency increase the state space of RL agent thereby increasing training time of the RL 
agent. Also, data for training the model is generated by on-the-fly invocations of deployed 
serverless functions during training, accounting for limited variety in the training dataset. 
 
Overall, the report is structured as follows: Section 2 takes you through the earlier approaches 
in resource configuration and use of reinforcement learning in serverless environments. In 
section 3 detailed description of the methodology followed in the research is presented. 
Design specification and Implementation details of configuring serverless functions using 
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reinforcement learning is outlined in section 4 and 5. The outcome of study and results of 
training RL agent is deeply discussed in Section 6. It follows a conclusion and future work 
section to present further scope of research. 
  

2 Related Works 
 

Serverless functions have revolutionized cloud computing with enabling of abstraction of 

underlying infrastructure allowing developers to execute functions without explicitly 

managing servers. Although several cloud service providers offer serverless environments, 

optimising serverless function configurations remains a complex challenge. 

2.1 Performance and cost optimisation in serverless functions 

Serverless functions offer few configurations options for developers. Therefore, performance 

and cost optimisation in serverless functions is challenging and plenty of research were 

conducted. 

 

Akhtar et al. (2020) explored statistical learning methods to predict the performance of 

different configurations in serverless functions. Their optimisation technique employed 

Bayesian optimisation to configure serverless functions. Bayesian optimisation is used to 

model the performance of functions, while integer linear programming is used to find 

configuration. The authors evaluated the effectiveness of the model through metrics such as 

performance, cost-efficiency and scalability. Additionally, the solution presented by Akhtar 

et al. (2020) is adaptable to several environments which strengthens their approach. However 

certain challenges remain unattended which includes model assumptions and complexity 

causing computational overhead. Although Bayesian optimisation is a powerful technique, it 

struggles with high-dimensional search spaces. Akhtar et al. (2020) sheds no light on the 

increasing number of configuration parameters and applicability of dimensionality reduction. 

The assumption of static workloads, especially in serverless context, weakens the model’s 

reliability.  

 

Autonomous Serverless Analytics with Cost-Efficiency and QoS-Awareness (ASTRA) 

proposed by Jarachanthan et al. (2021) designed to optimise memory configuration of map-

reduce workloads running on serverless functions, specific to analytics jobs. After 

mathematically modelling the performance and cost of the workflow, the authors leveraged 

Dijkstra’s algorithm to figure out optimal configuration, which turns out to be the shortest 

path in the workflow. The Directed Acyclic Graph formed consists of five layers, with each 

layer representing an aspect of optimisation problem. Nodes represent the memory 

configuration; edges represent the choice of certain configuration and weights denote 

completion time. The authors observed 60% improvement in performance when budget is 

fixed and 80% cost reduction without violating the SLOs. However, some assumptions by 

Jarachanthan et al. (2021), weakens their claims. For instance, it is assumed that all mapper 

and reducer functions have the same memory configuration. Like Safaryan et al., (2022), 

number of memory configurations increases the complexity of algorithms. Additionally, there 

are not enough evidence to claim the scalability and generalisability of the model using 

different type of mappers and reducers. 

 

Apart from balancing cost and performance of serverless functions, studies were also 

conducted to consider service level objectives (SLO) while configuring the functions. 

Safaryan et al., (2022) introduced a tool ‘SLAM (SLO-Aware Memory Optimisation)’, that is 
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designed to optimise memory configurations of serverless functions based on service level 

objectives specified by the user as well as objectives like minimum cost or execution time. 

Distributed tracing is utilised by Safaryan et al., (2022), to model the execution time of 

different serverless functions at various memory configurations. The determination of 

optimal memory setting involves the consideration of the SLO requirements and user 

specified settings. The authors claim that service level objectives were met for 95% of 

serverless function configurations done using SLAM. The dependency of SLAM on tracing 

data makes it susceptible to inaccurateness or incompleteness in optimisation results. The 

adaptability to varying workloads also requires frequent re-optimisations. Unlike Akhtar et al. 

(2020) and Jarachanthan et al. (2021), SLAM focusses on multiple serverless functions. 

 

Robert et al. (2020) introduced Serverless Application Analytics Framework (SAAF) to 

predict the performance and cost of serverless functions focussing on analytical jobs. SAAF 

enables profiling and characterisation of serverless functions performance, resource 

utilisation and infrastructure metrics. SAAF introduced by the authors aims in improving the 

accuracy of runtime prediction for serverless functions deployed with various configurations, 

mainly leveraged Linux CPU time accounting principles and regression modelling. Robert et 

al. (2020) assumed a homogenous workload, which did not actually reflect the variability in 

workload characteristics of production environment. Such assumptions impact the accuracy 

of performance and cost predictions. The simplification of workload characteristics 

significantly affects SAAF’s ability to capture real world scenarios. Further exploration on 

the resource utilisation metrics and their impact on prediction can strengthen SAAF as the 

current selection of metrics and their thresholds for indicating prediction errors may not 

capture all relevant features. 

 

Some attempts were made to model the performance and cost of serverless workflows as 

well. Lin & Khazaei (2021) investigated the possibility of predicting cost and response time 

of given serverless workflow’s orchestration and configuration. Their solution includes 

formally defining a serverless workflow and analytical modelling to predict cost and response 

time. The authors tried to optimise cost and performance using Probability Refined Critical 

Path Greedy algorithm (PRCP). Lin & Khazaei (2021) depicted serverless workflow as 

weighted directed graph including elements like transition probabilities, delays, response 

time and costs. The PRCP algorithm enables handling of complex workflows like branches, 

cycles, parallelism and self-loops. Lin & Khazaei (2021) validated their claims thorough 

experimental validation and showed 98% accuracy for performance and 99% accuracy for 

cost estimation. Like Robert et al. (2020), the input size is assumed to be average for 

functions and fails to capture the dynamic workload characteristics, which affects the real-

time applicability of the predictions and optimisations. 

 

To calculate the abstract performance measure of resource scaling strategies in Faas 

platforms, Manner & Wirtz (2022) came up with a methodology. Their methodology 

provides a standard way to compare open-source Fass platforms with commercial serverless 

platforms in terms of performance and cost. The authors utilised Kubernetes and conducted 

performance tests using CPU-intensive functions. Manner & Wirtz (2022) tried to eliminate 

resource wastage and noisy neighbour problems by using Kubernetes limits and accounting 

for the difference in single-threaded and multithreaded functions. Although the authors 

presented a standardised way for performance comparison, they overlooked important factors 

like reliability, security, and scalability. The generalisability of their approach is limited due 
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to over-dependency with Kubernetes deployment for configuring open-source Faas 

platforms. 

 

Kim aet al. (2020) proposed a fine-grained CPU cap control mechanism to solve performance 

degradation in serverless computing platforms. Their technique involves dynamically 

adjusting the CPU caps of collocated worker processes to reduce resource contention. 

Depending on the application groups and performance metrics like queue length and throttled 

time, the resource manager makes CPU cap adjustments, which allows fine-grained control 

over resources and adds efficiency. The solution put forward by the authors can handle 

workload variations and give automated management. While Kim aet al. (2020) aim to 

minimise resource contention and improve performance, some trade-offs in terms of resource 

allocation among different application groups affect the overall system balance. 

 

The attempts focussed on modelling performance and cost of serverless functions, but the 

nature of serverless environments undergoes rapid changes. These include dynamic 

workloads, concurrency, network conditions, and so on. To adapt to such changes, a 

continuous learning environment is required. Reinforcement learning seems to be a good 

solution. 

2.2 Reinforcement learning (RL) based solutions 
 
Optimisation problems that use reinforcement learning based solutions in serverless functions 

mainly focussed on dynamic workloads and autoscaling, cold start latency reduction, function 

scheduling and resource configuration.  

 

Zafeiropoulos et al. (2022) managed to clearly identify the challenges associated with 

autoscaling mechanisms in serverless computing platforms such as resource inefficiency. 

Their approach involved reinforcement learning to auto scale resources in serverless 

environments for adaptive resource management. Zafeiropoulos et al. (2022) experimented 

with different RL algorithms like Q-Learning, deep Q learning, and DynaQ+ and involved in 

discussion of metrics and reward function design. The author’s approach differs from past 

efforts like static, rule-based autoscaling methods and outperforms them. The application of 

model free Rl algorithms makes it adaptable for dynamic workloads. However, the RL 

approach involves complex integration and considerable changes to the existing platforms 

which hinders the real-world applicability of the approach. 

 

In their study on the use of RL for resource-based auto-scaling in serverless edge apps using 

OpenFaaS, Benedetti et al. (2022) investigated the use of the Q Learning algorithm to learn 

appropriate scaling policies and adjust the CPU usage threshold. The impact of different CPU 

utilisation thresholds on application latency was experimented by the authors using 

Kubernetes HPA. The results show that latency improves when CPU utilisation was set 

between 30% and 50%, with 30% yielding the best performance. However, Benedetti et al. 

(2022) only focussed on CPU utilisation and neglected memory and network usage. RL 

environment’s state space definition is limited and leaves space for further development. Also 

testing the model on real world system opens the world to further improvements. 

 

Bensalem et al. (2023) introduced reinforcement learning based solution to auto scaling 

problems in edge networks for efficient scaling and resource allocation of serverless 
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functions. Because their work focuses on edge networks, authors focussed on attaining lower 

average delays as compared to monitoring-based methods when high arrival rates and tight 

delay constraints are in place. Authors claim that RL and deep RL based approaches 

outperformed delay-aware monitoring approaches in performance. Bensalem et al. (2023) 

presented substantial evidence using simulations using 10 edge network nodes and different 

function types. Contrary to Zafeiropoulos et al. (2022) which involved a detailed exploration 

of memory and configuration space (discrete and continuous), Bensalem et al. (2023) focus 

on delay sensitivity and do not provide a detailed view of tuning and optimisation of reward 

function in RL and deep RL.  Bensalem et al. (2023) open a promising direction and require 

additional validation and consideration of factors like reliability and robustness under varying 

network conditions.  

 

Another notable work in the field of performance optimisation of serverless functions in edge 

networks using deep reinforcement learning was done by Yao et al. (2022). Their 

contribution involves an Experience-Sharing Deep Reinforcement Learning (ES-DRL) 

methodology which aims at enhancing efficiency of function offloading by combining 

serverless computing with edge networks. ES-DRL is more complicated when compared to 

Bensalem et al. (2023) where a distributed learning strategy and a population guided search 

method are introduced to accelerate convergence of RL agent to overcome local optima. ES-

DRL mitigates issues associated with traditional DRL agents like insufficient sample 

diversity and high exploration cost. Additionally, Yao et al. (2022) conducted comparison 

studies with traditional offloading methods such as Greedy, and Random. However, the 

authors neglected the resource constraint nature of edge platforms where DRL based methods 

consume a lot of energy and complexity. 

 

Somma et al. (2022) addressed management and scaling of containers in serverless 

computing environments. Their contribution includes the minimisation of resource contention 

and prediction of service times through core-restricted container provisioning. Using the 

cgroup feature in Linux, they suggested that allocating specific cpu cores to containers 

reduces resource contention, Like Zafeiropoulos et al. (2022), the authors used Q learning 

based autoscaling strategy and compared is efficiency with Kubernetes' Horizontal Pod 

Autoscaler (HPA). The authors claim that the system outperforms HPA in saving costs and 

predictable service times with low blocking rates. Somma et al. (2022) avoided hyper 

threading overheads entirely without trying to find the feasibility of it in applicable situations. 

Additionally, in cloud environments, CPU architecture varies significantly, but the 

assumption of a homogenous environment in terms of CPU architecture challenges their 

claims. 

 

It is observed that studies of serverless function autoscaling in edge networks focussed on the 

reduction of response time and neglected memory configuration. Also, the complex nature of 

reinforcement learning, questions applicability in resource constraint environments. 

 

Exploiting the ephemeral nature of serverless function execution, Suresh & Gandhi (2021) 

aimed to improve resource utilisation through collocating serverless functions with serverful 

applications (VMs). The author’s contribution includes the dynamic regulation of CPU, 

memory and last-level cache to ensure that colocation does not affect latency aware 

customers. Suresh & Gandhi (2021) reported that significant improvement in resource 

utilisation while maintaining performance degradation below 10% for serverful applications. 

The primary weakness in the author’s methodology is to ensure that colocation does not 

impact performance. Also, the methodology introduced by the authors requires precise 
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monitoring and regulation of resources which can be expensive and complex, which limits its 

applicability to only specific environments. 

 

A predictive controller scheme was put forward by HoseinyFarahabady et al. (2018) to solve 

the issue of shared-resource contention in serverless platforms. They considered the 

interference among collocated Lambda functions when making resource allocation decisions 

as in Suresh & Gandhi (2021). The authors used a proactive approach by continuously 

monitoring shared resource capacity, interference among collocated functions, and resource 

utilisation at every host. The proactive approach taken by HoseinyFarahabady et al. (2018) 

helped to optimise resource allocation and minimise performance degradation in the Lambda 

platform. Additionally, cost functions are utilised to reduce the total QoS violation incidents 

and to keep cpu utilisation within the range. However, the predictive controller used closed 

loop system to monitor and adjust resource allocations which potentially adds complexity and 

overhead. 

 
Cold- start time is an important part in serverless function optimisation around which a lot of 
research is conducted. Vahidinia et al. (2022) proposed a two-layer approach having 
reinforcement learning to discover function invocation patterns while using Long Short-Term 
Memory (LSTM) to predict future invocation patterns and number of pre-warm containers 
required. The authors tried to address the main criticism of existing solutions by predicting 
invocation patterns and keeping only the required number of pre-warmed containers instead 
of a fixed policy which led to memory wastage. The resource intensive training process and 
limited availability of dataset question the practicality and scalability of the method presented 
by Vahidinia et al. (2022). 
 
Fifer is a resource management framework to tackle inefficiencies in serverless platforms 
particularly due to microservice agnostic scheduling and container over provisioning 
proposed by Gunasekaran et al. (2020). Fifer works in the context of function chaining where 
it is conscious of the container utilisation to scale containers based on the function 
characteristics and batches requests wisely. Moreover, to improve response time and adhere 
to service level objectives (SLO), fifer tries to avoid cold starts by proactively spawning 
containers. Gunasekaran et al. (2020) introduced the concept of slack, in which the difference 
between execution time and overall response latency was used to optimise batch size. Like 
Vahidinia et al. (2022), to deal with cold start fifer includes a LSTM based load prediction 
model. Fifer offers improved resource utilisation and energy savings up to 31%. The 
overhead associated in LSTM model and unpredictable workloads affect the performance of 
fifer. 
 
Agarwal et al. (2021) presented a Q learning based solution to reduce cold start in serverless 
environments. In their study, the Q learning agent interacts with the environment to obtain 
per-instance CPU utilisation, available function instances, and success or failure rates of 
responses. The agent learns the workload patterns and adapts to environments such that it can 
determine optimal number of function instances ahead, to reduce cold starts. In comparison to 
Vahidinia et al., the dynamic nature of Q learning agent and ability to learn continuously 
make the strategy conceptualised by Agarwal et al. (2021) compatible to unknown invocation 
patterns. The large state-action space in the author’s work associated with reinforcement 
learning takes larger training times and discretizing the cpu utilisation levels may contribute 
to suboptimal results. 
 

Research was also conducted about scheduling functions in serverless environments. Pigeon 

and FnSched were two such approaches. Pigeon is an enhanced serverless framework for 

private cloud environments presented by Ling et al. (2019).  Their study introduced a 
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function level resource scheduler on top of Kubernetes to handle the limitations of 

Kubernetes' native scheduling for short-lived functions. Pigeon improved resource utilisation 

as well as reduced cold start latency. The authors conducted an empirical evaluation using 

performance metrics, which showed 80% improvement in function cold start trigger rate, 

three times increase in throughput compared to AWS lambda and Kubernetes native 

scheduler-based serverless platforms. It is worth noting that there is a potential bias in the 

comparative analysis done by Ling et al. (2019). Their comparative study used specific 

versions of some frameworks. Any bias in the configuration of these frameworks impacts the 

results. 

 

FnSched introduced by Gandhi & Suresh (2019) aims to minimise service provider costs with 

acceptable application latencies. The authors used single invoker scheduling to manage 

resource contention among different application containers by leveraging an application-

aware CPU-shares regulation algorithm. FnSched also uses a greedy algorithm to avoid cold 

starts by reusing previously used invokers and autoscale and pack resources on fewer 

invokers. In their study, Gandhi & Suresh assumed that function execution times are fixed 

and can be estimated via profiling. Also, manual categorisation of functions is required and 

co-locating multiple functions may lead to performance degradation. 

 

Reinforcement learning offers a promising path to learning the performance cost relationship 

thereby accurately configuring serverless functions. The exploration versus exploitation 

trade-off has the potential to figure out the optimal configuration. Notably, a gap exists in 

academia about configuring serverless functions with reinforcement learning. Most of the 

research typically involved autoscaling or reducing cold start time. 

 

3 Research Methodology 
 

The research aims to address the challenge of optimizing serverless functions configurations 

to optimize cost and runtime. The deductive approach using literature survey formed the 

basis for hypothesis, that is to utilize reinforcement learning (RL) to study and find the 

optimal configuration. The research methodology follows an experimental research strategy 

in optimizing configurations in serverless functions especially image processing tasks. The 

goal is to determine configurations for serverless functions that minimizes execution time, 

resource usage, and cost while maintaining acceptable performance. RL based method is 

promising compared to static rule-based approaches. RL based approaches ensures the 

dynamicity and adaptivity, since the learning process is continuous, and the established 

policies can be adjusted in reaction to changes in the cloud environment.  

 

Furthermore, the methodology involves the development of a self-governed mechanism 

capable of finding the best configuration for serverless functions amid different workloads 

using reinforcement learning (RL), Q-learning and deep Q-Learning specifically. As for the 

RL problem, the task entails determining the best memory configuration and timeouts. The 

purpose is to reduce the cost of function execution time while satisfying the performance 

constraints. 
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3.1  State and Action Space Definition 

3.1.1 Q-Learning 

The reinforcement learning (RL) agent requires an environment to learn the relationship 

between cost and performance in serverless functions. Algorithms like Q-learning can learn 

the state-action pairs value (Q value) through interaction with the environment, without 

knowing the transition probabilities and reward function in advance. It is suitable for 

complex environments like serverless functions as modelling of such environment is highly 

complex. Q-Learning updates Q-values using the Bellman equation, based on the reward 

function and the estimated optimal future value, Sutton & Barto (1998).: 

 
where, s is the current state, a is the action taken, s′ is the resulting state, and max over a′, 

Q(s′,a’ ) is the maximum Q-value of the next state. 

The RL environment can be defined using sate space, action space and reward function. The 

state is the representation of information available to RL agent at any point of time during 

interaction with serverless environment. In this context, state space includes parameters such 

as memory size, timeouts, and execution duration. Timeouts refers to maximum execution 

time allowed for serverless functions in seconds or minutes. The execution duration is 

discretised into intervals of 500ms in the range of [0, 15000]ms. The memory space is 

segmented into 128MB increments within the range [128, 3008]MB.  The discretisation of 

the state parameters is necessary to tackle the complexity of the large continuous space. Each 

combination of these parameters refers to a particular state. Let’s represent each state as tuple 

as given below, 

State= (memory, timeout, duration categories) 

Therefore, total number of states, S is the product of the number of possible values for each 

parameter: 

 S= ∣Memory sizes∣×∣Timeouts∣×∣Duration categories| 

The action space defines the set action the RL agent can take for transition between states. In 

the serverless environments, the configurable parameters are memory size, and adjusting 

timeouts. RL agents can use discrete or continuous action space. However, to simplify the 

methodology and to gain a faster convergence, action space is chosen to be discrete. The 

possible options can be increment or decrement the parameter or retain the same. These 

options can be applied on memory size, and timeout. The possible action on memory is to 

increment or decrement the memory by 128MB or retain the same. Similarly for timeout, 

increase or decrease or retain same.  

3.1.2 Deep Q learning 

Deep Q learning (DQL) is an enhanced version of Q learning with deep neural networks 

(DNN). DQL helps to avoid complexity of maintaining large table having state and action 

combinations using deep neural networks, Zafeiropoulos et al. (2022). DQL have the 

capability to train the RL agent in large continuous space to find an approximated Q table. 

DQL helps to have a continuous state and discrete action space. The memory space is taken 

as continuous space in interval [128. 3008]MB. The execution duration and timeout are 
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retained as same as of Q learning. Otherwise, it would take considerably large amount of time 

to find a convergence.  

3.2 Reward function Definition 
 

The reward function is designed to incentivize the RL agent to find optimal configurations 

for serverless functions. The reward function determines the signal, RL agent receives for its 

actions. The reward function is composed of penalty for execution time, resource utilization, 

and cost. A negative reward proportional to the runtime of serverless function penalizes slow 

execution and encourages faster processing. To discourage overprovisioning of resources, 

negative reward proportional to utilized resources (memory) is taken as penalty. For cost 

optimization a negative reward proportional to the estimated cost as per the cloud platforms 

pricing is taken. 

The three penalties are combining to obtain a negative reward function. The weighted sum of 

the execution time, resource utilization and cost give the reward function. The weights 

determine the priority of performance and lower cost. The negative reward structure 

incentivizes the RL agent to discover optimal configurations that balance cost and runtime 

effectively. 

Reward = - ((Weight_Time * Execution Time) + (Weight_Resource * 

Resource Utilization) + (Weight_Cost * Cost)) 

3.3 Data Collection, Model Training and Evaluation 
 

The training of RL agent involves interaction with real serverless environment like AWS 

Lambda. The optimal configurations for image processing functions that runs on serverless 

functions are to be determined by the RL agent. For Q-learning, the Q-table is initialized with 

zeros. The training process is divided into episodes and is defined as a complete run from 

initial state to terminal state. The terminal state is reached when further learning is 

unnecessary, or a predetermined number of steps are completed. Here, predetermined number 

of steps is taken to mark the terminal state. The learning parameters includes learning rate(α), 

discount factor (γ), and exploration rate (ϵ).   

 

During training, the RL agent selects an action based on epsilon -greedy policy. In each step 

of the episode, to ensure both exploration and exploitation, a random action is selected with 

probability ϵ, or an action with highest Q-value is chosen from Q-table with probability 1- ϵ 

in case of Q learning. In deep Q learning, DQL model is used to find the next possible action. 

The selection of random action based on exploration rate (ϵ) allows exploration of state and 

action space, Zafeiropoulos et al. (2022). The selected action is executed on the AWS lambda 

by changing the configuration and invoking the task. Using AWS CloudWatch the metrics 

like runtime, maximum memory used, and cost are observed and retrieved. Based on the 

collected data, the reward is calculated, and Q-table is updated using the Q-learning update 

rule in case of Q learning. For Deep Q learning, neural network model training happens in 

batches. The procedure is repeated until the episode finishes. To favour exploitation over 

exploration, exploration rate ϵ can be decayed with the progress of the training. 
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The training of the RL agents is utilising serverless functions for the image processing tasks 

and publicly available image dataset. The collected metrics provide data for comparison with 

baseline approaches. The effectiveness of Q learning and Deep Q learning is analysed by 

plotting and comparing the collected metrics obtained during the training process. The 

analysis on the reward obtained per episode, memory configurations and actual memory used 

by serverless functions, execution duration and cost give valuable insights about using these 

techniques in real world settings. 

 

4 Design Specification 

4.1 Architecture 

The system comprises of several core components that interact with each other to facilitate 

learning the runtime and cost relationships in serverless platforms. The core components 

include:  

• Serverless environment 

• The Q-Learning/DQN agent  

• The state creation interface 

• Logging and monitoring infrastructure 

The serverless environment is used for execution the user defined image processing 

functions. The serverless environment acts as the playground for RL agents to explore. The 

Q-learning and DQN agent interact with serverless platform to explore and exploit platform 

to make decisions on configurations for image processing functions deployed on serverless 

platform. An object storage is used to store the input images for image processing tasks. 

Serverless environment provide option for capturing the execution metrics such as duration, 

memory usage, and errors. Monitoring infrastructure collects the execution metrics of the 

user defined functions run on the serverless platform. While monitoring mechanism collects 

details of serverless function execution, logging ensures that execution of RL agent training 

is properly collected and stored. 

 

 

Figure 1: Overview of RL agent based Serverless function configuration 

 

The collected metrics are analysed by state creation interface, which helps in determining the 

possible states and actions. The state in the context of serverless environment refers to 
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serverless function’s configuration. The Q-Learning/DQL agent has state represented by 

memory, timeout and execution duration. The set of possible actions the agent can take 

includes increase memory, decrease memory, increase timeout, decrease timeout. Figure 1 

shows an overview of proposal. 

4.2 Q-Learning Agent  

The Q-Learning algorithm starts with the initialization of Q-table with random values. Q-

table is expected to store the rewards for each state-action pair. The state is represented as 

(memory, timeout, duration categories) as mentioned in section 3.1. The initial state of 

environment is set by configuring memory and timeout. Duration category is initialized to 0. 

The action that agent must perform is selected based on epsilon-greedy policy. The Q 

learning agent acts favouring exploration with probability ϵ. Also, with probability 1- ϵ, Q 

learning agent chooses action to support exploitation by taking the action with the highest Q-

value for the current state. 

 

 

Figure 2: Q learning Agent Flow diagram 

 

Based on the chosen action, serverless functions’ memory and timeout is adjusted. The 

serverless function is invoked with new configurations. The performance metrics (execution 

time, memory usage, cost) of the function invocation are collected by monitoring 

infrastructure and reward is calculated using reward function. The Q-value for the current 

state action pair is updated using the Bellman equation. The current state is transitioned to a 

new state observed after function invocation, that is performed action.  The transition to a 

new state marks the completion of a single step in the training episodes. Flow diagram of Q 

learning agent is given in Figure 2. 

4.3 Deep Q-Learning (DQL/DQN) Agent  

In comparison to Q learning, DQL agent uses a replay memory (buffer) to store experiences 

(state, action, reward, next state). Replay memory aids in breaking the correlation between 

consecutive experiences and improves stability of training, Mnih et al. (2015).  The DQL 

agent uses a deep neural network(Q-Network) to approximate the Q-values for state-action 

pairs. Additionally, a target Q network can be used to provide stable targets during training, 

Zafeiropoulos et al. (2022). Q-Network is initialized with random weights and target Q 

network is also initialized with same weights as of Q-network. Flow diagram of DQL agent is 

given in Figure 3. 
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The state initialization happens by configuring memory and timeout. The action is selected 

based on the epsilon-greedy policy. With probability 1- ϵ, DQL agent chooses action to 

support exploitation by taking the action predicted by Q-network. The chosen action is 

executed by adjusting the memory and timeout configuration of serverless function. The 

serverless function is then invoked, and performance metrics is collected using monitoring 

infrastructure. The reward is calculated using observed metrics such as maximum memory 

used, duration, timeout errors and cost incurred. The transition to new state happens and 

current state, action, reward and next state are stored in replay memory. The experiences 

from replay buffer are sampled after predefined batch size is reached. The maximum Q-value 

of the next state predicted by the target Q-network and reward are used to compute target Q-

value. The Q-network utilises predicted Q-values from the Q-network and the target Q-values 

from target Q network to calculate loss incurred during  

 

 

  

Figure 3: DQL Agent Flow diagram 

training, Zafeiropoulos et al. (2022). The weights of the target Q-network are periodically 

updated to match the weights of the Q-network. 

 

5 Implementation 
 

The implementation involves defining the environment, Q learning and DQL agent, neural 

network for DQL agent and training of the developed agents. AWS lambda was chosen as the 

serverless environment for the reinforcement learning agent to interact with. The 

environment for Q learning and DQL agents involve AWS Lambda functions with 

configurable parameters: memory and timeout. As mentioned in Section 3, the memory space 

is segmented into 128MB segments within the range [128, 3008] MB for Q learning and 

defined as continuous space within range [128,3008] MB for DQL learning. The execution 

duration is discretised into intervals of 500ms in the range of [0, 15000] ms. Also, timeout is 

discretised into intervals of 2ms in the range of [0, 15] ms. 

 

Python 3 programming language is used for the development of RL environment and Q 

Learning and DQL agents. Boto3 library is used to invoke lambda function and to retrieve 

log files from Cloudwatch. AWS CloudWatch is used to monitor the lambda function 

invocations to collect the function execution details. Image processing tasks like image 
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resizing, rotation, grayscale conversion, image format conversion, thumbnail creation, 

filtering and watermarking are used in training of Q Learning and DQL agents. 

 

To facilitate the training of RL agents, each of the above-mentioned image processing tasks is 

deployed as a serverless function in AWS Lambda. For each of the deployed serverless 

functions, Cloudwatch was set up to monitor the function invocation and to collect execution 

logs. During each invocation of the serverless function invocation, an image from Flickr-

Faces-HQ2 (FFHQ) image dataset was used as the input for image processing task. The 

images from Flickr-Faces-HQ are stored in AWS S3 bucket. Flickr-Faces-HQ (FFHQ) 

dataset offers various images with different size and quality, which enables exploration of 

memory space during training. 

 

The training process of the RL agents starts with initialisation of state space with 

memory=256MB and timeout =5ms duration=0ms. To promote exploration of state space, 

initial configurations for some episodes are randomly selected with probability ϵ.  

 

Tensorflow library is used to develop the DQL model. The DQL neural network has an input 

layer, a hidden layer and output layer. The Mean Squared Error (MSE) loss function is used 

to measure the difference between the predicted Q-values and the target Q-values during the 

training of DQL neural network. The Adam optimizer is used to update the model weights 

based on the computed gradients. The summary of the Deep neural network used by DQL 

agent is given in Figure 4. 

 

 

Figure 4: Summary of the Deep neural network used by DQL agent 

Python script named qlearning_agent.py and dqn.py runs the training process for Q learning 

and DQL agents respectively. When training script is executed, the lambda functions are 

called with configurations as defined in each of the RL agents. To evaluate the efficiency of 

the training, the execution details collected using cloudwatch (max memory used, timeouts, 

duration) and are written to results.json file. The analysis of results.json provides the details 

of performance of Q learning and DQL agents.  

 

6 Evaluation 

6.1 Q-learning  

The training of the Q learning agent done was over the course of 100 episodes. The training 

involved more than 1000 invocations of AWS lambda function, which allowed the Q-

learning agent to learn the optimal policy during the training process. In each episode, the Q 

learning agent invokes the deployed lambda function and adjust the memory and timeout 

 
 
2 https://github.com/NVlabs/ffhq-dataset?tab=readme-ov-file#readme 
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based on the calculated reward. The training of Q learning agent took around 24 hours for 

100 episodes on AMD Ryzen 7 machine. In real world, external applications and users 

invoke the lambda functions, Q learning agent only needs to work on the execution trace of 

the function execution. 

 

Figure 5. shows the plot of average reward per episode. The reward remains negative across 

all episodes. The plot reveals that agent was not learning well up to 50 episodes. Later Q 

learning agent starts to learn the policy and try to attain stability. Also, the Q learning agent 

tries to avoid actions which results in very low rewards, as the average reward of most of the 

episodes is between -1 and -4 after episode 50. The variation in average rewards seems 

somewhat more contained in the latter episodes. The possible reason for the outliers in the 

plot may be due to out of memory error or timeout error. 

 

Figure 5: Q learning agent - Average rewards per Episode 

The average cost incurred per episode during the training of Q learning agent can be inferred 

Figure 6. The Q learning agent tries to stabilize average cost incurred after 50th episode with 

little outliers.  

 
Figure 6: Q learning agent -   Average cost per Episode 

The average memory configuration per episode plot (Figure 7), reveals the reason for the 

outliers in the average reward per episode and average cost per episode plots. The agent is 

learning the optimal policy, so whenever the chosen action is not optimal it punishes the 

agent for its action. It is noted that with more number training episodes the q-learning agents 

can be improved and shows a promising path for exploration. From Figure 7, it is noticeable 

that the Q learning agent starts to learn the memory usage pattern of image processing tasks 
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on serverless functions after 60th episode. In serverless environments like lambda, memory 

configured also affects cpu time available. So, Q learning agent considered trade-off between 

performance and cost, which can be the reason for the difference in memory usage vs 

memory configured.  
 

 

Figure 7: Q learning agent - Memory used vs Memory Configured 

6.2 Deep Q learning Agent (DQN/DQL) 

The Deep Q learning agent was trained over 100 episodes to learn the relationship between 

performance and configuration of serverless functions. Deep Q learning agent training 

involved 1000 invocations of image processing tasks deployed on the AWS lambda 

environment. The agent adjusts the memory and timeouts based on the previous experiences 

learnt by the deep neural network. The training of the DQL agent took around 28 hours, 

slowness of the training can be accounted due to the waiting time for retrieving the logs of 

function execution. 

 

 

Figure 8: DQL Agent- Average Reward per Episode 

DQL Agent performs comparatively better than Q-learning. Q learning agent was suffering 

from instability, as identified in Figure 5. While DQL agent tries to stabilize the reward 

between 0 and -4, although occasional outliers are present, refer to Figure 8. The presence of 

outliers may be due to exploration of state space by the DQL agent. The DQL agent was 

unstable during the start of training with out of memory errors and timeouts. After passing 40 

episodes, the agent got better understanding of the serverless environment.  
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Figure 9. DQL Agent: Memory used vs Memory Configured 

From figure 9, it can be inferred that DQL Agent started learning the pattern of memory 

usage of the functions and configures serverless functions accordingly after episode 42. 

Although there is a significant difference in configured memory and maximum memory used, 

DQL Agent started learning the pattern in memory usage of serverless functions. In serverless 

environments like lambda, memory configured also affects cpu time available. Therefore, 

DQL agent also gives importance to performance, which can be the reason for the difference 

in memory usage vs memory configured. Also from figure 6, it is evident that DQN agent 

shows cost optimization compared to Q-learning agent because DQN better learnt memory 

usage patterns. The plots of execution duration versus memory configured over 100 episodes 

for the Q learning and DQL agents are given in Figure 10. Plots in Figure 10 reveal that most 

of the image processing tasks discussed in the research falls under 400MB to 800MB 

memory configurations. Also, 400MB to 800MB memory configurations gives an execution 

duration of 3000 to 5000ms. Identifying such relations enable better optimising 

configurations in serverless environments. 

  

  

Figure 10: Execution Duration vs Average memory configured 

 

The comparison with baseline approaches like manually configuring AWS lambda function 

with 128 MB (minimum assumed for image processing tasks discussed here) and 3008MB 

(maximum memory assumed in the research) shows that the Q learning and DQN learning 

agents succeeded in finding an optimal configuration. Execution Duration vs Average 

memory configured plot shown in Figure 10 implies that image processing serverless 

functions can be configured within 400MB to 800MB range to have optimal performance and 

cost. 
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6.3 Discussion 

Reinforcement learning techniques, Q-learning and Deep Q learning can be effectively 

utilised to obtain optimal configuration for serverless functions. Deep Q learning outperforms 

Q learning in learning the relationship between configuration and performance. In this 

research the common problems like concurrency concerns and cold start problems are not 

considered for the training of the RL agents. It is because adding more parameters to state 

space increases the training time of the reinforcement learning agents as well as the time to 

converge to an optimal solution. During the training of RL agents, 100 episodes each having 

not less than 10   steps has been performed, but still have the scope of improvements. If 

number of episodes is increased, possibly 1000, RL agents may perform better. Q learning 

agent lacks stability compared to Deep Q learning agent in capturing the optimal 

configurations for serverless functions. Deep Q learning uses a continuous state space and 

neural network to capture the relations, which can be reason for its comparatively good 

performance. 

 

In this research, serverless functions running on Python programming language is 

experimented. The research can be extended to functions using other language too. The 

image processing functions are cpu bound in nature. To validate generalisability of model in 

other domains experiments with I/O intensive and network intensive functions are required. 

Additionally, the results obtained over 100 episodes may be not seen as satisfactory from 

perspective of time taken for training. But, in real world systems with high invocation rates, 

with millions of requests, the idea of Q learning and Deep Q learning is promising and offer 

more advantages including cost reduction.  

  

7 Conclusion and Future works 
 

In this work, reinforcement learning techniques like Q learning and deep Q learning were 

utilized to study the relation between performance and configuration of serverless functions. 

The comparative analysis reveals that deep Q learning performed better than Q learning in 

finding optimal configurations. The serverless environment AWS lambda was chosen to 

interact with RL agents and execution logs were retrieved to provide feedback to RL agents. 

Image processing tasks were identified as the candidate serverless functions that undergoes 

configuration optimisation. The results show that both RL techniques possess good 

opportunity to further explore and experiment with serverless functions.  

 

Q-learning and Deep Q learning agents can be integrated into real world serverless functions 

for optimising the configurations. Due to the active learning nature of these techniques, these 

RL techniques can better converge in serverless functions with high frequency invocations. In 

this research, certain image processing tasks are considered. However, these techniques can 

be expanded into other applications which are cpu intensive in nature. The I/O intensive and 

network intensive tasks may not benefit from the assistance provided in configuring 

parameters. Because configurations like memory determine the cpu allocation in the 

serverless functions. Further research options include using actor-critic reinforcement 

learning and implementing the solution with open source serverless platforms like Apache 

Openwhisk. Also increasing the state space dimensions can be considered. Moreover, 

choosing functions written in other programming languages like Java and node.js can be 

further explored. 
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