~

\" National
College
Ireland

Enhancing Cloud Security by integrating
optimized Symmetric Key Encryption
Algorithm in Ethereum Blockchain

MSc Research Project
Cloud Computing

Sarang Shrikhande
x22202226

School of Computing
National College of Ireland

Supervisor: Prof. Diego Lugones

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Sarang Shrikhande
Student ID: x22202226
Programme: MSc in Cloud Computing
Year: 2024
Module: MSc Research Project
Supervisor: Prof Diego Lugones
Submission Due Date: 12th August 2024
Project Title: Enhancing Cloud Security by integrating optimized Symmet-
ric Key Encryption Algorithm in Ethereum Blockchain

Word Count: 7425
Page Count:

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Sarang Shrikhande

Date: 16th September 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Enhancing Cloud Security by integrating optimized
Symmetric Key Encryption Algorithm in Ethereum
Blockchain

Sarang Shrikhande
x22202226

Abstract

Enhancing the Lightweight Berypt Symmetric Key (LBSK) encryption algorithm
with a data sensitivity classification system provides a balanced solution to modern
cloud-based data security challenges. Today, the ever-increasing reliance on cloud
service providers (CSPs) for data encryption has led to organizations facing risks
such as vendor lock-in and centralized control over their security infrastructure.
This method divides data into groups that are sensitive and non-sensitive in order
to address these problems. Sensitive data, which demands higher security, is encryp-
ted using the LBSK Encryption algorithm. Meanwhile, non-sensitive data benefits
from the Blowfish Encryption Algorithm. This dual approach ensures encryption
strength to data sensitivity, optimizing both security and performance. Sensit-
ive data receives enhanced protection through heavier encryption, ensuring robust
security, while non-sensitive data is encrypted more efficiently, reducing computa-
tional overheads and improving the overall performance. By managing location of
encryption keys and file path on a decentralized Ethereum blockchain, this method
also decreases dependency on CSPs and provides more control to the user for its
data. The findings suggest that this adaptive encryption strategy achieves note-
worthy performance improvements for non-sensitive data, with faster encryption
times and reduced resource consumption. At the same time, it maintains high se-
curity for sensitive data. This solution effectively balances the need for strong data
protection with the efficiency demands of modern cloud computing, providing a
flexible and practical approach to managing data encryption based on sensitivity.

Keywords- Cloud Security, LBSK encryption algorithm, Blowfish Algorithm,
Ethereum blockchain.

1 Introduction

The increasing growth of technology is quite exciting, and at the centre of many de-
velopments is cloud computing when it comes to the organization’s use of data. Cloud
computing means the use of services that are made available over the internet or other
‘clouds.” The transition from having internal I'T environments or on-premises services to
cloud-based services provides virtually limitless elasticity, adaptability, and affordability
Chang et al.| (2010).

Integral to cloud computing are the data centres; data centres are physical structures
that hold computers, networking equipment for accumulating extensive data. These

data centres are situated in a manner that gives them the best shot at phenomenal
service, diversity, and safety for the information stored in them. It is at this juncture
that CSPs play a central function within this setup. They operate large data centres
networks and provide several cloud services to companies and clients. Current CSPs such
as AWS, Microsoft Azure, and Google cloud remain as the market giants mainly because
of the secure, reliable, and elastic cloud solutions for numerous services and applications
Choudhary et al.| (2022).

It also means that the power and importance of CSPs are increasing proportionally to
the migration of organizations’ workloads to the cloud. Since there are more companies
relying on the cloud, CSPs’ authority and territory keep on enlarging. This centralization
tendency is changing the very nature of the IT industry and transforming several giant
CSPs into key players controlling the digital environment of millions of companies around
the world. This dynamic and its implications, therefore, form the basis for this paper.

1.1 Motivation and Background

The adoption of cloud services has created a trend of centralization of cloud services
where most of the cloud service providers are dominated by very few CSPs today. This
centralization is explained to some extent by the fact that a large amount of capital is
needed to construct and support the enormous data centres and networks that are at the
core of cloud applications. There are pros and cons to this and some of the advantages
include reduced costs in terms of scaling, better and reliable services, and better security
configurations but on the flip side there are issues to do with data lock in, sovereignty,
and the fact that centralization of this important internet function puts it in the hands
of a few players /Al Nafea and Almaiah| (2021)).

Cloud computing is the new advancement in the process of data storage and utiliz-
ation, enabling higher efficiency and opportunities for companies and users. However,
these advantages are always accompanied by serious concerns, including those related to
the protection of information and its owners. The recent rise in cybercrimes and hacking
incidents also emphasizes the importance of strong security mechanisms to guard inform-
ation assets stored in the cloud environmentHussain et al. (2023)). Storing data in the
cloud has become popular because it offers solutions that are scalable, flexible, and cost
efficient. Many of these CSPs which include AWS, Microsoft Azure, and Google Cloud
are not only data storage spaces but also provide top-notch cryptography services for
data protection. While this centralization must be helpful since it eases the processes
of encryption and storage, it poses a huge reliance and vulnerabilities on CSPs. Op-
erational risks that organizations receiving encryption from these providers encounter
include loss of data, security control, vendor lock-in, and heightened risk in instances
where the vendor’s security is weak Raj et al.|(2021). Hence a number of organizations
are adopting blockchain technology for same data storage and you can see in Figure
how blockchain’s business value addition is growing year-on-year.

1.2 Project Specification

This research looks to enhance the existing state-of-the-art LBSK encryption algorithm
implemented in the public blockchain. The implementation relies on the Ethereum Block-

Business Value-Add of Blockchain: $3.1 Trillion by 2030

100 5
g
(" o
™ L g

0
o £
a0 ?

7
- - l g
T I8 M1 OO M MIT NO3 MM 95 XN W07 @ N 2%

Figure 1: Business Value-Add of Blockchain: $3.1 Trillion by 2030 Beloglazov and Buyyal
(2015))

chain. We will use the Ethereum test net to simulate the network and the number of
nodes and smart contracts. Below is the research question for the proposed implementa-
tion.

1.2.1 Research Question

How can the Ethereum blockchain with advanced symmetric key encryption algorithms,
beyond Lightweight Berypt, further enhance the security and efficiency of cloud-based data
storage and transactions, while maintaining or improving upon the system’s performance
metrics?

In cloud security the passwords and data should be encrypted and not stored in plaintext
form. Several algorithms help in this, and our work is based on improving the LBSK on
the public blockchain. Evidently, the first objective is based on enhancing the primary
performance parameters of LBSK algorithm which include security rating, throughput,
delay, and access control on public blockchain such as Ethereum blockchain. The current
iteration of the LBSK encryption boasts impressive metrics: a 94.5% security rating, 700
transactions per second (TPS), a 2-second authentication delay for 300 MB of data, and
95.5% access control. Although these figures are notable, the security rating isn’t a per-
fect 100%, indicating potential vulnerabilities that could be exploited. Thus, enhancing
these metrics is essential.

In my case, I anticipate that by categorizing user data into different types, the outcome
obtained from the existing LBSK algorithm will be boosted and it is expected to increase
efficiency while at the same time maintaining security in the complete encryption process
on the Ethereum public blockchain.

1.2.2 Research Objective

The research question addresses the following research objectives: Objective 1: Imple-
menting the LBSK and Blowfish encryption algorithms basis whether the data is classified
as sensitive or non-sensitive. Objective 2: Creating smart contracts to store the encryp-
tion keys location in AWS Lambda securely and the Base64 encoding of the file path on

the blockchain. Objective 3: Storing the encrypted files onto the cloud and ensuring to
store the location of keys and encoded file path on blockchain using the smart contract
which will be used for decryption. Objective 4: To measure the performance metrics
like the efficiency, latency and quantitatively analyse how the integration of encryption
algorithms will affect the performance and the security standards.

1.2.3 Research Contribution

In this thesis we dive into enhancing the cloud storage solutions within the versatile Eth-
ereum blockchain framework. We explore a pressing research question stated above. Our
approach is to manually classify data into sensitive and non-sensitive categories, tailoring
encryption methods accordingly. This strategy aims to strengthen security for sensitive
data and streamline processing for less critical information. We hypothesize that this se-
lective encryption technique will improve overall system security and efficiency which are
the key factors in mitigating the risks associated with data breaches and unauthorized
access in cloud computing. By varying encryption intensity based on data sensitivity,
we not only boost security measures but also enhance operational efficiency, a crucial
advantage for real-time applications in cloud environments.

2 Related Work

The research that has been done so far on the Ethereum and other security features, such
as blockchain encryption methods, will be covered in this part. Any gaps in the research
will be noted.

2.1 Blockchain Technology

The two well-known public blockchain systems, Bitcoin and Ethereum, are contrasted in
Rankhambe and Khanuja| (2019)) study, which also emphasizes the fundamental distinc-
tions in functionality between them. The first decentralized digital currency, or bitcoin,
was unveiled in 2008 by an unidentified person going by the name Satoshi Nakamoto. Its
purpose was to enable peer-to-peer transactions without the use of a bank or other central
authority. Rankhambe and Khanuja| (2019)) highlight how the Proof of Work (POW) con-
sensus mechanism and the SHA256 cryptographic method help Bitcoin address problems
such as double spending. Founded by Vitalik Buterin, Ethereum is regarded as more
than just a cryptocurrency; it is a platform for creating and hosting smart contracts
and decentralized apps (DApps) using the Ethash consensus process, which employs the
Keccak SHA-3 cryptography function Buterin (2016)).

2.2 Public Blockchain vs Private Blockchain

Cachin et al.|(2016]) provides details of operational mechanisms in Hyperledger Fabric like
the use of Docker containers for chaincode which is the language of smart contracts in the
Fabric and the distinction between validating and non-validating peers. This structure
improves the security and integrity of transactions and ensures that only authorized nodes
can participate in the consensus process. It is possible to control access and maintain
data confidentiality with this setup in a secure cloud environment.

Aggarwal and Kumar (2021) discusses the broader umbrella of the Hyperledger pro-
jects and puts forward the diverse application and flexibility of the Hyperledger Fabric to
meet various industry demands. It entails the use of Hyperledger for private transactions
within an organization and highlights its capacity to handle sensitive information securely.

While Muthe et al. (2020) describe a novel architecture with the use of Ethereum
blockchain and the Inter Planetary File System (IPFS) for the new internet. This setup
intends to eliminate the problem of centralized control that usually results in data manip-
ulation and privacy. With proxy re-encryption and zero knowledge proof, the system is
able to achieve private and secure transaction of data without revealing the original data.
It also helps in faster information transfer as it is evident from the proposed distributed
architecture, and they have lower latency than other methods such as HTTP.

He et al| (2023) discusses the enhancing charitable donations with the help of Eth-
ereum blockchain and searchable encryption. Traditional charity systems can lack trans-
parency and they can be easily falsified. If all the donation details are recorded on the
Ethereum blockchain, all transactions associated with this system are transparent and
immutable, increasing donors’ trust. Searchable encryption can help to search through
encrypted data and, at the same time, preserve donors’ and beneficiaries’ identities. Also,
smart contracts simplify the process of donations, which minimizes human intervention
in this process and improves the level of transparency and security of charities.

Both these papers focus on applying Ethereum blockchain to enable security, trans-
parency, and efficiency in their respective domains. Muthe et al.| (2020) focuses more
on the creating a decentralized internet infrastructure, addressing broader issues of data
control and privacy on the web side of things. While He et al.| (2023)) discusses a specific
application of blockchain to solve the lack of transparency and trust issue in philanthropic
donations. Both of these systems highlight a need for further research like using stronger
encryption systems and integrating them with the existing technologies.

2.3 Cloud security analysis using Blockchain Technology

A system for safe exchange of medical records with blockchain and searchable encryp-
tion technologies is covered by (Tang et al.| (2021)). It combines searchable encryption
with blockchain technology to protect and simplify the exchange of electronic medical
records across various entities. To guarantee that only authorized users can access and
confirm the integrity of medical records, the created approach stores a worldwide en-
crypted search index and a verification index on a blockchain network. By streamlining
the blockchain’s storage and management of medical data, the approach outperforms
conventional cloud-based searchable encryption, emphasizing security without sacrificing
efficiency. The capacity to manage access through fully functioning access control, which
guarantees that patients and institutions can maintain data privacy securely, is one of
the proposed scheme’s key advantages. The scheme’s feasibility within a local Ethereum
network is confirmed by the experimental results, which demonstrate effective data shar-
ing with low overhead.

A secure public-key encryption system with keyword search (PEKS) that can with-
stand keyword guessing attacks (KGA) is presented by Zhang et al. (2019). It explains a

unique technique called SEPSE that uses superior key management procedures along with
blockchain technology to mitigate these vulnerabilities. The five methods are included
for cloud storage security. Cryptographic parameters are generated, and the foundation
is laid by the Setup algorithm. It comes with four key server setups as well as public and
private keys. The main algorithm, PEKS, manages data encryption using keywords for
searches. Data is encrypted so that keywords can still be used to search through it without
disclosing the information. Keyword-based requests to retrieve data are generated by the
trapdoor algorithm. The KeyRenew method makes it easier for keyword servers to up-
date their keys on a regular basis because over time, these keys may become weaker or
more vulnerable. [Tang et al| (2021)’s study directly addresses our research topic, which
concerns the possibility for enhanced cloud-based data storage and transactions through
the use of improved symmetric key encryption in conjunction with private blockchain
technology. The ideas of searchable encryption, data integrity, and limited access are
relevant to any blockchain implementation even if they use Ethereum and concentrate
on medical data. The paper’s shortcomings, like its lack of a thorough analysis of how
various encryption algorithms affect performance metrics, present a clear opportunity to
discuss further how various, more sophisticated encryption techniques might be incorpor-
ated into blockchain systems like Ethereum to improve cloud security and efficiency.

Zhang et al. (2019)’s paper is vital to our work since it goes beyond conventional
encryption techniques and presents a blockchain-enhanced framework that might be cus-
tomized for Ethereum. With these variations, the ideas and conclusions from the study
based on Ethereum can still offer insightful information for our investigation into Eth-
ereum blockchain. The concepts of improving data security using blockchain and im-
proved encryption are applicable to our research with public blockchain, even though the
underlying blockchain technology is different.

2.4 Decentralized Storage in Cloud

Shah et al.| (2020)) paper deals with the system where data is encrypted and distributed
with the help of Inter Planetary File System (IPFS), while it is protected by the block-
chain and smart contracts with the application of cryptocurrency payment. In|Doan et al.
(2022), the main focus is made upon the modularity to address socio-technical issues and
the potential strategies that need focus in the course of the future research on the decent-
ralized storage. Both papers are clear on the decentralization in enhancing the security
and availability of data although this is done from a different technological angle.The
two research papers, Shah et al.| (2020) and Doan et al. (2022) explore decentralization,
stressing on security, and data retrievability.

The nature of centralized cloud services presents security and privacy challenges and
threats since such providers manage vast amounts of data and it becomes a primary
point of focus for attackers and possibly could be misused by third parties Sriram| (2022)
Blockchain technology provides a solution to the problem by decentralizing data storage
where the data is stored with the help of nodes, and it cannot be tampered or changed as
it is encrypted with the help of smart contracts. Basically, this causes the approach to be
safer, more reliable and more secure compared to the central approach which is always
risky in terms of storing data. Adding the utilization of blockchain with IPFS can also

help expand on these advantages by creating a strong barrier against cyber attacks along
with the strength of distributed storage.

2.5 Symmetric Key Encryption in Cloud

Similar to text data, the image data collected by different sensors and other Industrial
Internet of Things(IToT) devices can be encrypted and stored on the blockchain [Khan
and Byun| (2020). They used an encryption method to secure the image data itself with
blockchain technology for data integrity and access control. This dual technique makes
sure that without the matching decryption keys, data stays unintelligible even if it is inter-
cepted. Image pixels are converted into encrypted values during the process, and these
values are then tracked and controlled via blockchain transactions. |Guerrero-Sanchez
et al.| (2020) suggest that symmetric key encryption techniques can be implemented in
blockchain technology to enhance security in wireless sensor networks (WSNs). However,
there is a research gap here as neither of the articles specifically address cloud-based data
storage and transactions in the context of employing blockchain.

Kumar et al.| (2023) discusses a novel approach to enhance data security in cloud
computing through a combination of compression and encryption techniques. In order
to make obtain optimal computational process combined with effective data protection,
the proposed method relies on Identity-Based Encryption (IBE) and the LZ4 compres-
sion algorithm. This is because the specific method of putting the data in an encrypted
form and then compressing it leads to the reduction of storage space and a high level of
protection against unauthorized access. The system further employs a two-factor authen-
tication approach to widen protection even more, with the major focus being placed on
the protection of data from access by unauthorized persons and secure transfer of data
through the cloud medium.

Gan et al.| (2021)) deals with issues related to privacy and security of data is multi-
client cloud computing environment. To achieve this, the authors present forward private
Secure Searable Encryption (SSE) with a new data structure of the private link and the
public search tree, which makes use of XOR-homomorphic functions. These innovations
refer to settings that must prevent the newly entered documents from disclosing earlier
search terms, thus guarding against file injection attacks. The idea of the scheme is to
provide fast searching for documents as well as fast updating of documents, all the while
being able to operate under multiple clients at low computational cost. Based on experi-
mental simulations, the effectiveness of the proposed scheme is higher than that of other
approaches and its security is enhanced.

Both papers |Gan et al. (2021) nad [Kumar et al.| (2023) aim to improve cloud data
security but from different angles: while one focuses on the searchable encryption for
multiple clients, the other increases the efficiency of data compression and encryption.
Some of the research issues associated with the extension of the fundamental results
include the trade-off of the computational overhead in Multi-Client SSE and the real-
time performance in large-scale cloud settings using state-of-art cryptographic processing
capabilities.

Table [1] shows the summary of the related work.

Article Methodology Research Achievements |Limitations Differentiation
Domain
Rankhambe|Comparison of Bit-|Blockchain Highlighted Limited to Bit-|Focus on Bitcoin
and coin and Ethereum, consensus and|coin and Eth-|and Ethereum
Khanuja POW vs. Ethash cryptographic ereum mechanisms
(2019) differences
Cachin et|Analysis of Hyper-|Public vs|Improved trans-|Focused on Hy-|Detailed Hyper-
al. (2016) |ledger Fabric’s mech-|Private Block-|action security perledger only ledger security
anisms chain features
Aggarwal |Overview of Hyper-|Public vs|Secure handling|Limited to Hyper-|Exploration of
and Kumar|ledger’s flexibility Private Block-|of sensitive info|ledger Hyperledger’s
(2021) chain in organizations applications
Muthe et al.|Proposed Ethereum |Public vs|Faster, secure|Limited by cur-|Ethereum for de-
(2020) + IPFS architecture |Private Block-|transactions, low|rent encryption |centralized inter-
chain latency net
He et al.|Ethereum block- | Charitable Improved trans-|Need for stronger|Blockchain for
(2023) chain with search-|Donations parency, security|encryption transparent
able encryption in donations philanthropy
Tang et al.|Blockchain + search-|Cloud Security|Secure, efficient |Lacks encryp- | Blockchain for
(2021) able encryption for medical data|tion algorithm |medical data
medical records exchange analysis security
Zhang et al.|[PEKS system with|Cloud Security|Mitigated Focused on cloud, | Advanced key
(2019) SEPSE for cloud se- keyword guessing|not blockchain management for
curity attacks cloud security
Shah et al.|IPFS + blockchain|Decentralized |Enhanced secur-|Complex imple-|IPFS 4+ block-
(2020) for decentralized | Cloud Storage |ity, retrievability |mentation chain for data
storage security
Doan et al.|Modularity, socio-|Decentralized |Addressed secur-|Focus on socio-|Socio-technical
(2022) technical issues in|Cloud Storage |ity, availability is-|technical aspects |challenges in
storage sues storage
Sriram Blockchain for de-|Decentralized |Secured data|Limited platform|General benefits
(2022) centralized data stor-|Cloud Storage |against tamper-|exploration of blockchain
age ing storage
Khan Image data encryp-|Symmetric Secured image|Limited to IToT |Blockchain for
and Byun|tion in IIoT with|Key Encryp-|data integrity IToT image secur-
(2020) blockchain tion ity
Guerrero- |Symmetric key en-|Symmetric Enhanced WSN|Doesn’t address|Focused on WSNs
Sanchez et|cryption in WSNs|Key Encryp-|security cloud explicitly |with cloud implic-
al. (2020) |with blockchain tion ations
Kumar et|Compression + en-|Symmetric Improved se-|Computational |Compression +
al. (2023) |cryption for cloud se-|Key Encryp-|curity, storage|overhead in|encryption for
curity tion efficiency large-scale cloud security
Gan et al.|SSE with XOR-|Symmetric Fast, secure |Potential compu-|Enhanced pri-
(2021) homomorphic func-|Key Encryp-|multi-client docu-|tational overhead |vacy, security
tions in clouds tion ment search in multi-client

clouds

Table 1: Summary of Related Work

3 Methodology

In the last few years, we have seen the growing trend of using Cloud Computing and that
too primarily from the top cloud service providers like Amazon Web Services, Google
Cloud Platform and Microsoft Azureﬂ To tackle this over dependence, the research
methodology will carry out encryption of our stored data and the store the location of
encryption keys and filepath on the blockchain and use the AWS Cloud services like S3
bucket to store encrypted files. This approach aims to give more control to user over how
his data(sensitive or non-sensitive) is stored in the cloud.

In this section, we present a methodology for the solution to our research question
whereby we will aim to reduce the dependence on the CSPs and implement our encryp-
tion algorithms with the help of Ethereum blockchain and analyse the gaps identified
in the Section 2. The proposal also takes inspiration from |[Devi et al.| (2015))’s work in
evaluating security and efficiency of different encryption algorithms. We will also discuss
the challenges that we faced during our implementation.

3.1 Data Classification based on sensitivity

We will start with gathering data samples that will be used for classification. We will then
define the criteria for classifying data as sensitive or non-sensitive based on the context.

Sensitive Data Types |Non-Sensitive Data Types
Social Security Number (SSN) Name
Credit Card Information Email Address
Bank Account Numbers Phone Number
Passport Numbers Mailing Address
Driver’s License Numbers Date of Birth

Table 2: Sensitive and Non-sensitive data types

The criteria to identify data as sensitive includes:

Personal identifiable information (PII) like social security numbers.

Financial data like account numbers or transaction details.

Health information protected under regulations like Health Service Executive (HSE).
Confidential business information like trade secrets or strategic plans.

Legal documents.

Non-sensitive data includes things which are already available in the public
domain. The criteria to identify data as non-sensitive includes:

e Name
e Email

e Address

Thttps://www.statista.com/chart /18819 /worldwide-market-share-of-leading-cloud-infrastructure-
service-providers/

e Phone Number
e Date of Birth
e Job Title

Currently, we have provided the user with two different text box inputs for sensitive or
non-sensitive respectively. The user himself marks it whether the data entered is sensitive
or not. Automating this process can be a part of future scope.

3.2 Encryption and Decryption Process
3.2.1 Encryption Process

After classification of data based on sensitivity, we will encrypt the data using the ap-
propriate algorithm.

¢ AWS Lambda and Elastic Container Registry: Lambda is a serverless com-
pute service by AWS where we run our encryption and decryption code for LBSK and
Blowfish encryption algorithm |Barrak et al.| (2024)). For Blowfish algorithm, the depend-
encies required to run it required a size that exceeded Lambda’s size limit of 250 mb.
So, for this reason, the Blowfish algorithm was hosted on a docker image in AWS Elastic
Container Service. This was one of the challenges faced during the implementation. In
the next section, we will discuss how we tackled this problem. Both of these algorithms
are triggered when user uploads a text file.

e LBSK Encryption Algorithm: It is a symmetric block cipher which is known for
its security. Apply the LBSK algorithm to sensitive data.

¢ Blowfish Encryption Algorithm: Applied to non-sensitive data.

e File Upload: Upload the encrypted files to an Amazon S3 bucket.

3.2.2 Decryption Process

When the user wants to read the encrypted file, following is the process to decrypt and
download the file:

oFile Retrieval: We will use encoded file path stored in the smart contract to get
the encrypted file that needs to be retrieved from Amazon S3.

eDecryption Lambda Function: A backend API with parameters like the decryption
key and encoded file path to the S3 bucket where it is stored(from the smart contract)
will trigger a Lambda function to decrypt the file.

eFile Download: Provide the decrypted file to the user for download.

3.2.3 Key rotation in the Decentralized System

Key rotation in the decentralized system was the challenging part. We have kept the key
in AWS lambda function variables. We can manually rotate keys in lambda. Storing keys
directly on the public blockchain was not an option as it is not secure. The location of the
encryption keys and the encoded file path are securely stored by the smart contract on
the Ethereum blockchain. The keys are not stored directly on the blockchain but securely
handled within an AWS Lambda function. We can create a hash of the encryption keys
to store them more securely and this can be a part of the future work.

10

3.3 Integration with Smart Contracts

Once the file is encrypted and uploaded onto the AWS S3 bucket, the key will be stored
in the Lambda function and the encoded path of the key will be stored in the smart
contract.

We will develop a smart contract for storing the location of encryption keys which are
generated after applying the encryption algorithm through AWS lambda function.

We will use the Ganache Truffle suite which will host our private Ethereum blockchain
for deploying the smart contract [Satyam et al.| (2023). The smart contract is to be written
in Solidity programming language and we haveinstalled the Ganache Truffe suite on an
EC2 instance.

3.4 Tools and Equipments used:
3.4.1 Ethereum Test Network

We will use the Ganache from Truffle Suite for launching of the Ethereum test network?
It is installed on an EC2 instance which is easier to run our own test blockchain since
the blockchain development tools are quite ﬂexiblel—f]. This setup provides us with an
isolated environment to run test without putting in real money to buy trade ether for
smart contracts.

3.4.2 AWS Lambda Function and S3 bucket

AWS Lambda function is one of the core components of the proposed encryption and
storage solution that is supposed to be triggered right after user uploads a text fildT
During its execution, the user decides whether the data uploaded is sensitive or not and
then the file will be encrypted with Lightweight Berypt Symmetric Key Encryption or
Blowfish Encryption Algorithm. The selected algorithm guarantees that the file will
be protected according to its level of sensitivity. Then, the Lambda function saves the
encrypted file into the AWS S3 bucket to take advantage of S3’s capability in secure and
scalable data storage[?]

We will store the location of decryption key and the encoded S3 file path in a smart
contract on the Ethereum blockchain to maintain a secure and immutable record. This
smart contract guarantees the management of the encryption keys, as well as the storing
of file paths that cannot be changed or deleted. In this way, the idea of the system is based
on the possibility of using the decentralized and transparent feature of the blockchain to
ensure that only the authorized person will have the ability to open the encrypted files.
Such integration of AWS Lambda, S3, and Ethereum blockchain lays the foundation of
a reliable and secure system to process the sensitive data while maintaining high avail-
ability and the security measures.

Zhttps://archive.trufflesuite.com/docs/truffle/quickstart
3https://www.youtube.com/watch?v=wA2ltwauvRw
4https://docs.aws.amazon.com/lambda,/
Shttps://docs.aws.amazon.com/s3/

11

4 Design Specification

Reducing over dependence on the Cloud Service Providers as well as empowering the users
to secure their own data is a challenge. In this section, we will discuss the techniques as
well as the architecture for our underlying implementation and secure storage solution.
The system that we proposed leverages the combined power of blockchain technology,
cloud services as well as the encryption algorithms to ensure the user data is handled
in a secure and efficient manner. The current state of the art system employs a similar
blockchain integration for securing user data Banushri and Karthika| (2023). The goal is
to take it even further by segregating the data into two categories: sensitive data and
non-sensitive data. The data types that are as mentioned in the Section 3.

User

Uploads text file for
secure storage User selects whether
—»| it is sensitive data or

not

Encrypted file is
——» uploadedto S3 —
bucket

Lightweight Bcrypt
Encryption

/ N Ethereum Network . \

: : S
. : Ea:;;::t;:f'rrg Base6é ancoding| - Smart Contract to store
Blockchain Metwork v " of Location of | | #————— the file path and location <
§|FeE=anen || Eneryption key | of Decryption key Smart contract

in solidity
language

Local Ethereum Network Policy Database . Cloud Server
{Ganache)
Qﬂ AWS EC2 Instance /

Figure 2: Proposed architecture

Our proposed architecture in the above Figure [2| shows the complete breakdown of
the steps that the user will follow to secure their data and reduce the dependency on the
CSPs in terms of the security of his data.

The user will first upload the data or the files which he/she wants to securely store on
the cloud. A front end is created for the same to provide the user with the Graphical user
interface to interact with the system. The user will have the option to choose whether to
encrypt his data using either Blowfish Encryption or the LBSK encryption depending on
the type of data being uploaded (Blowfish for non-sensitive data and LBSK for sensitive
data).

So, the file will be first uploaded, the Lambda function that contains the encryption
code will open and read the contents of the file and then begin the encryption process.

The start time and the end time of the encryption process will be recorded using the
Node.js script using the 'Date’ object. This data will be useful to carry out various tests
and evaluations for judging how efficient our system actually is. The encrypted content
of the file is then saved to two new files on S3 containing sensitive and non-sensitive data.

12

We also want to securely store the location or the file path in the S3 bucket onto
the smart contract. Hence, when the file is encrypted and stored in S3 bucket, a smart
contract runs that asks user to execute the smart contract that will store the location of
encryption keys of both the files as well as the file path on the Ethereum blockchain.

Finally, the response is then returned with status 200 to indicate the successful ex-
ecution. The location of Encryption key that is present in the lambda function along
with the encoded file path in S3 bucket will be stored as a smart contract on the Eth-
ereum blockchain. The smart contract for storing these details is written in the Solidity

languagd?]

4.1 The Encrpytion Process

1. User logs in and enters the data to be encrypted.

2. When the user clicks save, lambda function is triggered for LBSK and Blowfish
algorithm.

3. LBSK algorithm runs on the sensitive data and Blowfish algorithm runs on the
non-sensitive data.

4. Both these types of datas are stored in an encrypted format in the S3 bucket
securely.

5. After the data is stored, a smart contract runs and the metamask wallet prompts
the user to pay gas fee to store the location of encryption keys(encoded) and the
file paths on the Ethereum blockchain.

6. We can check the logs and the timestamps on the EC2 instance of a new block on
the Ehtereum blockchain.

7. To retrieve the data, the user clicks the download button.

8. This retrieves the files from the S3 bucket using the details stored on the smart
contract.

9. The file is decrypted using the keys and User can view the downloaded file.

4.2 Ethereum Test Network

We will use the Ethereum Test network that will help us in the simulation of the Encryp-
tion and Decryption algorithms. We are using the Ganache from Truffle Suite for our
smart contract development purpose.The Truffle Suite provides us with a framework for
personal blockchain development and it includes various tools for the same. It can provide
an environment for writing and testing smart contracts. It can also streamline various
processes like compilation and deployment of smart contracts to the blockchain and man-
ages the binaries. With the ability to perform automated testing for contracts written in
Solidity, it is easy to ensure that the smart contracts work as intended. Ganache provides
us with personal Ethereum blockchain for development purpose and to test our smart
contracts. It can mine transactions instantly as it uses test Eth to test the functionality

Shttps://docs.soliditylang.org/en/v0.8.26/

13

of the smart contracts. It is easily customizable with parameters like block time, gas
price, etc to have different simulations. We have deployed the Ganache on AWS EC2
instance.

Hence with the help of these development tools, a smart contract is created to store
the location of the file path of the encrypted file in the AWS S3 bucket and the location
of the key that will be used to decrypt the data. This will ensure that unauthorized
access to the file and decryption key is avoided as the key is not directly stored on the
blockchain but within AWS lambda function. This is especially helpful as we are using
a public blockchain in the form of Ethereum. This way of storing the encoded file path
and location of keys is much safer.

4.3 Docker Containerization

Docker containerization is used for a work around in our implementation part. We elim-
inated the common ”working on single machine” problem, as docker provides a uniform
deployment environment. The Blowfish encrpytion algortihm had dependencies of lar-
ger size than what is permitted on the AWS Lambda function. AWS Lambda permits
maximum Deployment package size of 50 mb when compressed and when the package is
unzipped, the limit is 250 mb. Due to this technical limitation, we are creating a Docker
image and of Blowfish algorithm with all the dependencies and libraries packaged within
it and pushed the Docker image in the AWS Elastic Container Registry.

4.4 AWS Lambda functions and S3 bucket

When a user uploads a file to the system, he will have the option to declare whether the
data is sensitive or non-sensitive. When this file is uploaded, an AWS Lambda function
is triggered. This function applies the Lightweight Berypt Symmetric Key (LBSK) en-
cryption for sensitive data or the Blowfish encryption algorithm for non-sensitive data.
The function then encrypts the file and uploads the encrypted version to S3 bucket in a
scalable and highly durable manner. Also, the decryption process is handled by Lambda
function that retrieves the encrypted file from S3 using the base64 encoding of the file path
from our smart contract and the path to where the encrpytion keys are stored securely
within lambda environment, decrypts it using the appropriate key, and makes it available
for download. This integration of AWS Lambda and S3 creates a robust, automated
mechanism for secure data storage and retrieval which enhances the overall efficiency and
security of our system. This serverless compute service from Lambda makes our system
both cost-effective as well as helps in scalability.

5 Implementation

5.1 Smart contract deployment

The smart contract to store the path of the Encryption key and the base64 encoding of
the file path to the AWS S3 bucket is deployed on the Ganache Truffle suite which is an
Ethereum test network to deploy smart contracts.

The Figure [3] shows smart contract successfully deployed as Block number 2 on our
Ethereum test Net.

14

i-043c9e2bd20df7472 (blockchain)
PublicIPs: 52.91.73.245 PrivatelPs: 172.31.35.101

Figure 3: Smart contract deployed on Ethereum Test Net

We installed the Node.js dependencies which are defined in our package.json file. This
installs all the necessary packages and dependencies for the smart contract deployment.

The smart contracts were first compiled using Truffle. Truffle uses the Solidity com-
piler that compiles the ”.sol” file in the ”contracts” directory.

We then migrated our smart contracts to the blockchain using the ”truffle migrate”
command according to the specification written in the file ”truffle-config.js”.

5.2 File upload for Encryption

When the user uploads the data and clicks on save button, the data is encrypted and
stored in the S3 bucket. Consecutively, he will be asked to confirm the transaction on
the blockchain. For this, metamask wallet is setup to interact with our website.

We added a network in the metamask with Remote Procedure Call(RPC)

URL: http://52.91.73.245:8545/ and Chain ID: 1337.

This RPC is used to connect the Metamask wallet to the Ethereum Network and it
enables us to use the Ethereum Compatible APIs. The RPC url tells the wallet where
to send transactions and interact with the smart contract. When the user confirms the
blockchain transaction, the encoded path of the encrypted file that is uploaded on S3
bucket and the location of the encryption keys is stored on the Ethereum blockchain.

5.3 Encrpytion and Decryption process

In the Figure 4] and Figure [5 the request is first sent to the endpoint URL to the AWS
with the POST request method and type JSON. The request is asking to encrypt the
data using LBSK algorithm and the text to be encrypted contains the SSN number and
the Credit card number.

The same can be done for Blowfish algorithm as well. To encrypt data using Blowfish
algorithm, we first encode the input text to Base64. This is done because this algorithm
operates on binary data. Post encryption, the output data is in bytes that may not be
printable in any text encoding. It can range from '0x00’ to '0xFF’ (hexadecimal) and it
may include special characters. The Blowfish encryption by first encoding the data to

15

https://ws7sadizd56cfrvydd6j6kbneulfykaf.lambda-url.us-east-1.on.aws/

Params Authorization Headers (9) Body Pre-req

none form-data x-www-form-urlencoded @ raw

“type!
"file

i

Body

Pretty

Body

form-data x-www-form-urlencoded @ raw binary

Body Coo

Pretty

“decrypted_file":

Figure 5: Data decrypted by LBSK algorithm

Base64 then encrypting it as well as decrypting the file to get the data back is shown in
the Figure [6] and Figure [7] respectively.

5.4 AWS Lambda function and the encrypted data stored

As discussed in the Design Specification, AWS Lambda provided us with a serverless
functionality to run our encryption and decryption algorithms based on data sensitivity.
It is triggered when a text file is uploaded by the user and then it encrypts the file and
stores it in the AWS S3 bucket.

The operation of Blowfish encryption and decryption uses the Cipher Block Chaining
(CBC) mode. In encryption process, the algorithm first selects a random Initialization
Vector (IV) and then reads the plain text from the input file. It then adds padding to
make the size of plaintext divisible by the block size-of Blowfish, which is 8 bytes, before
proceeding to encrypt the padded plaintext using Blowfish with the supplied key. The
resulting ciphertext is written to the output file with the IV as the first bytes of the
output file. In decryption, the algorithm first obtains the IV from the ciphertext and
then decrypts the remaining part to get back the padded plaintext and then strips the

16

AP https://aSufcfrhjvhcduyqdkvztqdpkeOhffqg.lambda-url.us-east-1.0n.aws/

POST https://aSufcfrhjvheduyqdkvztqdpkeOhffqg.lambda-url.us-east-1.on.aws/

Figure 6: Data encrypted by Blowfish algorithm

@ https://aSufcfrhjvhcduyqdkvztqdpkeOhffqg.lambda-url.us-east-1.on.aws/

POST https://aSufcfrhjvheduyqdkvztqdpkeOhffqg.lambda-url.us-east-1.on.aws/

Authorization ~ Headers (8) Body Pre-request Script ~ Tests Settings

none form-data x-www-form-urlencoded @ raw binary

Figure 7: Data decrypted by LBSK algorithm

padding from the plaintext and writes the original plaintext to the output file. This
makes sure the content of the files is protected using a proper encryption and decryption
mechanism and the IV provides randomness to each encryption exercise.

The AWS Lambda function for LBSK performs encryption and decryption of file data
that is passed as a Base64 string. When the trigger occurs, it assesses the incoming request
whether to perform an “encrypt” or a “decrypt” operation. For encryption, it generates
a key of suitable length then XOR’s the file data with the key and then encodes the result
in Base 64; the function then returns the encrypted file. For decryption, it decodes the
Base64 input and performs the procedure vice versa, that is, it decodes the encrypted
data by performing XOR operation with the key and returns the decrypted content.
The’get_key’ function also makes it possible to match the length of the encryption key to
that of the entered data by utilizing a base key and its repetitions. The function checks
the input data and generates proper responses in accordance with the request type, which

17

implies data safety and correct action with the files.

6 Evaluation

We carried out two tests by changing the file size and observing how every permutation
of algorithm applied give us varied results. We used 50 iterations of encryption and
decryption for file size of 100 kilobytes and then for a larger file size of 1 Megabyte. The

6.1 Experiment 1: Encrypting file of size 100 kilobyte
6.1.1 Encrypt and Decrypt using Blowfish algorithm

When a user uploads a file and marks it as non-sensitive, it is encrypted using the Blowfish
algorithm. The average encryption time is 950 milliseconds and the decryption time is
1350 milliseconds, based on 50 iterations. Figure shows the time per iteration in
milliseconds.

6.1.2 Encrypt and Decrypt using LBSK algorithm

When a user uploads a file and marks it as sensitive, it is encrypted using the LBSK
algorithm. The average encryption time is 3500 milliseconds and the decryption time
is 2300 milliseconds based on 50 iterations. Figure shows the time per iteration in
milliseconds.

[Encryption - Blowish [Decryption - Blowfish Encryption - LBSK [T Decryption - LBSH

N S R SR SRS

(a) Blowfish algorithm on 100kb file (b) LBSK algorithm on 100kb file

(c) Blowfish and LBSK algorithm on
100kb file

Figure 8: Comparing LBSK and Blowfish Algorithm on 100kb file

18

6.1.3 Encrypt and Decrypt using both algorithms simulataneously

When half of the data is encrypted by Blowfish encryption and other half by LBSK
encryption, it took an average of 1200 miliseconds to encrypt the entire data and average
of 1450 miliseconds for decryption as shown in Figure

6.2 Experiment 2: Encrypting file of size 1 Megabyte
6.2.1 Encrypt and Decrypt using Blowfish algorithm

When a user uploads a file and marks it as non-sensitive, it is encrypted using the Blowfish
algorithm. The average encryption time is 14000 milliseconds, and the decryption time
is 11000 milliseconds based on 50 iterations. Figure Da] shows the time per iteration in
milliseconds.

6.2.2 Encrypt and Decrypt using LBSK algorithm

When a user uploads a file and marks its as sensitive, it is encrypted using the LBSK
algorithm. The average encryption time is 20000 milliseconds, and the decryption time
is roughly the same with high variance, based on 50 iterations. Figure [9b]shows the time
per iteration in milliseconds.

6.2.3 Encrypt and Decrypt using both algorithms simulataneously

When half of the data is encrypted by Blowfish encryption and other half by LBSK
encryption, it took an average of 13000 miliseconds to encrypt the entire data and average
of 8000 miliseconds for decryption as shown in Figure

SR SR P B D P D N S

(a) Blowfish algorithm on 1mb (b) LBSK algorithm on 1mb (c) Blowfish and LBSK al-
file file gorithm on 1mb file

Figure 9: Comparing LBSK and Blowfish Algorithm on 1mb file

6.3 Experiment 3: Encrpyt Decrypt using variable sensitive
data

On a 100kb file, when 20% of the data is encrypted by LBSK and 80% of by Blowfish
encryption, it took an average of 2700 miliseconds to encrypt the entire data and average
of 2100 miliseconds for decryption as shown in Figure

This is as close to real life test case as we could get because not all data is sensitive
or non-sensitve all the time.

19

SC I T R (R S S I

Figure 10: Comparing LBSK and Blowfish Algorithm with 20% sensitive and 80% non-
sensitive data

Experiment |File Algorithm Avg Encryp-|Avg Decryp-
Size tion Time(ms)|tion Time(ms)
Experiment 1100 KB |Blowfish 950 1350
Experiment 1100 KB |[LBSK 3500 2300
Experiment 1100 KB |Blowfish(50kb) +/1200 1450
LBSK(50kb)
Experiment 2|1 MB |Blowfish 14000 11000
Experiment 2|1 MB |LBSK 20000 20000 (high vari-
ance)
Experiment 2|1 MB |Blowfish(50kb) +(13000 8000
LBSK(50kb)
Experiment 3 {100 KB {20% LBSK + 80%2700 2100
Blowfish

Table 3: Summary of experiments: Encryption and Decryption Times for Blowfish and
LBSK Algorithms

6.4 Potential vulnerabilities and management challenges

e There can be vulnerabilities in smart contract if it contains any bugs. These loop-
holes can be exploited which can lead to financial losses if they’re not audited.

e Management of private keys can be a challenge. If these are lost or a theft takes
place, it can lead to irretrievable loss of Intellectual Property.

e Limited scalability of the blockchain can lead to bottlenecks with high transaction
volumes. This can lead to slower processing and higher transaction fees.

e Compliance with the regulatory bodies can be challenging when it comes to De-
centralized storage.

e Integration of blockchain with the traditional systems can be challenging and it
might require more time, effort and expertise.

It is worth the effort and cost to work around these challenges as the enhanced secur-
ity and transparency could justify the implementation costs for organizations handling
sensitive data. It also reduces the dependency on the cloud service providers for securely

20

storing the encrypted data hence reducing vendor lock-in and improves the control of
user over their data.

6.5 Discussion

The above experiments as shown in Table [3| provide meaningful insights about the effi-
ciency and performance of our dual encryption approach. For 100kb file size, the LBSK
took around 3500 ms and 2300 ms to encrypt and decrypt the entire file. If we divided
the task between LBSK and Blowfish algorithms assuming half of the data is sensitive,
it took 1200 ms and 1450ms to encrpyt and decrypt the file. The results got even better
when the file size was increased to 1 mb. The LBSK took roughly 20,000 ms to both en-
crypt and decrypt the file. If we divided the task between LBSK and Blowfish algorithms
assuming half of the data is sensitive, it took 13000 ms and 8000 ms to encrpyt and
decrypt the file. We can say that as file size increases, this approach only becomes more
practical as it results in significant time savings.

To make a direct comparison, the time reduced from 3500ms to 2700 when using both
algorithms simualtaneously on a 100kb file as compared to just using LBSK encryption
algorithm(20% percent of data was sensitive hence applied LBSK and 80% data was
non-sensitive hence applied Blowfish)

These findings have significant inference for data storage security. By integrating
LBSK as well as Blowfish encryption in the blockchain framework, our proposed system
has effectively achieved increased efficiency as compared to just having LBSK encryption
as well as strong encryption for the sensitive data provided by the user. We have also
reduced the dependency on the CSPs to encrypt and manage user data by using the
decentralized Ethereum blockchain thereby enhancing user control and security. This
confirms that data security can be improved beyond LBSK encryption algorithm when
using dividing the data and encrypting it according to its sensitivity while also improving
upon the efficiency of the entire process while also maintaining the system’s security.

Practical impact of your system and industries that can adopt: This system
could be valuable for industries requiring secure document management with auditability,
such as:

Healthcare: for managing patient records

Legal: for contract management and case files
Financial services: for transaction records and audits
Government agencies: for secure record keeping

The effectiveness of this system will be high in such industries that need to secure sens-
itive data efficiently. The dual encryption of LBSK and Blowfish algorithms with our
blockchain framework, the system provides security without hampering the performance.
Large organizations exposed to heavier volumes of sensitive data or those need to decrease
their dependency on CSPs while enhancing their data control could gain a lot from this
approach.

21

7 Conclusion and Future Work

The overall objective of this study,if we refer back to our research question, was to improve
the efficiency of the implementation of LBSK encryption algorithm on the blockchain.
The proposed encryption security model by using the LBSK algorithm for the sensit-
ive data with a combination of Blowfish algorithm for the non-sensitive data proved the
study’s effectiveness of a dual type of encryption model with both performance improve-
ment as well maintaining security standards.

The combination of these encryption methods with a blockchain framework addresses
such issues related to over dependence on the CSPs: vendor lock-in and loss of control
over the data. The Ethereum blockchain was used to store the reference of encryption
keys and the encoded file paths. This reduced the reliance on CSPs and enhanced user
control over data.The outcomes of experiments proved that this approach enhances the
process of encryption and minimizes the amount of time that takes to compute for non-
sensitive data and the security of sensitive data remains intact. The classification of data
depending on the sensitivity of the information using algorithms LBSK and Blowfish led
to an increase efficiency in the encryption and decryption times and thus, the system’s
performance is higher, but the security did not suffer.

Thus, this strategy can be seen as an effective and realistic solution for the manage-
ment of data encryption, which contributes to further cloud security within the framework
of decentralized blockchain technologies. Possible future work may include automating
the classification of user data and exploring the integration of other advanced encryption
algorithms to further enhance the system’s security and performance. Also, storing the
cryptogrpahic hash of the location of the encryption keys in the smart contract and writ-
ing efficient smart contracts to keep the gas fee low and further analysis for an alternative
blockchain solution can be looked into.

References

Aggarwal, S. and Kumar, N. (2021). Hyperledger, Advances in Computers, Vol. 121,
Elsevier, pp. 323-343.

Al Nafea, R. and Almaiah, M. A. (2021). Cyber security threats in cloud: Literat-
ure review, 2021 international conference on information technology (ICIT), IEEE,

pp. 779-786.

Banushri, A. and Karthika, R. (2023). Hyperledger blockchain and lightweight berypt
symmetric key encryption to boost cloud computing security effectiveness, 2023 Inter-
national Conference on Circuit Power and Computing Technologies (ICCPCT), IEEE,
pp- 1525-1530.

Barrak, A., Fofe, G., Mackowiak, L., Kouam, E. and Jaafar, F. (2024). Securing aws
lambda: Advanced strategies and best practices, 202/ IEEFE 11th International Con-
ference on Cyber Security and Cloud Computing (CSCloud), IEEE, pp. 113-119.

Beloglazov, A. and Buyya, R. (2015). Openstack neat: a framework for dynamic and
energy-efficient consolidation of virtual machines in openstack clouds, Concurrency and
Computation: Practice and Experience 27(5): 1310-1333.

22

Buterin, V. (2016). Ethereum: platform review, Opportunities and challenges for private
and consortium blockchains 45: 1-45.

Cachin, C. et al. (2016). Architecture of the hyperledger blockchain fabric, Workshop on
distributed cryptocurrencies and consensus ledgers, Vol. 310, Chicago, 1L, pp. 1-4.

Chang, W. Y., Abu-Amara, H. and Sanford, J. F. (2010). Transforming enterprise cloud
services, Springer Science & Business Media.

Choudhary, A., Verma, P. K. and Rai, P. (2022). Comparative study of various cloud
service providers: A review, 2022 International Conference on Power, Enerqgy, Control
and Transmission Systems (ICPECTS), IEEE, pp. 1-8.

Devi, A., Sharma, A. and Rangra, A. (2015). A review on des, aes and blowfish for image
encryption & decryption, International Journal of Computer Science and Information
Technologies 6(3): 3034-3036.

Doan, T. V., Psaras, Y., Ott, J. and Bajpai, V. (2022). Toward decentralized cloud
storage with ipfs: opportunities, challenges, and future considerations, IEEFE Internet
Computing 26(6): 7-15.

Gan, Q., Wang, X., Huang, D., Li, J., Zhou, D. and Wang, C. (2021). Towards multi-client
forward private searchable symmetric encryption in cloud computing, IEEE Transac-
tions on Services Computing 15(6): 3566-3576.

Guerrero-Sanchez, A. E.; Rivas-Araiza, E. A., Gonzalez-Cordoba, J. L., Toledano-Ayala,
M. and Takacs, A. (2020). Blockchain mechanism and symmetric encryption in a
wireless sensor network, Sensors 20(10): 2798.

He, B., Feng, T., Fang, J., Liu, C. and Su, C. (2023). A secure and efficient charit-
able donation system based on ethereum blockchain and searchable encryption, IEEE
Transactions on Consumer Electronics .

Hussain, S., Ashraf, S., Al Hamadi, H., Abideen, Z. U. et al. (2023). A critical analysis
on cybercrimes, 2023 International Conference on Business Analytics for Technology
and Security (ICBATS), IEEE, pp. 1-T7.

Khan, P. W. and Byun, Y. (2020). A blockchain-based secure image encryption scheme
for the industrial internet of things, Entropy 22(2): 175.

Kumar, S., Sundaresan, P., Logith, R. and Mathivanan, N. (2023). A data security-
based efficient compression and encryption for cloud computing, 2023 7th International
Conference on Trends in Electronics and Informatics (ICOEI), IEEE, pp. 647—653.

Muthe, K. B., Vemuru, T. S. T., Sharma, K. and Mohammad, N. S. (2020). Decentranet-
an ethereum, proxy re-encryption and ipfs based decentralized internet, 2020 11th
International Conference on Computing, Communication and Networking Technologies

(ICCCNT), IEEE, pp. 1-5.

Raj, M., Tahir, S., Khan, F., Tahir, H. and Zulkifl, Z. (2021). A novel fog-based frame-
work for preventing cloud lock-in while enabling searchable encryption, 2021 Inter-

national Conference on Digital Futures and Transformative Technologies (ICoDT2),
IEEE, pp. 1-6.

23

Rankhambe, B. P. and Khanuja, H. K. (2019). A comparative analysis of blockchain
platforms—bitcoin and ethereum, 2019 5th international conference on computing, com-
munication, control and automation (ICCUBEA), IEEE, pp. 1-7.

Satyam, K., Sharma, A. and Devi, R. (2023). Implementing blockchain based security
in ehr using ganache, 2023 6th International Conference on Contemporary Computing
and Informatics (1C3I), Vol. 6, IEEE, pp. 276-284.

Shah, M., Shaikh, M., Mishra, V. and Tuscano, G. (2020). Decentralized cloud stor-
age using blockchain, 2020 4th International conference on trends in electronics and
informatics (ICOEI)(48184), IEEE, pp. 384-389.

Sriram, G. (2022). Resolving security and data concerns in cloud computing by utilizing a
decentralized cloud computing option, International Research Journal of Modernization
in Engineering Technology and Science 4(1): 1269-1273.

Tang, X., Guo, C., Choo, K.-K. R., Liu, Y. and Li, L. (2021). A secure and trust-
worthy medical record sharing scheme based on searchable encryption and blockchain,
Computer Networks 200: 108540.

Zhang, Y., Xu, C., Ni, J., Li, H. and Shen, X. S. (2019). Blockchain-assisted public-key
encryption with keyword search against keyword guessing attacks for cloud storage,
IEEE Transactions on Cloud Computing 9(4): 1335-1348.

24

	Introduction
	Motivation and Background
	Project Specification
	Research Question
	Research Objective
	Research Contribution

	Related Work
	Blockchain Technology
	Public Blockchain vs Private Blockchain
	Cloud security analysis using Blockchain Technology
	Decentralized Storage in Cloud
	Symmetric Key Encryption in Cloud

	Methodology
	Data Classification based on sensitivity
	Encryption and Decryption Process
	Encryption Process
	Decryption Process
	Key rotation in the Decentralized System

	 Integration with Smart Contracts
	Tools and Equipments used:
	Ethereum Test Network
	AWS Lambda Function and S3 bucket

	Design Specification
	The Encrpytion Process
	Ethereum Test Network
	Docker Containerization
	AWS Lambda functions and S3 bucket

	Implementation
	Smart contract deployment
	File upload for Encryption
	Encrpytion and Decryption process
	AWS Lambda function and the encrypted data stored

	Evaluation
	Experiment 1: Encrypting file of size 100 kilobyte
	Encrypt and Decrypt using Blowfish algorithm
	Encrypt and Decrypt using LBSK algorithm
	Encrypt and Decrypt using both algorithms simulataneously

	Experiment 2: Encrypting file of size 1 Megabyte
	Encrypt and Decrypt using Blowfish algorithm
	Encrypt and Decrypt using LBSK algorithm
	Encrypt and Decrypt using both algorithms simulataneously

	Experiment 3: Encrpyt Decrypt using variable sensitive data
	Potential vulnerabilities and management challenges
	Discussion

	Conclusion and Future Work

