
Comparative Study of RL Algorithms for
Resource Optimization Scheduling in

Kubernetes

MSc Research Project

Cloud Computing

Jay Shukla
Student ID: X23113111

School of Computing

National College of Ireland

Supervisor: Prof. Punit Gupta

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Jay Milind Shukla

Student ID: X23113111

Programme: MSc. Cloud Computing

Year: 2023-24

Module: MSc Research Project

Supervisor: Prof. Punit Gupta

Submission Due Date: 12/08/2024

Project Title: Comparative Study of RL Algorithms for Resource Optimiza-
tion Scheduling in Kubernetes

Word Count: 2,128

Page Count: 22

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Jay Shukla

Date: 12-08-2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Comparative Study of RL Algorithms for Resource
Optimization Scheduling in Kubernetes

Jay Shukla
23113111

Abstract

Cloud computing has evolved from using monolithic architectures to relying
on microservices. As microservices have become more common, managing them
has also become more straightforward. Tools like Kubernetes, Docker, and Open-
Shift make it easier to deploy applications in containers, which helps reduce costs
and save resources compared to older, monolithic systems. However, one challenge
with microservices is that auto-scaling methods often treat each service individu-
ally, without considering how they interact with each other. This can lead to
inefficient scaling, where either too many resources are used or not enough, poten-
tially harming application performance. This paper suggests a new approach by
using Reinforcement Learning (RL) algorithms alongside Kubernetes’ Horizontal
Pod Autoscaler (HPA) to improve how resources are managed and scaled. By
doing so, we can better optimize performance and resource use in complex, dy-
namic microservice environments, ultimately improving application efficiency and
reducing costs.

1 Introduction

Reinforcement learning (RL) has recently emerged as a promising technique for autonom-
ous systems that make intelligent decisions about the environment. The thesis of this
paper is an account of research on RL focused primarily on those who describe the pro-
cess and determine its effectiveness. It especially focuses on training RL models based on
indicators such as FPS, frequency, and elapsed time. Training success is measured by the
model’s Kulbach-Leibler deviation, split distribution, entropy loss, explained variance,
learning rate, and loss set, which fully describe the model’s performance. That calmness.

The learning process in RL has issues of computational efficiency and plays an im-
portant role in the implementation of RL, especially in areas where resource constraints
and costs are major concerns. To answer this question, this paper uses the GYM Ho-
rizontal Pod Autoscaler (HPA) algorithm on a Kubernetes cluster. Using Kubernetes,
an open source software for deploying and managing applications, RL is ideal for rapid
development from a training environment. The GYM HPA algorithm runs predictively
on a Kubernetes cluster and provides self-sufficient predictions to determine which pods
are running based on real-time characteristics such as CPU usage, memory usage, and
output usage.

The GYM HPA algorithm monitors each node’s resource usage and increases or de-
creases the number of active shells at any time. Power adjustment is important for AC

1



which is common in RL training, where the resource consumption can quickly slow down
the machine depending on the complexity of the task and the training phase so by using
HPA the system ensures resource allocation better because of improving the performance
of the J. and eliminating costs.

During the build process, separate reports are generated that track the progress and
resource usage of the RL model on your Kubernetes cluster. Continuously monitor KPIs,
including frames per second (fps), clicks, training performance, time spent and total
steps. We also consider performance metrics such as Kullback-Leibler (KL), threshold
level, entropy loss, observation variance, learning rate, total loss, number of abstractions,
lack of design constraints, lossy design definition, and model variables.

Keeping a close eye on resource, CPU and memory usage metrics. These parameters
are important for determining information about the HPA detection algorithm. For ex-
ample, excessive CPU or memory usage can increase the number of HPA threads, causing
load sharing and performance bottlenecks. On the other hand, using lesser number of
HPAs reduces the number of changes, saves resources and reduces costs.

Integrating the GYM HPA algorithm into a Kubernetes cluster not only improves the
performance and cost-effectiveness of RL training but also provides a reliable framework
for heavy workloads. This process helps the resources to be regularly reviewed and
adjusted accordingly to meet the changing environment requirements.

In Summary this paper presents a detailed evauation of RL being used to optimise
the kubernetes enviroment by means of the GYM HPA algorithm. By means of this
research our goal is to increase the understanding of the RL tool and contribute towards
its development. THis work shows the ability to combine the GYM HPA algotrithm to
create more simple, scalable and efficient algorithms.

1.1 The Significance of Container Scheduling

Cloud computing is a form of delivery that enables some of the most prominent techno-
logical services such as IaaS, PaaS, and SaaS without having actual hardware support.
This shift has been made possible by Virtualization technologies; technologies that allow
production of configurations that are virtual copies of actual physical hardware. This
means we can now create platforms that act as a physical system in the digital space.
Arguably one of the largest advancements in recent times have been the birth of the con-
tainer, a light-weight package that comprises of everything a software application needs
to function.

This has however, been made a norm in the recent past years. There are tools that
handle the containers such as docker and kubernetes through which the arrangement,
mobilization and control of containers is done. This makes it easy to schedule, deploy
and scale since the life cycle time for each is much easier. Of these tools, Kubernetes
is the most favored due to the existence of numerous features and conveniently applied,
which can be regarded as the reason for the rapidly growing popularity.

Cloud computing has shifted from large monolithic applications to microservices ap-
plications to ease use. These have become easier top work with by virtue of Kubernetes
or Docker or Open Shift and what it does is that each part of an application runs in
a container. Compared to the traditional methods and the monolithic application, this
approach is cheaper and requires fewer resources. However, one of the problems that
come with its implementation is that most auto-scaling and scheduling methods work
independently for each micro-service. They usually ignore the way these small services

2



are interconnected and this results in inefficiencies.
Every contemporary cloud and edge computing system requires container scheduling.

The other thing is flexibility of the container scheduling to use the resources optimally for
the dynamic computer systems that are in use these days. Resource management specific
to contains assists with the saving of resources such as CPU, memory, and storage by
scheduling the running of containers according to time of the day. In the case of edge
clouds, where resources may be limited and have to be optimally partitioned used to retain
the application’s speed and flow, dynamic distribution is very useful. Optimal scheduling
is cost saving, since there will not be need to employ many people, thus reducing on the
cost of paying employees, and enhances the efficiency of the infrastructure in as much as it
deters over-provision and under-utilization. Another advantage is that far as genericity,
container scheduling also improves system scalability and dependability. Redundancy
and load balancing can leverage containers in schedule the containers in many nodes
and clusters applying complex algorithms. This distribution enhances reliability since
no single node of the given system can fail and make the entire system inaccessible.
In addition, container scheduling allow for the scalability in horizontality, which means
question those systems are capable of increase or decreasing the number of containers
according to the traffic they have to handle. This function helps to maintain the stability
of the system and users’ satisfaction during the periods of demand by maintaining the
availability of applications.

1.2 Research Objective

The aim of this research project is to create a reinforcement learning (RL) agent that
works with the gym-hpa algorithm, inspired by the Gym framework, to optimize resource
usage in Kubernetes environments. The focus on implementing a single RL agent to re-
duce resource consumption and explore various work scheduling strategies to improve
the performance of pods and containers. By using RL algorithms, we hope to enhance
the resource optimization capabilities of Kubernetes, making it more effective at man-
aging systems with multiple components. So the the main question driving this research
is: ”Can RL agent improve Kubernetes auto-scaling for multicomponent sys-
tems?”

1.3 Report Organization

1. Related Work: This section reviews the existing literature on reinforcement learn-
ing algorithms and their application in Kubernetes scheduling, with a focus on
auto-scaling in fog and edge computing environments.

2. Methodology: This section details the setup and methodology followed in imple-
menting the custom environments using the Gym library, focusing on CPU, memory,
and cost optimization strategies in Kubernetes.

3. Design Specification: This section discusses the design and specifications of the
systems and algorithms used, including the integration of the HPA algorithm with
Kubernetes.

4. Implementation: This section describes the implementation process, tools, and
technologies used, along with the challenges faced and the solutions adopted.

3



5. Evaluation: This section presents and analyzes the results of the experiments
conducted to evaluate the effectiveness of the implemented solutions in optimizing
resource usage.

6. Discussion: This section provides a detailed discussion of the experimental find-
ings, critiques the design, and suggests possible improvements and future research
directions.

7. Conclusion and Future Work: This final section restates the research objectives,
summarizes the key findings, discusses the implications, and proposes meaningful
future work to extend the research.

2 Related Work

The report which have chosen, “Auto-scaling Policies to Adapt the Application Deploy-
ment in Kubernetes” Rossi (2020), elaborates the innovations in procedures aimed at
increasing the possibility of auto-scaling in Kubernetes, a platform that is commonly
used to manage applications based on containers. Originally, Kubernetes has imple-
mented an HPA which was based on fixed threshold policies and which had mainly CPU
usage as a metric for scaling applications. However, this approach often struggles to meet
the Quality of Service (QoS) needs of applications, especially those sensitive to latency,
because setting the right thresholds is complex and varies from one application to another.

To overcome these challenges, the report suggests using reinforcement learning (RL)
to create more adaptive and efficient auto-scaling policies. This is unlike other methods
of thresholding, for example, the fixed-scaling thresholding where the scaling is adjus-
ted based on the observed data and the specific target QoS such as response times, low.
From the work of the scholars, it can be deduced that the model-based RL policies provide
higher efficacy compared to the model-free counterpart which suggests that adjustment
in the organisational scaling takes place in a quicker and more efficient manner. This
research also reveals that when adopted into the context of Kubernetes, such RL-based
policies enhance the platform utilization to meddle with the customers’ dynamic work-
loads, hence enhancing the service availability and efficiency in cloud environments.

The existing mechanisms of Kubernetes auto-scaling, for example, HPA, are threshold-
based mainly on CPU usage figures. Though these methods are quite useful in managing
specific loads, they do not deliver the Quality of Service (QoS) needed by low-latency ap-
plications. While establishing the thresholds that fit the particular case is a complex task
that often calls for professionals’ decisions and constant tweaking, tuning is not always
effective and optimized, specifically when it comes to the dynamic environments of clouds.

To overcome these limitations, recent work has shifted towards using machine learn-
ing, specifically reinforcement learning (RL), for generating more intensive and effective
auto-scaling policies Pramesti and Kistijantoro (2022). Therefore, RL agents should make
their decisions on the basis of current demands for resources and the QoS requirements,
since RL agents are built to learn from real-time data. From present studies, performance
boosts incorporating application response times and resource utilization are widely ob-
served, and based on these implementations, it becomes a more reliable and self-sufficient

4



solution for addressing new and varying workloads in microservice deployments from the
cloud.

The paper proposes a novel auto-scaler for microservices deployed in Kubernetes,
where the emphasis is placed on forecasting response time in order to achieve better scal-
ing Pramesti and Kistijantoro (2022). Originally, Kubernetes employs the Horizontal Pod
Autoscaler (HPA) which depends mostly on the CPU utilization to determine the scaling
conditions. However, this new approach uses a machine learning model to determine how
many hours it will take to get a response from a system by using performance measures
from both the microservice and node levels. All these predictions can help the auto-
scaler to determine the required number of pods in order to maintain the response time
within the set range. The results suggest that this method achieves a lower response time
compared to the traditional HPA, though it consumes more resources. This shows how
machine learning can help enhance scaling in Kubernetes and thus enhance applications’
responsiveness and effectiveness.

2.1 RL Algorithm

Reinforcement learning is an effective strategy concerning autonomic adaptation for cloud
services due to the fact that it can do auto-scaling based on the dynamic behavior of the
cloud Tesauro et al. (2006). Some of the initial RL applied were Q-Learning and SARSA,
which were aimed at server and virtual machine scheduling. Tesauro et al. (2006) and
Horovitz and Arian (2018) also used RL for virtual machine management. In order to
solve this problem, more recently RL methods have been used for container scheduling.
Horovitz and Arian (2018) developed an RL technique for updating the scaling thresholds
by enhancing state space reduction. Rossi et al. (2019) was a continuation of enhan-
cing RL methods through integrating system knowledge into the containers’ scheduling
decision-making process.

The A-SARSA algorithm, introduced by Zhang et al. (2020), analyzes the existing
problems with using traditional reinforcement learning methods for container schedul-
ing. Q-Learning and SARSA algorithms, which are traditional RL methods, end up
having high SLA violation due to problems such as scheduling at the wrong time and
decision-making issues. A-SARSA improves on the basic SARSA algorithm by adopting
the ARIMA model for workload prediction and an ANN for CPU utilization and response
time prediction. This way, the predictability and accuracy of scaling strategies are guar-
anteed, SLA violation rates considerably decreased, but at the same time, the application
keeps a good level of resource utilization.

According to the study Gradient and Gradient (2020), the DDPG algorithm is presen-
ted as a very effective reinforcement learning model that combines two methods: Q-
learning and Policy Gradient methods. It is perfect for complete actions as opposed to
discrete ones, in environments that do not presuppose constant interruption. In the field
of Kubernetes auto-scaling, DDPG can be employed for making the best scaling strategies
by learning from the environment and changing the number of allocated resources in real-
time.

The Deep Deterministic Policy Gradient (DDPG) algorithm is an advanced reinforce-

5



ment learning technique that combines the benefits of Q-learning and policy gradient
methods, making it suitable for environments with continuous action spaces. This al-
gorithm is particularly effective for tasks that require precise and continuous control,
such as autonomous driving.

The main method that the DDPG Algorithm uses is the actor-critic method. The ac-
tions to be taken by the actor network include the provision of more or less resources, while
the critic network measures the worth of these actions by estimating them. This setup
makes learning tangible, stable, and also efficiently delivered throughout the learner’s
active academic experience. Sharing this, DDPG applies experience replay and target
networks for the purpose of improving the stability of learning. Experience replay is a
technique in which past actions are saved and occasionally selected from so as to dis-
rupt the flow of events, making learning more consistent. The target networks that are
updated more slowly furnish stable criteria for evaluation, and they contribute to stabil-
izing the learning process. These features make DDPG suitable especially for Kubernetes
auto-scaling and aid in making ones that are adaptable to new conditions.

The article Esfandiari and Atashgah (2022) shows the efficiency of PPO for control
problems, especially in environments with continuous action space. For the most part,
their work pertained to robotics and autonomous systems; however, if one isolates the
applicable components, a very natural extension of PPO techniques can be made to auto-
scaling and scheduling problems in cloud-based infrastructures. The high-performance
learning features of PPO, on the other hand, are mainly the stability of learning as it
limits the degree of policy updates; unfavourable adjustments that can affect the program
significantly. This feature is especially beneficial in technically volatile environments such
as cloud computing where standardization and standard-based services delivery is a core
success factor.

In regard to auto-scaling specifically, PPO can be used to optimize resource distri-
bution because of its ability to learn from changes in workload. Since it entails motions
on-scaling of assorted applications by processing state information from a policy network
range, PPO can solve the complex problem of handling application scaling in Kuber-
netes. The episodic vs continuous state and action space also allow for fine-tuning of the
resources that are to be provided to the applications to get the desired output while not
being over-provisioned. Therefore, this capability puts the PPO algorithm in a place to
be a promising approach in developing adaptive and responsive auto-scaling strategies in
cloud environments that will actively improve efficiency and performance

When I was looking for ways to improve how our work uses resources, I came across
this really interesting article Silva et al. (2020). The authors introduced a new approach
for adjusting resources automatically in Kubernetes. Usually, when apps have different
parts that work together, the way resources are shared doesn’t take that into account.
But their method uses what they call ”hierarchical resource management” to make better
choices about resources while thinking about how the whole app is structured.

6



2.2 Table of the RL Algorithms

Table 1: RL Algorithms and Their Applications in Cloud, Kubernetes, and Containers
Algorithm Description Application Area Cloud Services
Q-Learning Ahmed and Ammar (2017) Learns the

value of each
action in a
state-action
pair to find
the best ac-
tion.

Cloud optimization,
Kubernetes

AWS SageMaker,
OpenAI Gym

Deep Q-Network (DQN) H. Mao and Kandula (2016) Uses deep
neural net-
works to
approximate
the Q-value
function.

Cloud resource manage-
ment, Kubernetes

Google Cloud AI Plat-
form, AWS SageMaker

SARSA F. Zhang and Xu (2017) Updates
the Q-value
based on the
action actu-
ally taken.

Cloud resource manage-
ment

Theoretical applications

DDPG K. Zhang and Yuan (2019) Combines
Q-learning
and policy
gradient for
continuous
action spaces.

Kubernetes auto-scaling,
Cloud control

AWS SageMaker RL,
Azure ML

A3C X. Chen and Bennis (2018) Runs mul-
tiple parallel
instances
to stabilize
training.

Kubernetes, Distributed
clouds

AWS, Microsoft Azure

TRPO X. Jin and Reisslein (2018) Ensures safe
policy up-
dates using a
trust region.

Cloud resource manage-
ment

Google Cloud, AWS
SageMaker

Dueling DQN R. Li and Zhang (2018) Separates
state value
and advant-
age function
for better
learning.

Kubernetes, Containers AWS SageMaker, Google
AI

Actor-Critic T. P. Lillicrap and Tassa (2017) Combines
policy and
value func-
tions to
optimize the
policy.

Cloud optimization Various cloud platforms

REINFORCE S. Gupta and Chaturvedi (2020) Follows the
gradient of
expected
rewards for
updates.

Theoretical cloud applic-
ations

Academic settings

3 Methodology

Earlier, the RL algorithms employed in cloud environments were discussed with regards
to its subcategories. Next, let’s discuss the details of the HPA algorithm and its integ-
ration with the certain Platform and applying on dynamic applications and why choose
the RL algorithm.

This RL-based algorithm is based on Gym where we can train an agent that is trained
in how to efficiently utilize resource in the future time period. While other machine learn-

7



ing techniques could potentially be applied to HPA, reinforcement learning is particularly
well-suited for this type of dynamic resource allocation problem. RL allows the system to
learn optimal scaling policies through trial-and-error interactions with the environment,
adapting to changing workloads over time. This aligns well with the unpredictable nature
of pod scaling in Kubernetes clusters.

3.1 Gym-HPA Architecture

Figure 1: GYM-HPA Architecture

The GYM-HPA architecture is organized into three main sections:

1. Custom Gym Environments:

• These environments are specifically designed to optimize different metrics like
CPU usage, memory usage, and overall cost.

• Each environment is a Python class that builds on gym.Env and includes func-
tions for initializing the environment, resetting it to the start, executing ac-
tions, and displaying the current state.

2. Reinforcement Learning Agent:

• The agent utilizes the Proximal Policy Optimization (PPO) algorithm, provided
by the Stable Baselines3 library, to interact with the environments.

• It learns the best strategies for scaling Kubernetes pods based on the resource
metrics.

8



3. Simulation and Evaluation Workflow:

• This section outlines the process, starting from setting up the environment,
training the PPO model, saving or loading the model, and finally running
evaluations to test the effectiveness of the learned strategies.

4. Cost Optimization Environment:

• Designed to minimize total costs by balancing both CPU and memory usage.

5. CPU Optimization Environment:

• Focuses on reducing the CPU usage across Kubernetes pods.

6. Memory Optimization Environment:

• Aims at minimizing memory usage for each pod.

7. State Space:

• This represents the current resource usage and the number of pods as a 2D
numpy array.

8. Action Space:

• The agent has three possible actions—scale down, keep the number of pods
the same, or scale up—depending on the current state.

9. Cost Optimization:

• Calculates the total cost based on the number of pods and their resource
consumption.

10. CPU Optimization:

• Specifically targets reducing the CPU usage per pod.

11. Memory Optimization:

• Focuses on minimizing memory usage per pod.

This architecture is designed to be flexible, making it easy to experiment with and
compare different Horizontal Pod Autoscaling (HPA) strategies within a simulated Kuber-
netes environment. This setup allows for a systematic evaluation of how various optim-
ization approaches perform in managing resources like CPU and memory in a cloud
environment.

9



3.2 Proximal Policy Optimization (PPO) Algorithm

Y. Sun and Wang (2019) in their paper “Model-Based Reinforcement Learning via Prox-
imal Policy Optimization” define PPO as one of the most powerful and widely used
reinforcement learning algorithms owing, in part, to the balance between simplicity and
efficacy. As mentioned in the paper, PPO belongs to the policy gradients methods and
improve the policies with multiple epochs of stochastic gradient ascent, in this way, the
update avoids drift far away from the current policy. In this regard, PPO proves more
useful in cases with continuous action spaces contributing to the general stability of
learning.

Specifically, to further incorporate IL in the context of the given content, In a model-
based RL framework that uses Gaussian Process Regression (GPR) for dynamic model
learning and Proximal Policy Optimization (PPO) for policy improvement. As described
by the authors in their paper, this integration ofGPR enables the model to control the
uncertainty of environment by predicting the dynamic change and adjust the policy sub-
sequently.

Algorithm 1 High level overview of PIPPO

0: init: Apply random control signals to the environment and record training data;
0: repeat
0: Learn probabilistic dynamic model gp by Gaussian process regression using all

data, see Section A;
0: repeat
0: Sample state st using particle technology and propagate to st+1 based on gp, see

Section B;
0: Policy improvement based on PPO, see Section C;
0: until convergence
0: return π∗

0: Apply π∗ to the environment and record data;
0: until task learned =0

• init: The algorithm starts by applying random control signals to the environment
to gather initial training data.

• repeat: The algorithm enters a loop to continuously update the dynamic model
and policy.

• Learn probabilistic dynamic model gp: Gaussian Process Regression (GPR)
is used to build a probabilistic model of the environment’s dynamics.

• repeat: A nested loop begins to refine state sampling and policy improvement.

• Sample state st and propagate to st+1: States are sampled using particle
filtering, and the next state is predicted using the gp model.

• Policy improvement based on PPO: The policy is optimized using Proximal
Policy Optimization (PPO) based on the predicted states.

• until convergence: This inner loop continues until the policy stabilizes and con-
verges.

10



• return π∗: The optimized policy π∗ is returned after convergence.

• Apply π∗ to the environment: The optimized policy is applied to the environ-
ment, and the results are recorded.

• until task learned: The outer loop continues until the task is fully learned and
the desired performance is achieved.

3.3 Custom Environment Setup for Resource Optimization

The implementation involved creating three custom Python environments using the Gym
library, each utilizing the Proximal Policy Optimization (PPO) algorithm to optimize
different aspects of resource usage in a Kubernetes cluster.

1. Memory Optimization: The first environment is designed to reduce the memory
consumption for Kubernetes pods. The RL agent in this environment takes as input
the current state information, which includes the number of pods and the amount
of resources they use. It then decides whether to scale up (add more pods), scale
down (reduce the number of pods), or maintain the current number of pods. The
reward function in this setting is designed to discourage the agent from consuming
excessive memory, thereby encouraging efficient memory usage.

2. CPU Optimization: The second environment seeks to reduce CPU demand.
Similar to the memory optimization environment, the RL agent observes the CPU
utilization of the pods and performs actions to regulate the number of pods. The
reward function in this environment penalizes high CPU usage, forcing the agent
to learn strategies that keep CPU utilization low while maintaining application
responsiveness.

3. Cost Optimization: The third environment aims to minimize a cost function that
considers both the time complexity of the algorithm and the memory consumption.
The cost is defined as a function of the number of active pods and the resources
used by each pod. The RL agent’s primary goal is to maximize resource efficiency
while minimizing the cost associated with over-provisioning or under-provisioning
resources.

3.4 Environment Parameters

In the context of the cloud and in a Kubernetes cluster, the utilization of elements such
as CPU and memory should be closely managed to ensure that the cluster and hence
the application performs optimally whilst at the same time not using up a lot of re-
sources. To do this, simulations are used to study and analyze the behavioral pattern of
the HPA for different scenarios. There are three major parameters that regulate these
simulations, and both resources and scale within the Kubernetes environment based on
those parameters. These parameters are categorized into four main areas: In addition to
environment parameters, the RL algorithm parameters, the values of simulation metrics,
and the specifications of the Kubernetes environment create the global parameter vector.
All the categories perform a significant role in achieving the efficiency of the system and
attaining the intended performance goals.

11



1. Environment Parameters

• State Space: The state space usually consists of the current resource usage statistics
which include the CPU and memory usage in the pods of the Kubernetes cluster.
The state space conveys information about the environment’s conditions to the
agent to make the appropriate scaling determinations.

• Action Space: The state space delineates the possible states of environment and
the action space describes the possible actions that the RL agent can perform. In
the context of Kubernetes, it is implied that such actions are usually scaling up,
down, or keeping steady the number of pods. The formation of the action space
is significant as it shapes the agent’s decision-making process in choosing efficient
strategies for resource utilization.

2. RL Algorithm Parameters

• Reward Function: Reward function is another important factor that sets the course
of learning for the RL agent. The overall structure of the reward function is to lower
values for undesirable phenomena (for example, high resource consumption or cost)
and to increase values for desirable phenomena (for example efficient consumption
of resources). The specific details of the reward function depend on what is to be
maximized, memory, CPU or cost.

• Learning Rate: The learning rate determines the extent to which the knowledge
acquired by the RL agent is revised, given new information. This may increase
the learning rate to obtain faster learning, though this leads to instability; a small
learning rate yields a slower learning procedure that is, however, more stable.

• Discount Factor (Gamma): The discount factor measures the level of preference for
the future rewards in comparison with immediate rewards by the agent. A value
bigger than 1 makes the agent look forward to the future, and less than 1 makes it
consider the present.

• Policy Update Frequency: This parameter defines when the RL agent wants to
update the policy of the agent, which is the decision rule used by the RL agent in
an attempt to make accurate decisions on the state of the environment. The agent
can be updated frequently in order to quickly reflect all the updated information,
but at the same time frequent steps may lead to overtraining on certain specific
scenarios.

• Batch Size: It is the number of experiences the agent gathers before updating the
policy of its model. A large batch size on the one hand gives more stable learning
but on the other it takes much more time to learn.

3. Simulation Parameters

• Episode Length: An episode’s duration is the number of time steps or motions
an agent can make before the surroundings bring back to the initial state. This
parameter determines how much interaction the agent can have in a single episode
and thus affects the learning phase.

12



• Number of Episodes: This makes training more significant considering that the
total number of episodes defines the amount of training that the RL agent is to
receive. More episodes increase the competency of the agents but cause the need
for more computation and time too.

• Exploration vs. Exploitation Trade-off: This parameter determines the balance in
the agent’s choice between searching for new values of actions and choosing the
known high-value actions. Exploration and exploitation must be in a stable state
to enable learning since new approaches take time to learn and implement.

4. Kubernetes-Specific Parameters

• Pod Resource Limits: These parameters describe the limits of the CPU and memory
that can be consumed by a pod. These are very important in defining when and
how the agent should scale the number of pods to the greatest effect and efficiency.

• Scaling Thresholds: These thresholds initiate scaling operations depending on the
use of services’ resources. For example, if the CPU usage is high, a specific threshold
expressed as a percentage, the agent can decide to increase the number of pods.

• Cost Parameters: Thus, in the cost optimization script the necessary parameters are
introduced to evaluate the cost which is tied to the execution of a certain number of
pods, with a particular resource configuration. These cost parameters are useful in
guiding the agent to financial decisions that can be made concerning the optimum
level of usage of these resources.

4 Design Specification

These advanced scaling strategies are often executed with the RL models in conjunc-
tion with the HPA algorithm on Amazon Web Service using Amazon Elastic Kubernetes
Service (EKS). For example, monitoring of data can be done with AWS CloudWatch
while the model data could be stored in Amazon S3; in this way, such algorithms can be
updated on-demand to tackle the changeability of working in a cloud better. Moreover,
more complex architectures like Smart HPA algorithm include hierarchical and decent-
ralized control that makes architectures more scalable and flexible so that challenging
environment resource could be properly controlled.

To run the Horizontal Pod Autoscaler (HPA) algorithm effectively in a Kubernetes
environment, you need to consider specific machine and infrastructure requirements to
ensure smooth operation and optimal performance. Here’s a summary of the key require-
ments:

1. Kubernetes Cluster Setup

• Kubernetes Version: The HPA algorithm is supported starting from Kuber-
netes version 1.2. However, to leverage the latest features and improvements, it is
recommended to use Kubernetes version 1.18 or higher.

13



• Cluster Platform: The Kubernetes cluster required for this methodology can be
deployed on various platforms, including:

– Cloud-based platforms: Amazon EKS, Google Kubernetes Engine (GKE), Mi-
crosoft Azure Kubernetes Service (AKS), among others.

– On-premise platforms: Utilizing tools such as Kubeadm, OpenShift, or Rancher.

• Cluster Sizing Considerations: It is crucial to ensure that the Kubernetes
cluster is appropriately sized to handle the expected workloads as well as the ad-
ditional overhead introduced by the autoscaling processes managed by the HPA
algorithm. This involves configuring the cluster with a sufficient number of nodes
to meet these demands.

2. Node Configuration

• CPU and Memory Requirements: Nodes within the Kubernetes cluster must
be provisioned with adequate CPU and memory resources based on the size of the
cluster:

– Small Clusters: Nodes should have at least 2 vCPUs and 4 GB of RAM.

– Medium Clusters: Nodes should have 4-8 vCPUs and 8-16 GB of RAM.

– Large Clusters: Nodes should have more than 8 vCPUs and 16+ GB of RAM.

• Node Autoscaling: For cloud-based deployments, it is advisable to enable cluster
autoscaling. This feature automatically adjusts the number of nodes in the cluster
based on workload demands, ensuring that the HPA algorithm can scale pod replicas
as needed without resource constraints.

3. Metrics Collection with Metrics Server

• Metrics Server Deployment: The effective functioning of the HPA algorithm
relies on the Metrics Server, which collects real-time resource usage data (such as
CPU and memory) from the nodes. It is essential that the Metrics Server is deployed
and configured correctly within the cluster.

• Accuracy of Resource Metrics: Nodes should be configured to report resource
usage metrics accurately. This requires proper setup of both the Metrics Server and
the kubelet service on each node to ensure that the HPA algorithm receives reliable
data for decision-making.

4. Network and Storage Configuration

• Networking: The network configuration must allow seamless communication between
the HPA algorithm, the Metrics Server, and the Kubernetes API server. This com-
munication is crucial for the HPA algorithm to receive timely metrics and make
appropriate scaling decisions.

14



• Storage Requirements: For workloads that require persistent storage, the storage
infrastructure must be scalable to accommodate the increased demand when the
HPA algorithm scales up the number of pods.

5. Monitoring and Logging Implementation

• Monitoring Tools: To monitor the performance of the HPA algorithm and overall
cluster health, integrate tools such as Prometheus, Grafana, or AWS CloudWatch.

• Centralized Logging: Implement centralized logging solutions, such as the ELK
stack or Fluentd, to track the activities of the HPA algorithm, including scaling
events and any potential issues that arise during operation.

6. Security and Compliance Considerations

• IAM Roles and Policies (Cloud-based clusters): For cloud-based clusters,
configure IAM roles and policies to secure interactions between the HPA algorithm
and other Kubernetes components, ensuring that access to cloud resources is ap-
propriately controlled.

• Role-Based Access Control (RBAC): Implement RBAC within Kubernetes
to limit access to HPA algorithm configurations and protect sensitive data from
unauthorized access.

7. Additional Considerations

• Load Balancing: Ensure that the Kubernetes cluster has a robust load balancing
solution to distribute traffic efficiently across pods, particularly when the HPA
algorithm scales up the number of pods in response to increased demand.

• Testing and Validation: Before deploying the HPA algorithm in a production
environment, it is critical to thoroughly test its scaling behavior under various work-
loads to confirm that it meets the required performance and reliability standards.

5 Implementation

The creation of the code includes the custom Python environments using the Gym lib-
rary, tailored specifically for optimizing different resource usage aspects in a Kubernetes
cluster. The Proximal Policy Optimization (PPO) algorithm was employed to train re-
inforcement learning models capable of minimizing CPU usage, memory usage, and cost
associated with Kubernetes pod management.

The implementation phase of this project involved developing a series of custom Py-
thon environments using the Gym library, each specifically designed to optimize various
aspects of resource usage within a Kubernetes cluster. To achieve this, the Proximal
Policy Optimization (PPO) algorithm was employed to train reinforcement learning mod-
els that could minimize CPU usage, memory usage, and the associated costs of managing

15



Kubernetes pods.

Tools and Technologies Used:

• Programming Language: The entire implementation was done using Python.

• Libraries and Frameworks:

– Gym: Used for creating the custom reinforcement learning environments
tailored for this project.

– NumPy: Utilized for performing numerical operations and managing data
structures.

– Stable Baselines3: Specifically, the Proximal Policy Optimization (PPO)
algorithm from this library was employed to train the models.

• Development Environment: The implementation was carried out on Ubuntu OS
running on AWS EC2 instances. This setup was necessary as the HPA algorithm
could not be executed on Windows OS and was incompatible with any Windows-
based editors.

• Cloud Platform: The simulations were executed on Amazon Web Services (AWS)
EC2 instances, which provided the necessary computational resources and environ-
ment.

Outputs Produced:

• Transformed Data: The environments simulated various resource usage scen-
arios, focusing on CPU and memory under different pod scaling actions. These
simulations generated valuable data on resource consumption and associated costs,
which were used to assess the performance of the models.

• Models Developed: Three distinct reinforcement learning models were developed
using PPO, each targeting a specific resource optimization:

– CPU Optimization: A model designed to minimize the total CPU usage
across Kubernetes pods.

– Memory Optimization: A model focused on reducing the total memory
usage within the cluster.

– Cost Optimization: Amodel aimed at minimizing the overall cost associated
with resource usage, factoring in both CPU and memory consumption.

• Simulation Results: The output from the simulations provided detailed metrics
on CPU usage, memory usage, and costs, which allowed for a thorough analysis of
the effectiveness of each model in optimizing resource usage.

Challenges and Solutions:

16



• Challenges: One of the primary challenges encountered was the inability to run
the HPA algorithm on Windows OS, which led to difficulties in using any Windows-
based editors for development. Initially, attempts were made to run the algorithm
on a Windows system, but these efforts were unsuccessful.

• Solutions: To overcome this, the implementation was shifted to an Ubuntu OS
running on AWS EC2 instances. This environment provided the necessary support
for the HPA algorithm, allowing the simulations to be executed successfully.

Testing and Validation:

• Testing: Each model was rigorously tested by running multiple episodes of the
simulations to ensure their stability and reliability. Specifically, the models were
trained and evaluated over 10,000 timesteps to verify their ability to converge and
effectively minimize the targeted resources (CPU, memory, or cost).

• Validation: The models were validated by comparing their performance across
different episodes, focusing on their success in reducing resource usage and associ-
ated costs. The simulation results consistently showed that the models improved
resource optimization as they learned and adapted over time.

Final Outcomes:

• Results: The implementation successfully optimized CPU usage, memory usage,
and costs within a Kubernetes environment. The PPO-based models demonstrated
their ability to adapt to varying resource demands, leading to significant reductions
in resource consumption and operational costs.

• Impact: The models developed in this project showed a marked improvement
in resource management for Kubernetes clusters, offering a practical solution for
minimizing costs and enhancing efficiency in cloud environments.

6 Evaluation

Based on the conclusion drawn from the results of our experiments, this section explores
the analysis of the simulation results classified by CPU, memory, and cost in the Kuber-
netes context. Each experiment was conducted to assess how well the system can adapt
to variations in resource usage. We have presented the results in the form of various
graphs that depict the system’s performance over time. From these results, it becomes
clear how effective the implemented optimization strategies have been and how they can
be utilized to optimize resource management in cloud environments.

1. Experiment 1: Cost Optimization

The first experiment examined the effectiveness of the strategy to reduce the overall
cost of running operations while optimally utilizing both the CPU and memory
resources. The cost is depicted in the graph, showing a steep rise during the initial
setup period followed by a gradual increase until stabilization as the system becomes
routine. The findings suggest that the model was effective in achieving cost savings
once the system adapted to ongoing operations.

17



Figure 2: Experiment 1 Cost Optimization

2. Experiment 2: CPU Optimization

In the second experiment, the goal was to examine the impact of reducing CPU
usage across the pods in the Kubernetes cluster. The process is represented in a
graph showing a steady increase in the number of pods over time, indicating that
the system scaled up as demands increased. The objective was to efficiently manage
CPU resources while maintaining system performance, and the results demonstrate
that the approach was effective in meeting these requirements.

Figure 3: Experiment 2 CPU Optimization

3. Experiment 3: Memory Optimization

The third experiment was conducted with the aim of minimizing memory usage
per pod. The graph shows significant variability in CPU and memory usage, with

18



frequent peaks and dips, indicating that the system was highly dynamic and cap-
able of adjusting resources based on real-time demands. The memory optimization
strategy aimed to reduce memory usage while ensuring that performance was not
compromised, and the results confirm the effective utilization of memory resources.

Figure 4: Experiment 3 Memory Optimization

In all three experiments, the simulation results show that resource demands in cloud
environments are dynamic and fluctuate over time. Each experiment successfully demon-
strated that the proposed model can optimize the required amount of specific resources
in response to the demands of the Kubernetes environment, including cost, CPU, and
memory.

6.1 Discussion

In this section, we dive into the results from our three key experiments: It currently com-
prises Cost Optimization, CPU Optimization and Memory Optimization. The overall
purpose of these experiments was to determine to what extend it is possible to accurately
match and properly utilize resources in a Kubernetes cluster with our approach. Here’s
how we will proceed further: Analyze and critique the design of these experiments, Eval-
uate the credibility of the results, Propose possible enhancements. Furthermore, it is
going to establish connections between presented research and findings, described in the
literature review section.

Experiment 1: Cost Optimization
The first experiment was all about optimizing the global costs, in other words about

reducing the utilization of CPU and Memory. The second area relates to the reduction
of recall costs; although many of the costs are one-off, even in the early stages of our
implementation, we achieved savings in all areas apart from one or two trivial ones. The
first sudden surge of costs indicates that probably at the start of our system’s dissem-
ination, it requires further optimization. A slower scaling strategy used in organizations
could assist in preventing such spikes. Also, cost models that have been applied in our
simulations could not capture some of the actual complications of cloud billing systems,

19



and this could put a check on the applicability of these findings. It should be noted that
the work could in the future examine cost models that arrive at figures that are more
within a realistic price range for cloud services.

Experiment 2: CPU Optimization
The second experiment was performed specifically for minimizing CPU usage for

Kubernetes pods. Through the continuity of the number of pods it depicted that the
systems had the capacity of expanding with growing demands. However, such a move
might also indicate arteries of poor efficiency in the usage of the available resources. Al-
ways adding pods, as is required for some cases where more load is needed, could waste
resources, such as CPU, when other solutions that could do the same work are available.
Further studies should be conducted on the other possible methods of optimising the
CPU such as dynamic workload adjustment of the CPU, or even better scaling strategies.

Experiment 3: Memory Optimization
The third experiment explored how the usage of memory could be reduced while main-

taining the performance level of the system. The high fluctuation in the memory usage is
indicative of the system’s ability to adjust to the needs of the users and therefore flexibil-
ity could be considered well achieved. But then it also questions the capabilities that the
system has to offer when the condition it is operating in is unstable. Considering these,
if there is a lot of swapping, then constant changes in the amount of memory reserved
could present problems that are worse than having more memory used. For that reason,
the subsequent versions of the model could include more effective memory management
mechanisms or define the use of scaling actions based on their frequency. The critical
assessment will involve the identification of the strengths, weaknesses, opportunities and
threats of the organization’s current HRM practices so as to come up with propositions
for improvement.

The results obtained in our experiments were encouraging and it is possible to list a few
specifications regarding the design that might be enhanced to produce better outcomes.
For example, the following decision making in the reinforcement learning model can be
performed taking more factors into account like network latency/ storage I/O. This would
provide a better insight into the efficiency of the system which in turn would assist in
making proper scaling decisions.

Also, these experiments were performed in a simulated environment and it can there-
fore be difficult to deduce the real environment Kubernetes. Production environment
is also another important area that could be taken to determine the efficiency of the
developed models. Other methods such as, Hierarchical Reinforcement learning or multi-
agent reinforcement learning might also yield better results because they enable the model
to capture multiple cues associated with the use of the resources. Comparison with Pre-
vious Research

The outcomes of the study are consistent with some of the trends in the literature
on the application of reinforcement learning particularly for resource utilisation in cloud
computing. Nevertheless, our approach is special in that cost, CPU, and memory op-
timization is interpreted as a single model, which can be considered as a novelty. While
comparing our approach with other published techniques few parameters interacts at a
time in which few are as follows. These are scalability, or how well the system responds
to changes in the load it handles; resource efficiency, or how well CPU Memory etc is
used; and stability, or how well the system manages not to oscillate or flap, or perform

20



unnecessary scaling. Finally, the ability of the proposed approach to the workload fluc-
tuations is critical when comparing the efficiency of the obtained solution with other
existing methods.

7 Conclusion and Future Work

This research aimed to find out if RL agent could improve the Kubernetes auto-scaling
in systems that include multiple parts. The results showed that combining an RL agent
with Gym-HPA improved CPU and memory usage while reducing costs. The agent
demonstrated its ability to optimize system performance and minimize resource waste,
making it suitable for dynamic cloud computing environments.

Research is currently being carried out in the application of RL to Kubernetes auto-
scaling. Novel aspects to explore are more specific training environments, others metrics
apart from CPU and memory usage (such as cost), and richer modeling of a reward
function. Such improvements could result in optimised utilisation of resources for the
cloud service providers.

As for the next steps for the study, it would be interesting to evaluate the performance
of the learned RL agent on real Kubernetes instances in order to have a better look on
the proposed solution in real-world conditions. Extending the concept to multiple agents
and taking into account other factors that may influence the system, such as latency,
could enhance its flexibility and robustness.

References

Ahmed, A. and Ammar, M. (2017). A reinforcement learning approach to online learning
of decision policies for cloud-based environments, 2017 IEEE International Conference
on Cloud Computing Technology and Science (CloudCom), pp. 21–28.

Esfandiari, P. and Atashgah, R. A. (2022). Ppo: The proximal policy optimization
algorithm for continuous control, 2022 IEEE International Conference on Robotics
and Automation (ICRA), pp. 5080–5087.

F. Zhang, J. Liu, B. L. and Xu, S. (2017). Energy-efficient resource allocation using
reinforcement learning in cloud data centers, 2017 IEEE 25th International Symposium
on Modelling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS), pp. 1–8.

Gradient, A. S. P. and Gradient, B. D. P. (2020). Deep deterministic policy gradient
algorithm based lateral and longitudinal control for autonomous driving, 2020 5th In-
ternational Conference on Mechanical, Control and Computer Engineering (ICMCCE),
pp. 740–745.

H. Mao, M. Alizadeh, I. M. and Kandula, S. (2016). Resource management with deep
reinforcement learning, Proceedings of the 15th ACM Workshop on Hot Topics in Net-
works (HotNets ’16), pp. 50–56.

Horovitz, S. and Arian, Y. (2018). Efficient cloud auto-scaling with sla objective using
q-learning, 2018 IEEE 5th International Conference on Future Internet of Things and
Cloud (FiCloud), pp. 85–92.

21



K. Zhang, Y. W. and Yuan, D. (2019). Resource management for network slices in 5g
with deep reinforcement learning, IEEE Wireless Communications 26(5): 84–91.

Pramesti, A. A. and Kistijantoro, A. I. (2022). Autoscaling based on response time pre-
diction for microservice application in kubernetes, 2022 9th International Conference
on Advanced Informatics: Concepts, Theory and Applications (ICAICTA), pp. 1–6.

R. Li, Z. Zhao, X. C. J. H. H. Z. Y. Z. S. Y. and Zhang, H. (2018). Optimization of virtual
network function placement with deep reinforcement learning, IEEE Transactions on
Network and Service Management 15(4): 387–400.

Rossi, F. (2020). Auto-scaling policies to adapt the application deployment in kubernetes,
2020 12th ZEUS Workshop, Potsdam, Germany, pp. 31–38. Published at http://ceur-
ws.org/Vol-2575.
URL: http://ceur-ws.org/Vol-2575

Rossi, F., Nardelli, M. and Cardellini, V. (2019). Horizontal and vertical scaling of
container-based applications using reinforcement learning, 2019 IEEE International
Conference on Cloud Computing (CLOUD), pp. 329–338.

S. Gupta, N. V. and Chaturvedi, N. (2020). Policy gradient algorithms for scalable cloud
computing, IEEE Transactions on Parallel and Distributed Systems 31(11): 2685–2699.

Silva, J., Damsma, T., Amaral, B. and Breckoff, F. (2020). Gym-hpa: Efficient auto-
scaling using brain games for apps with lots of microservices in kubernetes, 2020 IEEE
14th International Conference on e-Science (e-Science), pp. 441–448.

T. P. Lillicrap, J. J. Hunt, A. P. N. H. and Tassa, Y. (2017). Actor-critic methods
for dynamic resource allocation in data centers, 2017 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), pp. 1061–1062.

Tesauro, G., Das, R., Bennani, M., Kephart, J. O. and Jong, N. K. (2006). A hybrid
reinforcement learning approach to autonomic resource allocation, 2006 IEEE Inter-
national Conference on Autonomic Computing, pp. 65–73.

X. Chen, H. Zhang, C. W. S. M. Y. J. and Bennis, M. (2018). Deep reinforcement learning
for resource management in multi-access edge computing, 2018 IEEE International
Conference on Communications (ICC), pp. 1–6.

X. Jin, M. W. and Reisslein, M. (2018). Multi-resource cluster scheduling with policy
gradient methods, 2018 IEEE Global Communications Conference (GLOBECOM),
pp. 1–6.

Y. Sun, L. Zhang, W. C. and Wang, X. (2019). Model-based reinforcement learning via
proximal policy optimization, 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 1321–1327.

Zhang, S., Wu, T., Pan, M., Zhang, C. and Yu, Y. (2020). A-sarsa: A predictive container
auto-scaling algorithm based on reinforcement learning, 2020 5th IEEE International
Conference on Cloud Computing in Emerging Markets (CCEM), pp. 47–54.

22


	Introduction
	The Significance of Container Scheduling
	Research Objective
	Report Organization

	Related Work
	RL Algorithm
	Table of the RL Algorithms

	Methodology
	Gym-HPA Architecture
	Proximal Policy Optimization (PPO) Algorithm
	Custom Environment Setup for Resource Optimization
	Environment Parameters

	Design Specification
	Implementation
	Evaluation
	Discussion

	Conclusion and Future Work

