

Configuration Manual

MSc Research Project

Cloud Computing

Arpit Shah

Student ID: 22208224

School of Computing

National College of Ireland

Supervisor: Prof. Sean Heeney

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

Arpit Shah

Student ID:

22208224

Programme:

Cloud Computing

Year:

2023-2024

Module:

MSC Research Project

Lecturer:

Prof. Sean Heeney

Submission

Due Date:

12/08/2024

Project Title:

Empirical Study of Cloud Deployment Strategies: Guiding the choice

between Containerization, Traditional and Hybrid Deployment

Word Count:

2499 Page Count: 14

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Arpit Shah

Date:

12/08/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Arpit Shah

Student ID: 22208224

1 AWS EC2 Setup

1. Log in to AWS Management Console: Open the AWS Management Console at

https://aws.amazon.com/ and sign in with your AWS credentials.

2. Navigate to EC2 Dashboard: From the console dashboard, click on "Services" and

then select "EC2" under the "Compute" section.

3. Choose an Amazon Machine Image (AMI): In the "Choose an Amazon Machine

Image (AMI)" section, search for "Ubuntu 22.04" and select the appropriate AMI.

4. Choose an Instance Type: Select t3.xlarge as the instance type. This type provides a

balance of compute, memory, and network resources.

5. Select a Key Pair

a. Select an existing key pair or create a new one to securely connect to your

instance.

b. Download the key pair file (.pem file) and keep it safe.

c. Confirm you have access to the selected key pair, as you will need it to

connect to your instance.

6. Configure Instance

a. Click "Next: Configure Instance Details".

b. Configure the instance as needed. For basic setup, the default settings are

usually sufficient.

7. Add Storage

a. Click "Next: Add Storage".

b. Specify the storage size and type. Choose 30 GB as storage.

8. Add Tags

a. Click "Next: Add Tags".

b. Add key-value pairs to tag your instance. Tags help manage and identify your

resources.

9. Configure Security Group

a. Click "Next: Configure Security Group".

b. Create a new security group or select an existing one.

c. Add rules to allow SSH (port 22) access from your IP address.

10. Review and Launch

a. Click "Review and Launch".

b. Review your instance configuration and click "Launch".

2 Connecting to Your EC2 Instance using WSL Ubuntu

1. Open WSL Ubuntu

2. Navigate to the Directory Containing Your .pem File:

2

a. Use the cd command to navigate to the directory where your .pem file is

located

3. Set Permissions for Your Key Pair File

a. Set the correct permissions for your key pair file to ensure it is not publicly

viewable.

4. Connect to Your EC2 Instance

a. Use the ssh command to connect to your EC2 instance. Replace your-key-

pair.pem with the name of your key pair file and your-ec2-public-ip with the

public IP address of your EC2 instance.

3 Prometheus Setup

1. Downloading and Installing Prometheus

2. Configuring Prometheus

3. Add the Following Configuration

a. The configuration should be as shown in figure 1 and if it does not exist, make

sure to edit the file.

cd /mnt/c/path/to/your-key-pair.pem

chmod 400 your-key-pair.pem

ssh -i "your-key-pair.pem" ubuntu@your-ec2-public-ip

wget

https://github.com/prometheus/prometheus/releases/download/v2.2

6.0/prometheus-2.26.0.linux-amd64.tar.gz

tar xvf prometheus-2.26.0.linux-amd64.tar.gz

cd prometheus-2.26.0.linux-amd64/

sudo nano prometheus.yml

https://github.com/prometheus/prometheus/releases/download/v2.26.0/prometheus-2.26.0.linux-amd64.tar.gz
https://github.com/prometheus/prometheus/releases/download/v2.26.0/prometheus-2.26.0.linux-amd64.tar.gz

3

4. Save and Exit the editor (Ctrl+X, then Y, then Enter).

5. Running Prometheus

a. Start Prometheus using the following command

b. Prometheus should now be running and accessible at: http://<ec2-public-

ip>:9090

4 Grafana Setup

1. Installing Grafana

 Run the above commands to install Grafana on your EC2 instance.

2. Starting Grafana

 Start and enable the Grafana service to run at boot.

3. Accessing Grafana

a. Open a web browser and navigate to: http://<ec2-public-ip>:3000

b. Log in with the default credentials:

i. Username: admin

ii. Password: admin

c. Change the password when prompted.

4. Adding Prometheus as a Data Source in Grafana

a. In Grafana, click on the Gear icon (settings).

b. Navigate to Data Sources and click on Add data source.

c. Select Prometheus from the list.

d. Enter the URL: http://<ec2-public-ip>:9090 (replace <ec2-public-ip> with

your EC2 instance's public IP address).

e. Click on Save & Test to verify the connection.

5 JMeter Setup

1. Installing Java

a. Update Package Index

sudo apt-get install -y software-properties-common

sudo add-apt-repository "deb https://packages.grafana.com/oss/deb stable

main"

wget -q -O - https://packages.grafana.com/gpg.key | sudo apt-key add –

sudo apt-get update

sudo apt-get install grafana

sudo systemctl start grafana-server

sudo systemctl enable grafana-server

sudo apt update

/prometheus --config.file=prometheus.yml

4

Run the above command to update the package index.

2. Install OpenJDK

Run the above command to install OpenJDK 11 (or the latest version available).

3. Verify Java Installation

Run the above command to check the installed Java version.

4. Setting JAVA_HOME Environment Variable

a. Find Java Installation Path

Run the above command and note the path of the selected Java version (e.g.,

/usr/lib/jvm/java-11-openjdk-amd64).

b. Set JAVA_HOME

b. Add the following lines at the end of the file (replace with your actual Java

path):

Save and close the file (press Ctrl+X, then Y, and Enter).

c. Apply the Changes

Run the above command to reload the .bashrc file and apply the changes.

5. Downloading and Installing JMeter

Run the above command to download JMeter.

6. Extract the Downloaded File

Run the above command to extract the JMeter files.

7. Navigate to JMeter Directory

sudo apt install openjdk-11-jdk -y

java -version

sudo update-alternatives --config java

nano ~/.bashrc

export JAVA_HOME=/usr/lib/jvm/java-11-openjdk-amd64

export PATH=$JAVA_HOME/bin:$PATH

source ~/.bashrc

wget https://archive.apache.org/dist/jmeter/binaries/apache-

jmeter-5.6.2.tgz

tar -xvzf apache-jmeter-5.6.2.tgz

5

Run the above command to navigate to the JMeter directory.

8. Creating and running a JMeter Test Plan

a. Create the JMeter Test Plan

b. Refer figure 2 shows the test plan syntax

c. Run JMeter Test Plan in Non-GUI Mode

Replace /path/to/test-plan.jmx with the path to your JMX file.

Replace /path/to/results.csv with the desired path for the results file.

6 MongoDB

1. Import the MongoDB Public GPG Key

a. Import the MongoDB GPG key

2. Create a MongoDB List File

a. Create a list file for MongoDB

3. Install MongoDB Packages

a. Update the package list

b. Install the MongoDB packages

4. Start MongoDB

a. Start MongoDB

b. Verify that MongoDB has started successfully

5. Access MongoDB Shell

a. Start the MongoDB shell

cd apache-jmeter-5.6.2

sudo nano test-plan.jmx

./bin/jmeter -n -t /path/to/test-plan.jmx -l

/path/to/results.csv

curl -fsSL https://www.mongodb.org/static/pgp/server-7.0.asc |

sudo gpg --dearmor -o /usr/share/keyrings/mongodb-archive-

keyring.gpg

echo "deb [arch=amd64,arm64 signed-

by=/usr/share/keyrings/mongodb-archive-keyring.gpg]

https://repo.mongodb.org/apt/ubuntu $(lsb_release -cs)/mongodb-

org/7.0 multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-

org-7.0.list

sudo apt-get update

sudo apt-get install -y mongodb-org

sudo systemctl start mongod

sudo systemctl status mongod

mongosh

6

b. Connect to a remote MongoDB instance if necessary

7 RabbitMQ
RabbitMQ is a message broker that supports multiple messaging protocols

1. Update the Package Index

2. Install RabbitMQ

3. Start and Enable RabbitMQ

4. Verify RabbitMQ is Running

5. Enable RabbitMQ Management Console

6. Access RabbitMQ Management Console

a. Navigate to http://<ec2-public-ip>:15672 and log in with default credentials

(guest/guest).

8 Docker

1. Navigate to Your Project Directory

a. Open Command Prompt and navigate to the directory containing your

Dockerfile (where you want to build the Docker image)

2. Build Docker Images

a. Build the Docker image using the docker build command. Replace your-

dockerhub-username/image-name:tag with your Docker Hub username, image

name, and tag

b. Repeat the above command for each service if you have multiple Dockerfiles

in your project.

3. Login to Docker Hub

a. Log in to your Docker Hub account using

Enter your Docker Hub username and password when prompted.

4. Push Docker Images

a. Push your Docker images to Docker Hub using the docker push command

mongosh "mongodb://<remote-ip>:27017"

sudo apt-get update

sudo apt-get install -y rabbitmq-server

sudo systemctl start rabbitmq-server

sudo systemctl enable rabbitmq-server

sudo systemctl status rabbitmq-server

sudo rabbitmq-plugins enable rabbitmq_management

cd path\to\your\project-directory

docker build -t your-dockerhub-username/image-name:tag .

docker login

docker push your-dockerhub-username/image-name:tag

7

Repeat the above command for each image you built.

9 Kompose
Kompose is a tool that helps users to convert Docker compose files in Kubernetes

compatible files

1. Install Kompose on Windows

a. Download Kompose: Go to the Kompose GitHub Releases page and download

the latest Windows release. For example,

i. Download kompose-windows-amd64.exe for 64-bit Windows systems.

2. Rename and Move Kompose

a. Rename the downloaded file to kompose.exe.

b. Move kompose.exe to a directory included in your system's PATH. Typically,

this could be C:\Windows\System32.

3. Verify Kompose Installation

a. Open Command Prompt and run

You should see the version information if Kompose is installed correctly.

4. Convert Docker Compose to Kubernetes

a. Navigate to Your Docker Compose Directory

i. Use Command Prompt to navigate to the directory containing your

docker-compose.yml file

b. Convert Docker Compose to Kubernetes Resources

i. Run the following command to generate Kubernetes resources from

the Docker Compose file

This will create several YAML files (deployment.yaml, service.yaml, etc.) in

the directory.

5. Copy YAML Files to Your EC2 Instance

a. Use scp (secure copy) to transfer your YAML files to your EC2 instance.

Replace <path-to-yaml> with the path to your local YAML files and <ec2-

user> and <ec2-public-ip> with your EC2 instance details:

b. Repeat for each YAML file if necessary

6. Deploy Kubernetes Resources on EC2

a. Apply each YAML file to your Kubernetes cluster using kubectl

b. Verify that the Kubernetes resources are running correctly

kompose version

cd path\to\your\docker-compose-directory

cd path\to\your\docker-compose-directory

scp -i /path/to/your-key-pair.pem <path-to-yaml> ec2-user@<ec2-

public-ip>:/home/ec2-user/

kubectl apply -f deployment.yaml

kubectl apply -f service.yaml

Repeat for other YAML files

kubectl get pods

kubectl get services

https://github.com/kubernetes/kompose/releases

8

c. Access Your Application

Access your application using the IP and port shown in the output

10 MicroK8s

1. Install RabbitMQ Exporter

a. Install MicroK8s

b. Add your user to the MicroK8s group

c. Check the MicroK8s status

2. Enable Prometheus and Grafana

a. Enable Prometheus, Grafana, and DNS

3. Verify the services

a. Check the running pods in the observability namespace

b. Check the services

4. Accessing Grafana

a. Get the Cluster IP of Grafana service

Access Grafana by navigating to the IP and port shown in the command

above, typically http://<Cluster-IP>:3000.

Login with default credentials admin/admin.

11 Node Exporter

Node Exporter is used to expose machine metrics in Prometheus format

1. Install Node Exporter

a. Download the Node Exporter package

b. Extract the downloaded file

wget

https://github.com/prometheus/node_exporter/releases/download/v

1.3.1/node_exporter-1.3.1.linux-amd64.tar.gz

tar xvf node_exporter-1.3.1.linux-amd64.tar.gz

sudo snap install microk8s --classic

sudo usermod -a -G microk8s $USER

sudo chown -f -R $USER ~/.kube

newgrp microk8s

microk8s status --wait-ready

microk8s enable prometheus dashboard dns

microk8s kubectl get pods -n observability

microk8s kubectl get svc -n observability

microk8s kubectl get svc -n observability kube-prom-stack-

grafana

kubectl get svc

9

c. Move into the directory

2. Run Node Exporter

a. Start Node Exporter

b. To keep it running in the background, you can use

Verify that Node Exporter is running by visiting: http://<ec2-public-

ip>:9100/metrics

12 MongoDB Exporter

MongoDB Exporter helps in exporting MongoDB metrics in Prometheus format

1. Install MongoDB Exporter

a. Download MongoDB Exporter

b. Extract the downloaded file

c. Move into the directory

2. Run MongoDB Exporter

Verify by visiting: http://<ec2-public-ip>:9216/metrics

13 RabbitMQ Exporter

RabbitMQ Exporter is used to export RabbitMQ metrics in Prometheus format

1. Install RabbitMQ Exporter

1. Pull the RabbitMQ Exporter Docker image

2. Run the RabbitMQ Exporter

cd node_exporter-1.3.1.linux-amd64/

./node_exporter

nohup ./node_exporter &

wget

https://github.com/percona/mongodb_exporter/releases/download/v

0.20.4/mongodb_exporter-0.20.4.linux-amd64.tar.gz

tar xvf mongodb_exporter-0.20.4.linux-amd64.tar.gz

cd mongodb_exporter-0.20.4.linux-amd64/

./mongodb_exporter --mongodb.uri=mongodb://<mongodb-

username>:<mongodb-password>@<ec2-public-ip>:27017

sudo docker pull kbudde/rabbitmq-exporter:latest

sudo docker run -d --name rabbitmq-exporter \

 -p 9419:9419 \

 -e RABBIT_USER="admin" \

 -e RABBIT_PASSWORD="admin" \

 -e RABBIT_URL="http://<ec2-public-ip>:15672" \

 kbudde/rabbitmq-exporter:latest

10

3. Check if RabbitMQ Exporter is running

14 Traditional Deployment Setup

In traditional deployment setup, all components of the application, including databases and

RabbitMQ are installed directly on the EC2 instance without using any containers or

Kubernetes.

1. Prerequisites

a. AWS EC2 instance with Ubuntu 22.04

b. SSH access to the EC2 instance (refer to Section 2)

2. Installing and Configuring Components

This setup requires all softwares and services to be installed directly on the EC2 instance.

a. Prometheus: Refer to Section 3.

b. Grafana: Refer to Section 4.

c. JMeter: Refer to Section 5.

d. MongoDB: Refer to Section 6.

e. Node Exporter: Refer to Section 11.

f. MongoDB Exporter: Refer to Section 12.

g. RabbitMQ: Refer to Section 7.

h. RabbitMQ Exporter: Refer to Section 13.

3. Running the Application

a. After installing and configuring all necessary components, start each service

manually using the commands provided in their respective sections.

b. Application Deployment: For details about the applications being deployed,

including access to their source code, refer to Section 18.

15 Containerized Deployment Setup

In the containerized deployment setup, the application with its dependencies is containerized

and managed using microK8s which is a lightweight Kubernetes distribution.

1. Prerequisites

a. MicroK8s installed on your EC2 instance (refer to Section 10).

b. Docker installed on the EC2 instance (refer to Section 8).

2. Building and Pushing Docker Images

a. Build Docker Images

i. Refer to Section 8 for steps to build Docker images for each service.

b. Push Docker Images to Docker Hub

i. Push the Docker images to Docker Hub (refer to Section 8).

3. Enable Necessary Add-ons in MicroK8s

a. Enable Prometheus, Grafana, and DNS as detailed in Section 10.

4. Deploy the Application on MicroK8s

a. Apply the Kubernetes resources using MicroK8s

curl http://<ec2-public-ip>:9419/metrics

microk8s kubectl apply -f deployment.yaml

microk8s kubectl apply -f service.yaml

Apply other YAML files as needed

11

b. Verify that all resources are running correctly

5. Accessing the Application

a. Access the application through the services exposed by MicroK8s. Use

kubectl get svc to retrieve service IPs and ports.

b. Application Deployment: For details about the applications being deployed,

including access to their source code, refer to Section 18.

16 Hybrid Deployment Setup

In Hybrid Deployment Setup, MicroK8s is used to manage containerization and other

services like MongoDB and RabbitMQ are installed directly on the EC2 instance.

1. Prerequisites

a. MicroK8s installed on the EC2 instance (refer to Section 10).

b. Docker installed on the EC2 instance (refer to Section 8).

2. Installing and Configuring Direct Services

a. MongoDB: Refer to Section 6.

b. RabbitMQ: Refer to Section 7.

3. Deploying Containerized Components with MicroK8s

a. Install and Configure MicroK8s

i. Follow the setup and configuration steps in Section 10.

ii. For more information on MicroK8s, visit the official MicroK8s

documentation (Canonical Ltd., 2024).

b. Enable Add-ons in MicroK8s

i. Enable Prometheus, Grafana, and DNS as detailed in Section 10.

c. Deploy Kubernetes Resources

i. Convert Docker Compose files to Kubernetes YAML files using

Kompose (refer to Section 9).

ii. Transfer the YAML files to your EC2 instance.

iii. Deploy the resources using MicroK8s

4. Integrating the Environment

a. Configure Connections

i. Ensure the containerized application components can communicate

with MongoDB and RabbitMQ using the EC2 private IP address.

b. Monitor and Manage

i. Use Prometheus and Grafana (enabled in MicroK8s) to monitor the

entire environment.

5. Verifying the Setup

a. Check All Services

i. Use microk8s kubectl get pods and systemctl status to ensure all

services are running.

b. Access the Application

microk8s kubectl get pods

microk8s kubectl get services

microk8s kubectl apply -f deployment.yaml

microk8s kubectl apply -f service.yaml

Apply other YAML files as needed

12

i. Use the IP addresses and ports exposed by MicroK8s to access the

application.

ii. Application Deployment: For details about the applications being

deployed, including access to their source code, refer to Section 18.

17 Deployment Strategy Recommendation Tool

1. Prerequisites

a. Python 3.x installed on your local machine or EC2 instance.

b. Necessary Python packages installed (pandas, scikit-learn, joblib, streamlit).

2. Install Required Packages

a. Open a terminal and run the following command to install the necessary

Python packages

3. Create the Dataset

a. Ensure you have a CSV file named deployment_recommendations.csv with

the following columns: Application, Performance, Scalability, Cost,

Reliability, Operational Complexity, and Recommended Deployment.

4. Populate the Dataset

a. Fill in the dataset with the characteristics of different applications and their

corresponding recommended deployment strategies.

5. Run the Training Script

a. Use the provided script to train the model and save it as model.pkl

b. Verify the Model

i. Ensure that model.pkl is generated successfully and contains the

trained model.

6. Start the Streamlit Application

a. In your terminal, run the following command

b. Access the Application

i. After running the command, Streamlit will provide a local URL

(usually http://localhost:8501/). Open this URL in your web browser to

access the tool.

7. Using the Tool

a. Select Application Characteristics

i. Use the dropdown menus to select the characteristics of your

application (e.g., Application type, Performance, Scalability).

b. Get Deployment Recommendation

i. Click the "Recommend Deployment Strategy" button to receive a

recommended deployment strategy based on the input characteristics.

pip install pandas scikit-learn joblib streamlit

python train_model.py

streamlit run app.py

13

8. User Interface

9. Accessing the Source Code

a. The source code for the Deployment Strategy Recommendation Tool can be

found in the following GitHub repository (Shah, 2024c).

18 Applications Deployed Using Different Strategies

This section provides an overview of the applications that are deployed using the Traditional,

Containerized, and Hybrid deployment strategies outlined in this manual. Each application

has its source code hosted on GitHub, where you can access, review, and download the code

for deployment.

1. Application 1: Static Web App

a. Deployment Strategies: Traditional, Containerized

b. Repository: For the source code, refer to Shah (2024a).

2. Application 2: Database Application

a. Deployment Strategies: Traditional, Containerized, Hybrid

b. Description: For the source code, refer to Knaopel (2023).

3. Application 3: Multithreaded Application with RabbitMQ

a. Deployment Strategies: Traditional, Containerized, Hybrid

b. Repository: For the source code, refer to Shah (2024b).

4. Accessing the Source Code

a. The source code for each application is available on GitHub. The links

provided above will direct you to the respective repositories, where you can

clone or download the code.

14

b. Detailed instructions for deploying these applications using the Traditional,

Containerized, and Hybrid strategies are provided in the relevant sections of

this manual.

References

AWS Documentation, 2024. Amazon EC2 Documentation. Available at:

 https://docs.aws.amazon.com (Accessed: 11 August 2024).

Apache JMeter, 2024. JMeter Documentation. Available at:

 https://jmeter.apache.org/usermanual/get-started.html (Accessed: 11 August 2024).

Canonical Ltd., 2024. MicroK8s documentation. Available at: https://microk8s.io/docs

 (Accessed: 11 August 2024).

Docker Documentation, 2024. Docker Documentation. Available at: https://docs.docker.com

 (Accessed: 11 August 2024).

Grafana, 2024. Grafana Documentation. Available at: https://grafana.com/docs/ (Accessed:

 11 August 2024).

Knaopel, 2023. Dockerized Frontend, Backend, and Database. GitHub repository. Available

 at: https://github.com/knaopel/docker-frontend-backend-db (Accessed: 11 August 2024).

Kubernetes Kompose, 2024. Kompose Documentation. Available at: https://kompose.io/

 (Accessed: 11 August 2024).

MongoDB Documentation, 2024. MongoDB Documentation. Available at:

 https://www.mongodb.com/docs/manual/ (Accessed: 11 August 2024).

Prometheus, 2024. Prometheus Documentation. Available at: https://prometheus.io/docs

 (Accessed: 11 August 2024).

RabbitMQ, 2024. RabbitMQ Documentation. Available at:

 https://www.rabbitmq.com/documentation.html (Accessed: 11 August 2024).

Shah, A., 2024a. Static Web Application. GitHub repository. Available at:

 https://github.com/arpitpshah/static-web-application (Accessed: 11 August 2024).

Shah, A., 2024b. Multithreaded Application. GitHub repository. Available at:

 https://github.com/arpitpshah/multithreaded-application (Accessed: 11 August 2024).

Shah, A., 2024c. Deployment Strategy Recommendation Tool. GitHub repository. Available

 at: https://github.com/arpitpshah/recommendation-tool (Accessed: 11 August 2024).

