

Empirical Study of Cloud Deployment

Strategies: Guiding the choice between

Containerization, Traditional and Hybrid

Deployment

MSc Research Project

Cloud Computing

Arpit Shah

Student ID: 22208224

School of Computing

National College of Ireland

Supervisor: Sean Heeney

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Arpit Shah

Student ID:

22208224

Programme:

Cloud Computing

Year:

2023-2024

Module:

MSC Research Project

Supervisor:

Sean Heeney

Submission Due

Date:

12/08/2024

Project Title:

Empirical Study of Cloud Deployment Strategies: Guiding the

choice between Containerization, Traditional and Hybrid

Deployment

Word Count:

9406 Page Count: 23

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Arpit Shah

Date:

12/08/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Empirical Study of Cloud Deployment Strategies:
Guiding the choice between Containerization,

Traditional and Hybrid Deployment

Arpit Shah

Student ID:22208224

Abstract
The empirical study provides a comprehensive evaluation of cloud deployment strategies

– containerization, traditional virtual machines (VMs), and hybrid methods for three

application types like static web applications, database web application and multithreaded

applications with RabbitMQ. Motivated by the need for practical, data-driven guidance for

cloud practitioners, the study evaluates key metrics such as performance, scalability, cost,

reliability, and operational complexity. The findings shows that containerized deployment

offer better performance and scalability for static web applications, hybrid deployments

excel in performance, scalability and reliability for database web applications and

multithreaded applications but both deployment strategies require complex setups which

increases the operational complexity. While traditional VM deployments offer easy setup

and low-cost offering usability for smaller applications and applications which do not have

much load like academic projects or proof of concepts. A decision tree-based

recommendation tool was developed to support practitioners in selecting appropriate

deployment strategies based on the empirical data. Despite some of the limitations, including

short evaluation period and resource constraints on scalability tests, this study shows a

direction for future research in long performance analysis, broader application types, in depth

scalability test and enhancing the recommendation tool. This future work will also help in

commercializing this research study by the support of recommendation tool. The research

ultimately provides actionable insights and practical tools to optimize cloud deployment

strategies for its users, to ensure informed decision-making based on application

requirements and scenarios.

1 Introduction

Cloud computing has been growing as an element of IT systems that provides flexible,

economical and scalable options for a wide range of applications. As businesses and developers

transition towards cloud setups, the decision of selecting appropriate deployment strategy is

important. The most discussed and used deployment strategies are categorized as

containerization, traditional virtual machines (VMs) and hybrid deployment strategy. Each

strategy has its unique benefits as well as some challenges, that makes the selection even more

complex and often biased based on theoretical discussions.

The motivation behind this research consists of many sides. Firstly, discussing about the larger

audience that is the cloud practitioners and developers require a need to make informed decisions

regarding the deployment strategies as per their application needs. The new practitioners

generally face a lot of challenges due to lack of clear, empirically backed guidance on the

advantages and disadvantages of each strategy. For example, containerization utilizes lightweight

tools such as Docker and Kubernetes to be efficient in resource utilization and fast in

development. However, it can also bring complexity in management and performance

consistency (Pahl et al., 2019). Traditional VMs provide reliability and isolation but at a cost of

more resource overhead and slower times for deployment (Ahmad et al., 2015; Kozhirbayev &

Sinnott, 2017).

2

In addition to this, hybrid deployment strategies, combining an element from containerization and

one from the traditional methods, find themselves much more suitable because they pick on the

strengths of the approaches. However, there exists limited empirical evidence to guide

practitioners on when and how effectively various deployment strategies can be used (Azumah et

al., 2018). The identified gap is very critical which needs to be addressed particularly for

developers or cloud practitioners working on academic projects or small-scale applications that

require performance optimization, scalability and cost efficiency without any extra resources

(Lohumi et al., 2023).

1.1 Research Question

How can empirical performance data across a wide variety of applications be leveraged for

guiding the selection between containerized, traditional, and hybrid deployment strategies?

The question stated is important in selecting appropriate deployment strategy for various

application scenarios by understanding the strengths, weaknesses and in detail usage of all the

three deployment strategies.

It has the following objectives:

1. Perform an in-depth empirical comparison of containerized, traditional, and hybrid

deployment strategies using various real-world application use-cases.

2. Analyze the metrics from a perspective of performance, scalability, efficiency, cost, and

operational complexity to yield proper actionable insights.

3. Provide practical guidelines and recommendations for cloud practitioners and developers

to select the appropriate deployment strategy based on the empirical evidence.

Hypothesizing that containerization will exhibit superior resource efficiency and faster

deployment times, traditional VMs will provide better isolation and reliability, and hybrid models

will offer a balanced approach, this study aims to test these hypotheses through rigorous

empirical evaluation.

There are previous studies that had identified gaps in cloud deployment strategies. Felter et al.

(2015) compared the performance of VMs and containers, where containers proved to better for

significant performance benefits but there was lack in the study which required broader empirical

data across several applications scenarios. Pahl et al. (2019) reviewed container technologies and

stated about the requirement for the in-depth empirical evaluations based on several real-world

applications. Also, (Azumah et al., 2018) explored hybrid cloud deployments, which identified

data location as its major challenge and propose policy-based methods to improve deployment

efficiency.

To gain an understanding further, this study uses a combination of mixed methods integrating

quantitative performance measures with qualitative insights. This study involves deploying

several types of applications like dynamic web applications, microservice architecture,

blockchain applications, multithreaded applications across different cloud deployment strategies

to derive empirical data. Metrics such as scalability, latency, cost and resource utilization will be

analysed to offer a detailed comparison. It aims to establish new benchmarks for cloud

deployment strategies and enhance the understanding of all 3 strategies and their proper usage,

which will lead to optimized deployment solutions.

The report is structured as follows:

1. Introduction: It outlines the research purpose, motivation, question, objectives, hypothesis

and contributions.

2. Related Work: This section states the study within existing literature and critically

reviews similar work.

3. Methodology: This section details the research design, procedures and techniques used.

4. Design Specification: This section mentions the several techniques and frameworks used

5. Implementation: This section mentions the entire deployment process in detail.

3

6. Evaluation: It will show the detailed analysis of the results presenting key findings in the

form of metrics.

7. Conclusion and Future work: It restates the research question and objective by discussing

the effectiveness and limitations of the study as well as suggest directions for future

research.

2 Related Work

This shows the present study withing the existing literature, providing critical review of related

work on containerized, traditional and hybrid deployment strategies in cloud computing. The aim

is to highlight the strengths and weaknesses of each study along with the gaps that this research

aims to address and how this study will fulfil it.

2.1 Containerization vs Traditional Virtualization

Felter et al. (2015) conducted a study where performance comparison was done between virtual

machines (VMs) and Linux containers using KVM as the hypervisor and Docker as the container

manager. They found containers offered better performance mainly with respect to startup time

and resource efficiency. The performance benefits of containers were context-dependent which

suggest a detailed empirical study to generalize these results across wide variety of applications.

This study provides a comprehensive performance analysis, but it also highlights the need for

more empirical evidence. This study addresses the gap by providing empirical data across

different applications to generalize the findings.

Kozhirbayev and Sinnott (2017) extended this comparison by evaluating container-based

technologies for cloud environments. The study highlights the flexibility and lightweight nature

of containers, that makes them more suitable for resource managements and dynamic scaling. But

these benefits were specific for scenarios and mainly based on flexibility which stated the

requirement for further evaluation across different context based on several applications. This

will be address by evaluating container performance in various types of applications.

Narasimhulu et al. (2023) investigated the impact of containerization on the deployment process

in DevOps. Their study stated that while containers streamline the deployment pipeline, but they

also introduce complexities in orchestration and monitoring, which requires robust tools and

practices to manage effectively. Their study mainly focused on practical insights into DevOps

integration, but it highlights the challenge of orchestration. Our research will analyse the

efficiency of different orchestration tools mainly Kubernetes to address this gap.

2.2 Performance Evaluation of Deployment Strategies

Shah et al. (2021) provided comprehensive benchmarking and performance evaluation of various

VMs and containers for cloud-based scientific workloads The consequence of that is, while in

general containers are a better solution with performance in mind, VMs give better isolation and

stability, which is important for some scientific applications. Their study was strong in detailed

benchmarking but performed for scientific applications only; this study will fill this gap by

providing detailed benchmarking for a wide range of applications.

Performance study for comparison between the two architectures of microservices and serverless

was carried out by Fan et al. (2020). Results showed that microservices deployed within

containers have more resources and are optimized. Thus, such microservices provide better

performance than their serverless counterparts, despite cold-start problems. As related to the

results derived from their study, performance optimization is the main focus in the below-

referenced study; however, it brought to light latency challenges on serverless architecture. This

4

research would analyze the latency for diverse architectures that encompasses containerized and

hybrid models, hence offer a more in-depth evaluation.

Al Qausar et al. (2023) investigated performance metrics for containerized applications and

revealed detailed evaluation of metrics, such as scaling and efficiency in containerized

environments. Our results show that containerized deployment is performing satisfactorily across

various metrics, but at the same time, it also points out the issues with performance stability and

resource management.

2.3 Hybrid Deployment Models

Vu et al. (2022) introduced a predictive hybrid autoscaling method for containerized applications,

which combined vertical and horizontal scaling techniques using machine learning to predict

future demand and optimize resource utilization. The results were enhancements in maintaining

response time below QoS constraints while achieving high resource utilization. The strength of

this study is its advance predictive scaling, but its implementation is complex. We will explore

simpler hybrid scaling techniques to address this complexity.

2.4 Comprehensive Review and Trends

Pahl et al. (2019) provided a comprehensive review of cloud computing technologies that

addresses various aspects such as architecture, orchestration and performance optimization. They

stated the need for empirical studies to evaluate the practical implications of container

technologies in different application scenarios. This study’s strength is its thorough review, but it

also calls for more empirical data which will be provided by our study after practically evaluating

data in real-world scenarios to fill this gap.

Watada et al. (2019) observed emerging trends, techniques, and open issues in containerization,

identifying key areas for improvement and future research. They also discussed regarding the

need for better performance optimization and orchestration tools. This study’s strength is its

future opportunities, but it also highlights significant open issues. The challenges will be

addressed as part of our study.

2.5 Comparative Studies of Deployment Models

Patel and Kansara (2021) conducted a comparative study of cloud deployment models that

provided insights into the strengths and weaknesses of different approaches. They concluded that

as containerization offers flexibility and resource efficiency, traditional VMs offer better isolation

and stability. This further indicates that the comparative approach is the main strength of this

study, which also shows the need of hybrid models to balance such trade-offs. To Meet these

tradeoffs of flexibility and isolation, the use of hybrid deployment strategy is required to

overcome the challenges in their study.

2.6 Summary and Gaps

The reviewed literature shows significant advancements in containerization, traditional and

hybrid deployment models. While containers provide several benefits in performance and

resource efficiency, they also create management and handling challenge of stateful application

instances. Traditional VMs perform better in terms of isolation and stability but it is done at the

cost of resource overhead. A hybrid deployment strategy is needed for maintaining a balance

between the constraints under both strategies that shall give more empirical data for guidance.

This study tries to fill the gaps by providing a detailed empirical comparison between

containerized, traditional, and hybrid deployment strategies based on different types of real-world

applications. The practical guidance for cloud practitioners and developers are provided through

the evaluation of metrics which includes performance, scalability, cost, reliability and operational

complexity over a wide range of applications.

5

Study Focus Key Findings Strengths Weaknesses Gaps How We Are Addressing

Felter et al.

(2015)

VMs vs.

Containers

Containers offer better

performance in startup

time and resource

efficiency

Comprehensive

performance

analysis

Context-

dependent

results

Need for broader

empirical data

Providing empirical data

across diverse

applications

Kozhirbayev

and Sinnott

(2017)

Container-based

Technologies

Containers suitable for

dynamic scaling;

specific scenario

benefits

Flexibility and

lightweight

Scenario-

specific

benefits

Need for

evaluation across

contexts

Evaluating container

performance in various

application scenarios

Narasimhulu

et al. (2023)

DevOps and

Containers

Streamlined

deployment but

complex orchestration

Integration with

DevOps

Orchestration

challenges

Need for robust

orchestration tools

Analyzing orchestration

tool efficiency

Shah et al.

(2021)

VM and

Container

Configurations

Containers offer better

performance, VMs

provide isolation

Benchmarking

scientific

workloads

Limited to

scientific

applications

Broader

application

scenarios

Evaluating various

application types

Fan et al.

(2020)

Microservices

vs. Serverless

Microservices offer

better control over

resource allocation

Performance

optimization

Cold start

latency in

serverless

Need for latency

optimization

Assessing latency in

different architectures

Al Qausar et

al. (2023)

Container-based

Applications

Containers deliver

satisfactory

performance for

various metrics

Extensive

evaluation of

metrics

Performance

stability and

resource

management

issues

Need for better

evaluation of

containerized

environments

Investigating performance

stability and resource

management challenges

through experiments

Ebert et al.

(2016)
DevOps

Importance of CI/CD

with containers

Supports

consistent

environments

Requires robust

orchestration

Need for better

orchestration tools

Assessing advanced

orchestration solutions

Pahl et al.

(2019)

Container

Technologies

Comprehensive

review of container

technologies

In-depth

analysis of

architectures

Need for

empirical

studies

Practical

evaluation in real-

world scenarios

Providing empirical

evaluation data

Watada et al.

(2019)

Containerization

Trends

Identified emerging

trends and open issues

Better

perspective

Significant

open issues

performance

optimization

Addressing performance

optimization challenges

Patel &

Kansara

(2021)

Deployment

Models

Comparative study of

deployment models

Comparative

approach

Trade-offs

between

flexibility and

isolation

Need for hybrid

models

Exploring hybrid

deployment strategies

Table 1: Summarization of related works

3 Research Methodology
Building on the foundation set in the related work section, the research wants to give an empirical

evaluation of all the three cloud deployment strategies: traditional (EC2), containerized (Docker

+ MicroK8s), and hybrid based on the type of different applications. By deploying different kinds

of applications, it is assumed that the assessment will be comprehensive with respect to

performance, scalability, reliability, cost, and operational complexity of each strategy. The

methodology includes a detailed research approach, equipment and tools used, experimental

setup, data collection, data evaluation and interpretation along with the recommendation tool to

ensure a in depth investigation.

1 https://microk8s.io/docs

2 https://jmeter.apache.org/

6

3.1 Research Approach

The primary objective of this study is to empirically evaluate the effectiveness of three cloud

deployment strategies by using three various types of application such as static web application,

database web application and multithreaded application with RabbitMQ to build a better guiding

framework for the cloud practitioners and developers to allow them select appropriate strategies

based on the application and not only follow the theoretical concepts but also have proper real

world observations. The applications were selected to provide a wide range of real-world

scenarios that allows in depth assessment of each strategies strengths and weaknesses. The study

involves deploying each application using traditional, containerized, and hybrid methods on

Amazon Web Services (AWS), followed by proper monitoring, testing and evaluation.

3.2 Equipment and Tools

The wide ranges of tools were used to ensure a proper experimental setup. The cloud

infrastructure was deployed on Amazon Web Services (AWS) because of its flexibility and

universal adoption. The t3.large instance was used for traditional deployments and t3.xlarge

instance was used for containerized and hybrid deployments. Docker was used for containerizing

applications and MicroK8s was used to manage the Kubernetes environments for containerized

deployment 1. Prometheus and Grafana was used for monitoring and visualization of various

metrics 4 5. The load testing was conducted by using Apache JMeter to stimulate real-world user

traffic 2. Horizontal Pod Autoscaler (HPA) was used for managing the horizontal scaling in

containerized environment 3 and the development of recommendation tool was done by using

python and decision tree algorithm which also included Streamlit for creating user-friendly web

interface for the tool.

3.3 Experimental Setup

The experimental setup involves configuring three unique deployment environments on AWS

EC2. The traditional deployments are directly done on AWS EC2 t3.large instance where

Prometheus, Grafana, JMeter are configured for monitoring and easy of deployment of the

application. The containerized deployments uses Docker to package the applications into the

containers and it is managed with MicroK8s on t3.xlarge instance. This approach provides

isolation and scalable environments which ensures consistency across the deployments. The

hybrid deployment combines the traditional EC2 instance and containerized environments which

used t3.xlarge instance for containerized components as well as same ec2 instance for traditional

components. The aim of this setup is to gain the benefits of both the methods.

3.4 Data Collection

The data collection was a crucial part of this research which uses Prometheus to collect the real-

time data such as CPU usage, memory consumption, and network I/O which is then visualize on

Grafana dashboard for a detailed evaluation and collection of the data 4 5, The scraping of data is

done using various exporters such as node exporter, mongodb exporter, RabbitMQ exporter and

the in-built observability namespace of the Kubernetes. Apache JMeter was used to generate load

and simulate user requests to measure key performance metrics including latency, throughput and

error rates under various load conditions.

3.5 Data Evaluation and Interpretation

The metrics collected was systematically evaluated to assess the effectiveness of each

deployment strategy. Performance metrics includes latency and throughput where latency is used

https://microk8s.io/docs

3 https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
4 https://grafana.com/docs/
5 https://prometheus.io/docs/introduction/overview/

7

to measure the time taken to process a request and provide a response. Throughput is used to

assess the number of requests processed per unit time. Scalability was examined through

horizontal scaling capabilities and load test parameters to evaluate the ability to add more

instances or containers within the existing instances. Reliability was focused more on system

uptime, error rates and fault tolerance that provides insights into the robustness and stability of

each strategy. Cost analysis include both deployment and operational cost which is measured

using AWS calculator and it covers the initial setup cost along with the resource usage and

maintenance cost. Operational complexity was measured by evaluating the ease of deployment

and maintenance requirements. A proper descriptive statistics and comparative study was

conducted to summarize data and compare performance metrics across different deployment

strategies. The techniques ensured that the evaluation and interpretation was thorough, and the

conclusions drawn were based on concrete evidence.

3.6 Development of the Prototype Recommendation Tool

In addition to evaluating the deployment strategies, to support the study a prototype was

developed for recommendation tool. This tool was designed to guide in selecting the optimal

deployment strategy based on the application requirements. The recommendation tool was built

using a decision tree algorithm, which was trained on the metrics collected from each deployment

for various applications. The development process involved several steps like, preparing of

dataset from the metrics collected for all types of applications and deployment strategies.

Categorical values were converted into numerical values suitable for decision tree algorithm. The

decision tree model was trained to learn the relationship between these metrics and recommended

deployment strategy. Once model is trained, it was saved and use for recommendation system.

The system has a web interface developed using Streamlit which allows users to input the

characteristics of their applications. The tool uses decision tree model and will recommend the

most suitable deployment strategy.

By following this research methodology, the aim of the study is to provide clear and detailed

evaluation of all three deployment strategies. This methodology sets a stage for the Design

Specification section, which build on this foundation by detailing all the technical configurations

and setup procedures that are used to implement the deployment strategies described in the

methodology.

4 Design Specification

Following the research methodology, the design specification explains more on the infrastructure

setup, deployment process, metrics collected, and tools used for evaluating and comparing the

three cloud deployment strategies: traditional (EC2), containerized (Docker+MicroK8s), and

Hybrid (EC2+Docker+MicroK8s). It will ensure a detailed understanding of the technical

configurations, tools used, and the process involved in the study. The figure 1 shows the

overview of the components of the entire study which highlights the application types, along with

its platform services used and the infrastructure setups.

8

Figure 1: Overview of Cloud Deployment Strategies

4.1 Infrastructure Setup

The infrastructure setup for this study includes three different deployment strategies on Amazon

Web Services (AWS) which is designed to replicate a real-world cloud environment to evaluate

various metrics like performance, scalability, reliability, cost and operational complexity.

In the traditional deployment strategy, Amazon EC2 is used to host applications in a traditional

virtual machine setup. For this setup, t3.large instance was selected to make sure performance,

cost and other metrics are properly evaluated. All application were directly deployed and

configured on EC2 instance which involved setup of required environments, installation of

required software packages as well as optimizing system configuration for performance. This

includes the capabilities of the EC2 instance to handle workloads in more efficient way.

For containerized deployment strategy, the combination of Docker and MicroK8s were utilized to

package and manage the applications withing the container. This setup used t3.xlarge instance to

provide the necessary resource for containerization. Docker provides the isolated environments

for each application to manage them more conveniently which ensures consistency and

portability. MircoK8s, a lightweight Kubernetes distribution is used as it is a single node cluster

to manage these containers that enables smooth deployment, scaling and management 1. This

approach provided with better efficient resources utilization for this study in terms of cost and

restrictions along with simplifies deployment process by encapsulating the application with its

dependencies inside the containers.

The hybrid deployment strategy is the combination of traditional EC2 instance and containerized

environment to utilize the strengths of both the approaches. In this setup, t3.xlarge instance was

used for containerized components and the same instance was used for traditional components.

This aim of this approach was to optimize performance and scalability by utilizing the best

aspects of both the strategies. Containerized components were managed with Docker and

MicroK8s to provide flexibility and scalability, while traditional components benefitted from the

stability and straightforward configuration of EC2 instance and taking some load off the

containers.

9

4.2 Applications Deployed

The correct and detailed evaluation of the deployment strategies is very important and hence

three types of applications selected and deployed were static web application, a database web

application and a multithreaded application with RabbitMQ.

The static web application was selected as a basic test case for evaluating the metrics for a simple

basic web application under different loads. The application consisted of simple HTML, CSS,

JavaScript and Bootstrap files that were hosted on web server which allowed for straightforward

performance measurements using various tools which are explained in later sub sections.

The database web application includes a web interface where todo can be added and save along

with its due date. It has a backend database implemented using MongoDB. The backend is build

using NodeJS and expressJS framework. The frontend is build using ReactJS majorly. The

language used for scripting and programming is JavaScript. This application assessed database

operations, response times, data handling capabilities in various deployment environments. This

combination of web and database gave the insights into the performance of data-intensive tasks.

The multithreaded application with RabbitMQ was developed to test messaging and concurrency

handling capabilities by simulating a stock trading scenario. RabbitMQ acted as the message

broker for managing communication between all components. The multithreaded setup provided

simulating simultaneous processing of multiple threads, which provided insights into the

reliability and performance of each deployment strategy under concurrent loads.

4.3 Metrics Collected

The study is focused on collecting the metrics to evaluate all aspects of each deployment strategy

for doing a comparative analysis in form of a recommendation tool. These metrics include

performance, scalability, reliability, cost and operational complexity.

Performance metrics like latency and throughput were measured to get detailed understanding of

the efficiency of each deployment strategy. Latency measured the time taken to process a request

and provide a response, while throughput mentions the number of requests processed per unit

time.

Scalability metrics evaluated the ability of each deployment strategy to handle the increasing

loads by either horizontally scaling by adding more instance or containers or scaling it vertically

by increasing the resources of existing instances. In this study, the horizontal scaling was used in

containerized and hybrid strategy by using HPA, while no scaling was given in traditional

strategy due to resources constraints. Vertical scaling was not provided as it required to increase a

greater number of resources.

Reliability metrics monitored the availability and fault tolerance of the applications. System

uptime majorly measured the availability of the application along with its components, error rates

tracked the frequency of errors occurring during the operation and fault tolerance was used to

measure the system’s ability to continue operating even if the component fails.

Cost metrics includes both operational as well as deployment cost. Deployment cost measured the

initial phase cost of setting up the infrastructure whereas the operational cost showed the ongoing

cost of running applications that included resource usage and maintenance.

Operational complexity evaluated the ease of deployment, maintenance requirements, and

deployment speed. These metrics provides information about the efforts required to manage and

maintain the application across different deployment strategies.

4.4 Monitoring and Load Testing tools

The monitoring of each deployment strategy for all applications is one of the important factors of

this study. Prometheus and Grafana were used for monitoring real-time performance and

visualizing them. Prometheus collects the metrics from the deployed applications by scraping and

then store them in a time series database. These metrics includes CPU usage, memory

consumption, network I/O that provides detailed insights into resource utilization and

10

performance. To scrape more metrics, the node exporter, MongoDB exporter and RabbitMQ

exporters were used which scraped more in detailed metrics for the usage of those database and

queue. Grafana dashboards were configured to visualize the metrics which offered an interactive

interface to analyse the performance of data and identify trends or anomalies in the applications

behaviour.

Apache JMeter was used to simulate user requests and generate load on the applications. It

allowed for the creation of test plans that’s simulates like a real-world usage scenario which

enables measuring latency, throughput and error rates under various load conditions 2. Also, the

Horizontal Pod Autoscaler (HPA) was configured for the containerized applications which

automatically scaled the number of pods based on CPU utilization. HPA ensures that applications

handle varying loads efficiently by dynamically adjusting resources 3.

4.5 Prototype Recommendation Tool

The major goal of this study to guide cloud practitioners and developers with the correct

strategies based on various applications brings us to a prototype recommendation tool that was

developed using decision tree algorithm. This tool leverages the collected metrics data in form of

csv file format as shown in table 2 to provide deployment recommendations, guiding everyone in

selecting the most suitable deployment strategy based on application requirements.

Applica

tion
Performance Scalability Cost Reliability

Operational

Complexity

Recomme

nded

Deployme

nt

[Applic

ation

Type]

[High/Mediu

m/Low]

[High/Mediu

m/Low]

[High/Mediu

m/Low]

[High/Mediu

m/Low]

[High/Mediu

m/Low]

[Deploym

ent

Strategy]

Table 2: Deployment Strategy Evaluation Dataset Template

The development started by preparing a dataset that included the metrics fetched from each

experiment mentioned in section 6. These categorical values were encoded into numerical format

that is suited for decision tree algorithm. The model was trained to learn the relationships

between metrics and the recommended deployment strategies. Once training is done, the model

was saved to be used for user interaction.

The recommendation tool features a user interface built with Streamlit where users can select

from the dropdown the application type and its characteristics for each metric category. The tool

processes this data and uses the trained decision tree model to recommend and display the most

suitable deployment strategy.

By detailing the infrastructure setup, application deployment, metrics collection, monitoring tools

utilization and developing recommendation tool, this design specification set a comprehensive

framework and to understand the experimental approach mentioned in the section 3 of this study.

The next section, Implementation, will provide a more practical steps and configurations used to

deploy the applications across all three strategies. This will include specific procedures, technical

variation and methodologies used for this setup and achieve the objectives outlined in this design

specification.

5 Implementation
The implementation of the proposed methodology is mainly focused on the final stages of

deploying three types of applications – static web application, database web application and

multithreaded application with RabbitMQ in three cloud deployment strategies that is traditional

11

(EC2), containerized (Docker + MicroK8s), and Hybrid (EC2 + Docker + MicroK8s). The

implementation section describes the implementation of all three strategies – the software and

configurations used along with the outcome produced whose primary focus is on deployment

process and getting metrics for each application in each strategy.

5.1 Deployment Process

The deployment process for each application was properly executed across three cloud strategies

to make sure accurate and reliable assessment of all metrics.

5.1.1 Traditional Deployment

The traditional deployment is configured and set up on EC2 t3.large instance of AWS. For static

web application, Nginx was used as web server and was installed on EC2 instance. The database

web application developed using Node.js with Express.js and React.js involved installing all the

dependencies of these modules using npm install with further installing MongoDB on EC2

instance as a database for this application. The multithreaded application developed in Python

was deployed on EC2 instance after installing required libraries like Python, Pip and Pika. The

installation of RabbitMQ was also directly done on EC2 along with enabling the RabbitMQ

management and Prometheus metrics for it. Prometheus and Grafana were also set up and

installed directly on EC2 along with various exporters such as MongoDB exporter, Node exporter

and RabbitMQ exporter to gather metrics in a very specific manner.

5.1.2 Containerized Deployment

The containerized deployment involved setting up t3.xlarge EC2 instance and keeping docker

configured for generating images and pushing them to Docker Hub. The microK8s was setup

directly on EC2 instance. For static web applications, the entire application was containerized

using Docker by build the image and pushing it to Docker Hub which was then deployed using

MicroK8s by using yaml files and applying them. Prometheus was set up on an EC2 instance for

monitoring and Grafana which was included with Kubernetes under the observability namespace

was used for visualization. The database web application was fully containerized by creating

three docker images for the frontend (React.js), backend (Node.js with Express.js) and

MongoDB. These images were further deployed using MicroK8s by configuring multiple yaml

files and applying them for deployment. Prometheus and MongoDB exporter were set up on EC2

for monitoring and same Grafana was used which is included with Kubernetes under

observability namespace for visualization. The multithreaded application was also containerized

with docker images for the application and RabbitMQ. These images were again deployed using

MicroK8s in similar way and Prometheus and RabbitMQ exporter were set up on EC2 instance

and Grafana which was included with Kubernetes under observability namespace was used for

monitoring.

To simplify the conversion of Docker Compose file to Kubernetes file configurations, Kompose

was used. This tool allows for a streamlined conversion from Docker environment to Kubernetes

managed deployments which ensures consistency and reduces manual configuration efforts 6.

Additionally, Horizontal Pod AutoScaler (HPA) was implemented by configuring hpa.yaml file

to enable horizontal scaling of containerized applications based on CPU usage to make sure that

the applications could handle varying loads effectively.

5.1.3 Hybrid Deployment

The hybrid deployment is a combination of traditional and containerized deployment strategies

which includes t3.xlarge instance with Docker and MicroK8s for containerizing. For the database

web application, MongoDB was installed directly on EC2 instance and its public IP was given in

6 https://kompose.io/

12

the backend code for accessing it, while the remaining components that is the entire code was

containerized. Two docker images were created for the frontend and backend respectively, which

were further deployed using MicroK8s on the same EC2 instance and same process was followed

as mentioned in 5.1.2 containerized deployment section for containerizing. Monitoring was set up

with Prometheus and MongoDB exporter on EC2 instance and Grafana was used which was

included with Kubernetes observability namespace. For multithreaded applications, RabbitMQ

was installed on EC2 with its RabbitMQ exporter and mentioning it accessible IP in the code that

was containerized and deployed using MicroK8s on the same instance. Monitoring included

Prometheus, RabbitMQ exporter and Grafana from the Kubernetes observability namespace.

Kompose was again used to convert Docker Compose files to Kubernetes configuration to

simplify the Kubernetes configuration and reduce manual work. HPA was configured to enable

horizontal scaling of containerized components, to ensure they could dynamically adjust changes

in the load. The static web application was not deployed using the hybrid strategy as it was

unnecessary.

5.2 Monitoring and Data Collection

Monitoring and Data collection are critical aspect of this study for evaluating all the metrics of

the deployment strategies. Prometheus was configured to gather detailed metrics such as CPU

usage, memory consumption, and network I/O from each application for each deployment

strategy. These metrics are stored in a time-series database by Prometheus and then visualized

using Grafana dashboard. Apache JMeter was used to simulate user traffic and generate load on

the applications like real-world scenarios. A test plan (test-plan.jmx) was created for each load

testing to capture key performance metrics including latency, throughput and error rates by

increasing the threads and loops to test under various load conditions.

5.2.1 Prometheus Configuration

Prometheus was installed on EC2 directly and then configured using Prometheus.yml file which

was crucial for setting up Prometheus and accessing it scraping metrics on its web interface

across all deployment strategies. It defined various scrape configurations for different exporters

like node exporter, MongoDB exporter and RabbitMQ exporter and application endpoints to

ensure collection of comprehensive metrics. This file was used consistently to configure

Prometheus to scrape metrics from various sources, which provided a stable monitoring solution.

5.2.2 Exporter

The node exporter was installed directly on EC2 instance to expose hardware and OS metrics

(such as CPU, memory disk and network usage) to Prometheus. The MongoDB exporter was

used to monitor MongoDB performance, providing metrics like query performance, operation

details (insert, update, delete), memory usage and connection statistics. RabbitMQ exporter

provides metrics such as message rates, queue sizes and connection details to Prometheus for

monitoring. These all exporters even provide one common metrics which is uptime that is very

useful in showing reliability metrics. They played an important role in providing the data to

evaluate the system performance under different deployment strategies. It ensured detailed and

relevant metrics were continuously collected and available for evaluation and interpretation 7 8 9.

5.3 Development of the Prototype Recommendation Tool

To assist and guide in selecting appropriate deployment strategy, a prototype recommendation

tool was developed using a decision tree algorithm. The development process began by collecting

and transforming all metrics into a dataset. This dataset included metrics for performance,

scalability, cost, reliability, and operational complexity based on different application types and

deployment strategies. The decision tree model was trained using this dataset and then saved for

further use. The recommendation tool was built using python and DecisionTreeClassifier library.

7 https://github.com/percona/mongodb_exporter
8 https://github.com/prometheus/node_exporter
9 https://github.com/kbudde/rabbitmq_exporter

13

An interactive web interface was developed using Streamlit, which allows users to input specific

application characteristics and recommend appropriate deployment strategies to them. This is

done by processing the input data and applying the decision tree model against it that provides the

suggested deployment strategy based on empirical data collected (Pedregosa et al., 2011).

5.4 Outcomes

The implementation provides several key outcomes which focuses primarily on the deployment

and evaluation of the applications:

5.4.1 Transformed Data

Real-time performance metrics were collected from Prometheus and load testing results from

Apache JMeter. This data was divided into five metrics that is performance, scalability,

reliability, cost and operational complexity which was then properly structured into a dataset that

shows various aspects of the deployment strategies such as latency, throughput, CPU, memory

usage, uptime and error rates. The metrics and dataset provide detailed comparison of different

strategies based on application types.

5.4.2 Deployment Configurations

Detailed deployment configurations were developed for each application and deployment strategy

which is mentioned in config manual. This includes Dockerfiles for containerizing applications,

Kubernetes manifests for orchestrating containerized deployments, and scripts for setting up

traditional EC2 deployment. These configurations ensure re-usability and consistency for

different deployment environments. Kompose was used to convert Docker Compose files to

Kubernetes configurations which streamlined the process and ensured consistent deployment

setups.

5.4.3 Monitoring Setup

A robust monitoring setup is established using Prometheus and Grafana. The prometheus.yml

configuration file was crucial in defining the scrape configurations and integrating different

exporters for collecting various metrics. Grafana dashboards were customized by adding

dashboard ids for various types to visualize different metrics by providing an intuitive interface

for monitoring application health and overall performance.

5.4.4 Key Performance Metrics

The study focused on key performance metrics such as performance, scalability, efficiency, cost

and operational complexity. These all metrics were fetched from the monitoring tools that were

set up for scraping all metrics and visualizing them on Grafana. Scalability was assessed through

horizontal scaling using HPA and conducting load test using JMeter, efficiency through resource

utilization metrics from Prometheus, cost through AWS cost calculator and operational

complexity through deployment and maintenance procedures.

5.4.5 Model Created

A decision tree model was developed and trained based on the collected metrics from each

deployment for each application. The model was designed to recommend optimal deployment

strategy based on specific application requirements considering factors such as performance,

scalability, cost, reliability and operational complexity.

14

5.4.6 Recommendation Tool

An interactive web application was built using Streamlit that lets user input application details

and receive optimal deployment strategy based on the metrics collected. The tool uses the trained

decision tree model to provide proper recommendations by guiding users to make informed

decisions based on empirical data.

5.4.7 Comprehensive Documentation

Detailed documentation was provided that includes deployment process, configuration,

monitoring setups and usage of recommendation tool in the form of config manual. This

documentation serves as an important resource for replicating and extending the study and

applying findings to similar projects.

The implementation section highlighted the practical steps taken to deploy and evaluate the

application for different cloud strategies, that ensures the research study objectives are met. The

next section, that is Evaluation, will present the experiments conducted and analyze the results

obtained by comparing them to provide a thorough assessment of the deployment strategies.

6 Evaluation

The evaluation section delves into the detailed comparative analysis of all the experimental

results, that provides valuable insights into their importance and suggestions. Building on the

previous implementation section, the evaluation of the effectiveness of different deployment

strategies for all three types of applications are shown. The comparison of metrics like

performance, scalability, cost, reliability, and operational complexity are represented using the

tables and graph to represent them in more clear and concise manner.

6.1 Evaluation of Static Web Application

This states the evaluation of the static web application for two different environments such as

traditional EC2 deployment and containerized deployment. The hybrid deployment was not

experimented for static web application because of its inherent nature which won’t benefit that

much from a hybrid approach. Static web applications typically do not require the dynamic

scaling and flexibility of offered by hybrid deployments and hence traditional and containerized

comparisons are more relevant and insightful.

6.1.1 Experiment 1: Traditional Deployment

In traditional deployment for static web application, the application was deployed directly on

AWS t3.large EC2 instance and the evaluation is focused mainly on metrics like performance,

scalability, cost, reliability, and operational complexity.

Category Value Rating

Performance 116 ms (average response time)

42.9 ops/s (throughput)

Low

Scalability Limited scalability due to no

scaling provided

Low

Cost $4.01 (2 days) Low

Reliability 54 mins uptime Medium

Operational Complexity Overall, it is low Low

Table 3: Evaluation result of traditional deployment

15

This deployment recorded an average time of 116 ms and a throughput of 42.9 operations per

second which indicates good performance for moderate load conditions. There was no scalability

used in this experiment due to resource limitations and hence it relied on single instance(t3.large).

The load test parameters included 5000 loops, 2000 threads and 120-second ramp time which

created heavy load on system and due to no scaling load was increase substantially. The

estimated cost for running the traditional deployment on a t3.large instance for two days was

around $4.01 which makes it cost-effective for low to moderate usage scenarios. Also, the system

maintained an uptime of 54 mins during the entire usage and deployment phase which shows

medium reliability even during the load testing. Operational complexity was low with minimum

CPU and memory resources commitment along with very easy setup in initial phase which makes

it easy to manage but it lacks in scalability and efficiency.

6.1.2 Experiment 2: Containerized Deployment

The containerized deployment involves deploying static web application using Docker and

Kubernetes (MicroK8s) on an AWS t3.xlarge instance. Prometheus and Grafana were used for

monitoring, and JMeter was used for conducting load testing.

Category Value Rating

Performance 26 ms (average response time)

1.15 ops/s throughput

High

Scalability Horizontal scaling (1 to 10 pods

under load)

High

Cost $47.94 (2 days) High

Reliability 100% uptime High

Operational Complexity Overall complexity was medium Medium

Table 4: Evaluation Result of containerized deployment

The containerized deployment shows high performance with an average response time of 26 ms

and a throughput of 1.15 operations per second. This indicates a good improvement in

responsiveness when we compare to traditional deployment. This environment scaled from 1 to

10 pods under load as specified by load test parameters (5000 loops, 2000 threads, 120s ramp

time) which demonstrates the horizontal scaling and show high scalability in this setup. The

estimated cost for running the containerized deployment on a t3.xlarge instance for two days was

around $47.94 which higher than traditional as instance is also different and hence it cannot be

considered as cost effective given the performance and scalability metrics. It maintains 100%

uptime during the test period which ensures high reliability and continuous availability. The

operational complexity was medium considering the CPU requests and memory resource usage

along with its initial setup complexity which makes it more complex when compared to

traditional deployment.

16

Figure 2: Traditional vs Containerized Deployment comparison for Static web application

The graph illustrates the comparison between traditional and containerized deployments for static

web application across various metrics. The containerized deployment strategy for static web

application demonstrates better performance, scalability and reliability when compared with

traditional deployment. The traditional deployment remains cost effective and better in

operational complexity, but it is limited in terms of performance, scalability and reliability. The

hybrid deployment is not performed as it is static web application and there nothing to divide and

split the deployment into traditional and containerized hence the comparison is done only

between traditional and containerized. This helps user to get guidance based on the applications

requirements and not only based on one or two parameters.

6.2 Evaluation of Database Web Application

This evaluates the deployment strategies for the database web application across three different

environments like traditional EC2 deployment, containerized deployment, and hybrid

deployment. The evaluation was focused on performance, scalability, cost, reliability, and

operational complexity for each deployment strategy.

6.2.1 Experiment 1: Traditional Deployment

The traditional deployment for database web application was deployed on AWS t3.large instance

and it was focused on the metrics such as performance, scalability, cost, reliability, and

operational complexity.

Category Value Rating

Performance 165.3 ms (average response time)

167 requests throughput

Low

Scalability Limited scalability due to no

scaling provided

Low

Cost $5.36 (2 days) Low

Reliability 85% uptime (150 minutes) Medium

Operational Complexity Overall complexity was Medium Low

Table 5: Evaluation Result of traditional deployment

17

The traditional deployment showed an average response time of 165.3 ms with a maximum

throughput 167 requests per second indicating medium performance. Scalability was limited as

there was no horizontal and vertical scaling available. The estimates cost for running the

traditional deployment on an AWS t3.large instance was $5.36 which shows low pricing. The

system maintained 85% uptime i.e., 150 minutes during the test period which shows high

reliability. Operational Complexity was low because of the CPU utilization and the ease of initial

setup.

6.2.2 Experiment 2: Containerized Deployment

The containerized deployment involves deploying the database web application using Docker and

Kubernetes (MicroK8s) on AWS t3.xlarge instance. Monitoring was conducted using Kubernetes

tools, Prometheus and Grafana with load testing done using JMeter.

Category Value Rating

Performance 9.89 ms (average response time)

4.16 requests throughput

Medium

Scalability Horizontal scaling (1 to 10 pods

under load)

High

Cost $47.94 (2 days) High

Reliability 100% uptime (180 minutes) High

Operational Complexity Overall complexity was Medium Medium

Table 6: Evaluation Result of Containerized Deployment

The containerized deployment showed high performance with a work queue latency of

approximately 9.89 ms and 4.16 request throughput. Scalability was high with horizontal pod

autoscaling (HPA) which was configured between 2 and 10 pods based on load. The estimated

cost for running the containerized deployment on a t3.xlarge instance for two days was $47.94

which is considered high. Reliability was high with all pods running continuously during the test

period. Operational complexity was medium because of it slightly complex setup along with its

manageable CPU and memory resource commitments.

6.2.3 Experiment 3: Hybrid Deployment

The hybrid deployment is a combination of traditional EC2 with containerized approach which

uses EC2 and container orchestration with Kubernetes. The database web application was

evaluated for performance, scalability, cost, reliability, and operational complexity.

Category Value Rating

Performance 7 ms (average response time)

1000 requests throughput

High

Scalability Horizontal scaling (1 to 10 pods

under load)

High

Cost $47.94 (2 days) High

Reliability 100% uptime (180 minutes) High

Operational Complexity Overall complexity was High High

Table 7: Evaluation Result of Hybrid Deployment

The hybrid deployment demonstrated high performance with an average response time of 7 ms

and a high throughput of 1000 request per second. Scalability was high, with HPA managing

between 2 and 10 pods as per the increase in load. The cost for running the hybrid deployment

was $47.94 for two days, which is considered high. Reliability was also high as the system’s

uptime was 100% during the entire load test, but the operational complexity was high due to

significant CPU usage and the overall setup steps.

18

Figure 3: Traditional vs Containerized vs Hybrid Deployment comparison for Database web application

The Hybrid deployment strategy for the database web application provides maximum advantages

for performance, scalability and reliability compared to traditional and containerized deployment

approach. It is the most expensive option but the benefit in other metrics justifies the cost as well.

The containerized deployment also performs well, particularly in cost and operational complexity

when compared with hybrid approach and performance, scalability and reliability when compared

to traditional approach. The traditional approach remains cost effective and require operational

complexity and hence it is suggested to use whenever there are small database web applications

or academic projects where scalability is not required mainly.

6.3 Evaluation of Multithreaded Application with RabbitMQ

This evaluates the deployment strategies for the multithreaded application with RabbitMQ across

three different environments such as traditional EC2 deployment, containerized deployment, and

hybrid deployment. It focuses on metrics like performance, scalability, cost, reliability, and

operational complexity for each deployment strategy.

6.3.1 Experiment 1: Traditional Deployment

In this experiment, the multithreaded application with RabbitMQ was deployed on an AWS

t3.large instance. The table below shows the key metrics for traditional deployment

Category Value Rating

Performance Approx. 300 ms (average response

time)

1.6 messages/s throughput

Low

Scalability Limited scalability due to no scaling

provided

Low

Cost $3.50 (2 days) Low

Reliability 80% uptime Medium

Operational Complexity Overall complexity was Low Low

Table 8: Evaluation Result of Traditional Deployment

19

The traditional deployment shows a response time of approximately 300 ms and a throughput of

1.6 messages per second, indicating low performance. Scalability was not used due to resource

constraints. The estimated cost for running the traditional deployment on an AWS t3.large

instance for two days was $3.50 making it a low-cost option. The system maintained 80% uptime

during the test period, that demonstrated medium reliability. Operational complexity was medium

due to the setup steps and moderate CPU utilization.

6.3.2 Experiment 2: Containerized Deployment

The containerized deployment involved deploying the multithreaded application with RabbitMQ

using Docker and Kubernetes (MicroK8s) on an AWS t3.xlarge instance and monitoring was

conducted using Kubernetes tools, Prometheus, and Grafana, with load testing using JMeter.

Category Value Rating

Performance 81.3 ms (average response time)

2.08k messages/s throughput

Medium

Scalability Horizontal scaling (2 to 10 pods

under load)

High

Cost $47.94 (2 days) High

Reliability 100% uptime High

Operational Complexity Overall complexity was Medium Medium

Table 9: Evaluation Result of Containerized Deployment

It shows medium performance with a response time of 81.3 ms and a high throughput of 2.08k

messages per second. Scalability was high due to it horizontal scaling while load testing with

horizontal pod autoscaler (HPA) configured to manage between 2 and 10 pods based on load.

The estimated cost for running the containerized deployments on a t3.xlarge instance for two days

was $47.94 which is considered to be high. Reliability was high due to the 100% uptime will all

pods running continuously during the test period. Operational complexity was medium due to

slightly complicate setup then compared to traditional deployment.

6.3.3 Experiment 3: Hybrid Deployment

The hybrid deployment combines traditional and containerized approaches by utilizing both EC2

instances and container orchestration with Kubernetes. The multithreaded application with

RabbitMQ was evaluated for performance, scalability, cost, reliability, and operational

complexity.

Category Value Rating

Performance 75 ms (average response time)

2.08k messages/s throughput

High

Scalability Horizontal scaling (2 to 10 pods

under load)

High

Cost $47.94 (2 days) High

Reliability 100% uptime High

Operational Complexity Overall complexity was High High

Table 10: Evaluation Result of Hybrid Deployment

The hybrid deployment shows high performance with a response time of 75 ms and a high

throughput of 2.08k messages per second. Scalability was high because of usage of horizontal

pod autoscaler (HPA) which manages between 2 and 10 pods based on the load test done by

JMeter. The cost for running the hybrid deployment was $47.94 for two days which is high.

Reliability is high because of its 100% uptime will all pods running continuously during the test

period. Operational complexity was high due to complicated initial setup.

20

Figure 4: Traditional vs Containerized vs Hybrid Deployment comparison for Multithreaded application

with RabbitMQ

The hybrid deployment strategy for the multithreaded application with RabbitMQ offers better

advantages in terms of performance majorly when compared with traditional and containerized

applications. It even maintains high reliability and low cost with a manageable level of

operational complexity. The containerized deployment also performs well, specially in

throughput and has medium operational complexity. The traditional strategy remains cost

effective option but is also limited in scalability and performance, which make it suitable for less

demanding scenarios.

6.4 Evaluation of Recommendation Tool

To complement the research and support the target audience like cloud practitioners and

developers in selecting the appropriate deployment strategy, a prototype recommendation tool

was developed. This tool makes use of empirical data from all the above experiments to provide

proper recommendations based on specific application requirements. The tool’s user interface is

built using Stremlit, and the model is trained using decision tree algorithm based on metrices such

as performance, scalability, cost, reliability, and operational complexity. This tool improves the

decision-making process by making sure it not only suggests deployment strategy only on one or

two parameters and considers all parameters and then suggest avoiding the standards set for each

application type theoretically. By leveraging concrete data, the tools address the gap between

theoretical knowledge and practical application which helps user to optimize their deployment

strategies for various application scenarios.

6.5 Discussion

The findings from the experiments provides a comprehensive insight into the performance,

scalability, cost, reliability, and operational complexity for traditional, containerized, and hybrid

deployment strategies. As showed in section 6.1, the containerized deployment for static web

application demonstrates superior performance and scalability compared to traditional

21

deployment, but at a high cost and operational complexity. The rationale behind not including the

hybrid approach for the static web application is that a simple solution does not benefit from a

hybrid setup. As such, the hybrid deployment of database web applications in section 6.2 clearly

outperforms in terms of performance and scalability; however, it is expensive and complex, due

to the trade-off between the benefits of performance and overhead management. As a balanced

approach, containerized deployments are more expensive but less heavy to maintain compared to

the traditional setup. The findings are aligned with other related work in that they clearly show

significant advantages of containerization and hybrid methods in dynamic and resource-intensive

scenarios.

Section 6.3 showed slightly better performance and scalability for a hybrid deployment of the

multithreaded application with RabbitMQ at an increased operational complexity and cost. The

traditional deployment model is more cost-effective and easy to setup than performant and

scalable. A containerized deployment is more balanced but requires higher accuracy with the

resource management process. The recommendation tool, which is explained in section 6.4, is

based on the data, which provides a deployment strategy to the user as it recommends based on

different application scenarios and requirement. Overall, these experiments show the need for

optimization in containerized and hybrid environments to reduce complexity and costs. Future

research needs to explore broader range of applications with longer experiments durations, and

advanced monitoring to improve the robustness of the findings which provides more actionable

recommendations for cloud deployment strategies.

7 Conclusion and Future Work
This study empirically evaluated traditional (EC2), containerized (Docker + MicroK8s), and

hybrid deployment strategies for various real-world applications. The primary objectives were to

conduct a detailed comparison, analyse key metrics and provide practical guidance for cloud

practitioners and developers. The findings show that the containerized deployment excel in

performance and scalability for static web application, and hybrid deployments perform better in

terms of scalability, performance and reliability for database web application and multithreaded

applications with RabbitMQ, whereas traditional deployments show moderate performance with

no scalability but always better in terms of operational complexity. The developed

recommendation tool guides users in selecting appropriate deployment strategies based on the

empirical data. The study not only identifies which deployment strategies are better for each

application but also aims at providing some actionable guidance based on application

requirements and scenarios. Unlike previous studies where the strategies comparison was shown

which is superior based on various parameters, the goal achieved was to empower the cloud

practitioner with detailed, scenarios-specific recommendations based on empirical evidence.

The study still has some limitations where evaluation period was relatively short and based on

limited number of applications. Also, extensive scalability tests were not performed especially

vertical scalability due to resource constraints.

To address this limitations and future improvements, future work should be focused on various

key areas:

1. Long-term Performance and Cost Analysis: Conduct more extensive research to evaluate

long performance by keeping the system up and test running for number of days to gain

more better performance, reliability and cost implication as done in real-world scenarios

for all the three deployment strategies.

2. Broader Application Types: The research needs to be extended to include various more

types of applications like AI/ML workloads, Blockchain, big data processing, stateless

and stateful applications to provide more actionable recommendation across all scenarios.

3. Vertical Scalability: Explore vertical scalability options by increasing the resources for

existing instances based on the maximum load created during the testing.

22

4. Interactive Recommendation Tool: Improve the recommendation tool to allow user to

deploy their proof of concepts (POC) applications and test them to gain more personalize

insights into the suggestions based on their real-time performance data. Train the model

will all types of application to commercialize the tool in future which can be beneficial

for practitioners, professional as well as experts.

These efforts will help improve and optimize cloud deployment strategies to provide deeper

insights and more practical and actionable guidance for cloud practitioners and developers to

make sure they make informed decisions based on their application requirements and scenarios.

References

Ahmad, R.W., Gani, A., Ab. Hamid, S.H., Shiraz, M., Yousafzai, A. and Xia, F., 2015. A

 survey on virtual machine migration and server consolidation frameworks for cloud data

 centers. Journal of Network and Computer Applications, 52, pp.11-25. DOI:

 10.1016/j.jnca.2015.02.002.

Al Qausar, M.J., Soeparno, H., Gaol, F.L. and Arifin, Y., 2023. Software Metrics for

 Container-Based Applications: Systematic Literature Review. In 2023 International

 Conference on Information Management and Technology (ICIMTech), Malang, Indonesia,

 pp. 125-130. DOI: 10.1109/ICIMTech59029.2023.10277948.

Azumah, K.K., Sørensen, L.T. and Tadayoni, R., 2018. Hybrid Cloud Service Selection

 Strategies: A Qualitative Meta-Analysis. 2018 IEEE 7th International Conference on

 Adaptive Science & Technology (ICAST), Accra, Ghana, pp.1-8. DOI:

 10.1109/ICASTECH.2018.8506887.

Ebert, C., Gallardo, G., Hernantes, J. and Serrano, N., 2016. 'DevOps', in IEEE Software. pp.

 94-100. DOI: 10.1109/MS.2016.68.

Fan, C.-F., Jindal, A. and Gerndt, M., 2020. 'Microservices vs serverless: A performance

 comparison on a cloud-native web application', in Proceedings of the 10th International

 Conference on Cloud Computing and Services Science (CLOSERI). Prague, Czech

 Republic, 7-9 May 2020, pp. 204-215. DOI: 10.5220/0009792702040215.

Felter, W., Ferreira, A., Rajamony, R. and Rubio, J., 2015. 'An updated performance

 comparison of virtual machines and Linux containers', in IEEE International Symposium

 on Performance Analysis of Systems and Software (ISPASS). Philadelphia, PA, USA, 29

 31 March 2015, pp. 171-172. DOI: 10.1109/ISPASS.2015.7095802.

Kozhirbayev, Z. and Sinnott, R., 2017. A performance comparison of container-based

 technologies for the Cloud. Future Generation Computer Systems, 68, pp.175-182. DOI:

 10.1016/j.future.2016.08.025.

Lohumi, Y., Srivastava, P., Gangodkar, D. and Tripathi, V., 2023. Recent Trends, Issues and

 Challenges in Container and VM Migration. 2023 International Conference on Computer

 Science and Emerging Technologies (CSET), pp.1-5. DOI:

 10.1109/CSET58993.2023.10346895.

23

Narasimhulu, M., Mounika, D.V., Varshini, P., A.K., and Rao, T.R.K., 2023. 'Investigating

 the impact of containerization on the deployment process in DevOps', in 2023 2nd

 International Conference on Edge Computing and Applications (ICECAA). Namakkal,

 India, 19-21 July, pp. 679-685. DOI: 10.1109/ICECAA58104.2023.10212240.

Pahl, C., Brogi, A., Soldani, J. and Jamshidi, P., 2019. 'Cloud container technologies: a state

 of-the-art review', in IEEE Transactions on Cloud Computing. pp. 677-692. DOI:

 10.1109/TCC.2017.2702586.

Patel, H.B. and Kansara, N., 2021. 'Cloud computing deployment models: A comparative

 study', International Journal of Innovative Research in Computer Science & Technology

 (IJIRCST), 9(2), pp. 45-50. DOI: 10.21276/ijircst.2021.9.2.8.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,

 Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,

 Brucher, M., Perrot, M. and Duchesnay, E., 2011. 'Scikit-learn: Machine learning in

 Python', Journal of Machine Learning Research, 12, pp. 2825-2830.

Shah, S., Waqas, A., Kim, M., Kim, T.-H., Yoon, H. and Noh, S.-Y., 2021. 'Benchmarking

 and Performance Evaluations on Various Configurations of Virtual Machine and

 Containers for Cloud-Based Scientific Workloads', Applied Sciences, 11, p. 993. DOI:

 10.3390/app11030993.

Silva, V., Kirikova, M. and Alksnis, G., 2018. Containers for Virtualization: An Overview.

 Applied Computer Systems, 23, pp.21-27. DOI: 10.2478/acss-2018-0003.

Vu, D.-D., Tran, M.-N. and Kim, Y., 2022. Predictive Hybrid Autoscaling for Containerized

 Applications. IEEE Access, 10, pp.109768-109778. DOI:

 10.1109/ACCESS.2022.3214985.

Watada, J., Roy, A., Kadikar, R., Pham, H., and Xu, B., 2019. 'Emerging trends, techniques

 and open issues of containerization: A review', IEEE Access, 7, pp. 152443-152472. DOI:

 10.1109/ACCESS.2019.2945930.

