~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Cloud Computing

Sarang Shrikhande
Student ID: x22202226

School of Computing
National College of Ireland

Supervisor: Diego Lugones

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Sarang Shrikhande
Student ID: x22202226
Programme: MSc in Cloud Computing
Year: 2023-2024
Module: MSc Research Project
Supervisor: Diego Lugones
Submission Due Date: 20/12/2018
Project Title: Configuration Manual
Word Count: 1350
Page Count: [1

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Sarang Shrikhande

Date: 16th September 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Sarang Shrikhande
x22202226

1 Introduction

This is the configuration manual for my research project, titled as "Enhancing Cloud
Security by Integrating Optimized Symmetric Key Encryption Algorithm in Ethereum
Blockchain”. It will provide a guided approach to implement the proposed system.

It covers the detailed process of establishing secure cloud storage by incorporating the
algorithms of symmetric key encryption: Lightweight Berypt Symmetric Key Encryp-
tion(LBSK) and Blowfish on Ethereum blockchain. The system is based on segregation
of data according to their level of sensitivity and implementing the right algorithm of en-
cryption. This solution is able to provide a decentralized strategy for information sharing
using AWS services and smart contracts based on Ethereum thus minimizing the reliance
on central cloud service providers and enabling users to be in more control of their data.

2 AWS Cloud Setup

An AWS Account is needed to perform the steps mentioned below.

The AWS root account is used for demonstration purpose but it is recommended to
have an AWS Identity and Access Management (IAM) account with appropriate policies
following the principle of least privilege.

Following are the services used for implementation purpose:

o AWS EC2

e AWS S3 bucket

e AWS Lambda function

e AWS ECR (Elastic Container Registry)

After setting up the AWS services, the next step will be to setup the private Ethereum
Blockchain on the EC2 instance which will be the decentralized system to store the path
of the encryption keys and file path securely on the blockchain.

3 Setup Ethereum blockchain on EC2 instance

We install Ganache Truffle suite that will provide us with the Ethereum test net |[Verma
et al.| (2022). We download and install the following dependencies on AWS CLI on a EC2
instance and the commands are shown in Figure |1} We first downloaded the Node.js 16.x

setup and installed it using the following commands:

sudo curl -sL hitps://deb.nodesource.com/setup_16.x -o /tmp/nodesource_setup.sh
sudo bash /tmp/nodesource_setup.sh

To install Node.js(npm, the Node.js package manager) from the NodeSource repository
set up earlier:
sudo apt install nodejs

sudo npm install -g ganache: This installs Ganache which is a personal blockchain for
Ethereum development.

sudo npm install -g pm2: It installs PM2 which is a process manager for Node.js apps.

sudo pm?2 start ganache —name "ganache” — —port 8545: 1t starts the Ganache block-
chain using PM2 with the process named ”ganache” on port 8545. This command is
run directly in the terminal, and hence it blocks the terminal. sudo pm2 start ganache
—name "ganache” — —port 8545 —server 0.0.0.0: Starts Ganache using PM2, with the
process named ”ganache”, running on port 8545 and binding to all network interfaces
(0.0.0.0).

sudo pm2 logs:Shows the logs for all processes managed by PM2.

PM2 was selected to run “Node. js” processes since it keeps the services running —
always necessary for a blockchain network like Ganache. Second, because AWS Lambda
employs a serverless approach, it provided an efficient way to deploy the encryption
algorithms in that it does not involve a lot of infrastructure.

setup_16.x —o /tmp/no:
setup_16.x —o /tmp/no

11 -g ganache
11 -g pm2

ganache --name "ganache"™ -- --port 8545
s gs
sudo pm2 stop all
sudo pm2 delete 0
sudo pm2 start ganache —-name "ganache" —- —-port 8545 —-server 0.0.0.0
sudo pm2 logs
sudo pm2 list

Figure 1: Setting up Ethereum Blockchain

Figure [I| shows the steps for setting up the Ethereum blockchain on the EC2 in-
stance. The Node.js installation is necessary because Ganache requires Node.js to run
the Ethereum test network, which we will use for storing the encrypted data.

Figure 2| shows the smart contract to store path of encrypted file and location of key
deployed on the Blockchain. It is saved as a fileStorage.sol file.

4 Encrytion Algorithms on AWS Lambda setup

In AWS Lambda, create two Lambda functions called LBSK and Blowfish for the two
encryption algorithms.

LBSK was chosen because of its efficiency in providing security to the data by hashing
them and it is suitable for cloud environments with resource constraints. Blowfish is a

B 4 ® @ Nvignav saangv

(]

©324427bbf9

Sun Aug 11 2024 00:54:18 GMT+0000 (Coordinated Universal Time)

onReceipt

i-043c9e2bd20df7472 (blockchain)
PubliclPs: 52.91.73.245 PrivatelPs: 172.31.35.101

Figure 2: Smart contract deployed on Ethereum blockchain.png

strong symmetric key algorithm that is good for large amount of data encryption since
it is fast enough to process the data though it is not as secure as other algorithms.

B8 lambda_function x Environment Var

B8 ibsk-1-/ fo 2

. lambda_function.py
event, context):
(event 'body "))
c5f8d2f5b"

WK NV R W N

=
[+]

request_type = data["type’]
file_data = data['file']

[
wWN =

if not request_type or not file_data:
T

re

B
[

NRNNRNRPRR P
WRR®WoH~NO

et_key(key, len(file data))
result = encrypt(file data,new_key)

WWWWWNNNNNRN
BPWUNRIOU~NOUN A

w
wn

new_key et_key(key, len(file data))
result = decrypt(file data,new_key)

w
-

Figure 3: Lambda function for LBSK algorithm

Figure |3 shows the lambda function for the LBSK encryption and decryption al-
gorithm.

Figure [4] shows the lambda function for the Blowfish encryption and decryption al-
gorithm. Since the size of the Blowfish algorithm was greater than 250mb (uncompressed),
we created a Docker image to package all the dependencies of the Blowfish algorithm.

Figure [5| shows script to package the Blowfish algorithm as a Docker image. We can
simply run the command ”docker build”.

5 Dependencies and Libraries Required

e Pycryptodome: It is a python package offering low level cryptographic primitives.
This is used by the Blowfish Encryption algorithm.

e lambda handler: This function is used as an entry point into AWS Lambda.

e Built-in Python libraries:
‘os’: Packages that offer ways of facing the operating system; in this case they are
used for the file operations. The only direct use of external modules is os which is
used to handle file paths and write/read files to/from the /tmp directory the only
writeable directory in AWS Lambda.
"json’: Used for parsing JSON input data from the event ’json.loads()” and to con-
struct json repsonses ’json.dumps()’.

'base64’: used for encoding and decoding Base64 strings.

e truffle/contract(Version: 4.6.31): This is a Truffle library designed specifically to
make it easy to work with smart contracts in JavaScript. It aids in the administra-
tion of the artifacts embodying the contracts, aids in retrieving instances deployed
in the network, and aids in contract manipulation by partly concealing some of the
features of Web3.

e web3 (Version: 4.11.1): Web3. js is a JavaScript library with functionality that
enables one to deal with an Ethereum blockchain. This makes for an interface to
communicate to Ethereum nodes using RPC (Remote Procedure Call). This library
is used for tasks like sending the transaction, working with smart contracts, and
querying the data of a blockchain.

mport Blowfish
andom

encrypt file(input file, output file, key):
bs = Blowfish.block size
iv = Random.new().read(bs)

cipher = Blowfish.new(key.encode(), Blowfish.MODE_CBC, iv)

with open(input file, 'rb") as f:
plaintext = f.read()

padding length = bs - len(plaintext) % bs
plaintext += bytes([padding length]) * padding length

ciphertext = iv + cipher.encrypt(plaintext)

with open(output_file, 'wb') as f:
f.write(ciphertext)

decrypt_file(input_file, output_file, key):
with open(input file, 'rb") as f:
ciphertext = f.read()

bs = Blowfish.block size
iv = ciphertext[:bs]
cipher = Blowfish.new(key.encode(), Blowfish.MODE CBC, iv)

plaintext = cipher.decrypt(ciphertext[bs:])

Figure 4: Lambda function for Blowfish algorithm

FROM public.ecr.aws/lambda/python:3.9

handler.py ${LAMBDA TASK ROOT}
blowfish_utils.py ${LAMBDA_TASK_ROOT}
requirements.txt ${LAMBDA_TASK_ROOT}

RUN pip install --no-cache-dir -r reguirements.txt

CMD ["handler.lambda handler™]

Figure 5: Script to create a Docker image of Blowfish algorithm

6 Front End website and AWS S3 setup

We used React framework to setup the application Gackenheimer (2015).To setup our
React website on the EC2 instance, on the same EC2 instance used for hosting the
Ethereum blockchain, we first connect to the EC2 instance and then update and install
the necessary packages: sudo yum update. We then install the dependencies using: npm
install. Then we build the React app using: npm run build. Then we copy the static files
to the AWS S3 bucket. The Figure [6] shows the Front End website where user can enter
data to be encrypted.

We have also setup the Metamask wallet for interacting with the smart contract as
a browser extension Lee and Lee (2019)). The Ganache Truffle Suite provides us with 10
test accounts with 1000 Test Eth each for carrying out testing seamlessly.

Data Upload Download

Upload Data
Low Sensitivity Data
Login

user

High Sensitivity Data

Save

(a) Login view

© Ethereum Mainnet

Data Upload Download

Upload Data l
Name , email ,

-

Welcome back!

The decentralized web awaits

SSN, financial records, ...

Password

Save

Saved Data Need help? Contact

Low: Low sensitivity data 1
High: High sensitivity data 1
Download

(b) Data to be encrypted

Figure 6: Front end view of the React Application

encrypted-data-bkt .

Objects Properties Permissions Metrics Management Access Points

Objects (6) info

C Actions ¥ Create folder

[upload

Objects are the fundamental entities stored in Amazon S3. You can use A\ [4] to get a list of all objects in your bucket. For others to access your objects, you'll need to
explicitly grant them permissions. Le: ore [4

Q

Last modified Storage class

August 11, 2024,
02:20:50 (UTC+01:00)

Standard

August 11, 2024,
02:20:50 (UTC+01:00)

Standard

(a) S3 bucket of Encrypted data
mydata-app-web-host i

Objects Properties Permissions Metrics Management Access Points

Objects (8) info C Actions v Create folder

Obijects are the fundamental entities stored in Amazon S3. You can use nventory [to get a list of all objects in your bucket. For others to access your objects, you'll need to explicitly grant them permissions. Learn

Q 1 ©

Last modified v Storage class v

August 8, 2024, 00:09:25

Standard
(UTC+01:00)

. . August 8, 2024, 00:09:26
L Standard
(UTC+01:00)

August 8, 2024, 00:09:27
B index.html Standard
ol (UTC+01:00)

August 8, 2024, 00:09:28
(UTC+01:00)

Standard

(b) Website files stored in the S3 bucket
Figure 7: S3 buckets having the Ecrypted data and hosted website files

The encrypted files as well as the Front-end and Back-end code is stored on the S3
bucket shown in Figure [7]

References

Gackenheimer, C. (2015). Introduction to React, Apress.

Lee, W.-M. and Lee, W.-M. (2019). Using the metamask chrome extension, Beginning
Ethereum Smart Contracts Programming: With Ezamples in Python, Solidity, and
JavaScript pp. 93-126.

Verma, R., Dhanda, N. and Nagar, V. (2022). Application of truffle suite in a blockchain
environment, Proceedings of Third International Conference on Computing, Commu-
nications, and Cyber-Security: 1C4S 2021, Springer, pp. 693—-702.

	Introduction
	AWS Cloud Setup
	Setup Ethereum blockchain on EC2 instance
	Encrytion Algorithms on AWS Lambda setup
	Dependencies and Libraries Required
	 Front End website and AWS S3 setup

