

Configuration Manual

MSc Research Project

MSc in Cloud Computing

Prajwal Seethur Raveendra

Student ID: 22228811

School of Computing

National College of Ireland

Supervisor: Aqeel Kazmi

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Prajwal Seethur Raveendra

Student ID:

22228811

Programme:

MSc in Cloud computing

Year:

2024

Module:

MSc Research Project

Lecturer:

Aqeel Kazmi

Submission Due

Date:

12/08/2024

Project Title:

Effective Optimization strategies to utilize Fully Homomorphic

Encryption in Cloud Platforms

Word Count:1142

 Page Count: 9

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Prajwal Seethur Raveendra

Date:

12/08/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Prajwal Seethur Raveendra

Student ID: 22228811

1 Introduction

Fully Homomorphic encryption is a type of encryption mechanism that allows computation

on encrypted data without the need for decryption. FHE can be quite useful in cloud

environments because it can be used to perform secure calculations. Businesses that prioritize

data privacy can leverage this technology. FHE is impractical because of its high

computational demands and researchers are actively trying to come up with new strategies to

optimize its performance. In this research, a novel framework was developed using data

splitting and parallel processing. Two lambda functions were created, one lambda function to

handle homomorphic calculations and the other to handle normal function. AWS API

Gateway was used to invoke the lambda functions from the client end. The results show a

drastic 94% CPU time reduction when compared to other FHE schemes and a significant 82.88%

reduction.

2 Environment Set-up

1. Most FHE libraries are compatible with Linux Operating System. So, the first step

will be to set up a Linux environment. Implementation and the experiments (case

studies) were performed on WSL (Windows Subsystem for Linux).

2. Create a python environment (Preferably python version 3.10).

3. Update the Linux OS using the command sudo apt-get update

4. Install all the necessary libraries

import pandas as pd

import tenseal as ts

import time

import numpy as np

import psutil

from memory_profiler import memory_usage

import gc

import json

from Pyfhel import Pyfhel

These are all the libraries used throughout the research (including case study codes).

2

 sensitive_columns = ['age', 'blood_pressure', 'cholesterol']

 operation = 'average' # Choose the operation: 'average', 'addition', or

'multiplication'

In the sensitive columns are specified in the sensitive_columns list and the type of operation

to be performed has to be specified as well. The framework only supports addition,

multiplication and average(mean) operations. More meaningful operations can be integrated

into the framework.

3 AWS Lambda function

Figure 1: Sensitive lambda handler dashboard

The sensitive lambda code was uploaded as a zip file. The sensitive lambda handler is

running on a python 3.10 version Linux environment. AWS lambda environment supports all

of the basic python libraries. The zip file contains the python code that handles homomorphic

calculations and all the dependency files. To install any third-party library into a specific file

directory, pip install tenseal -t . should be used. As you can see from the figure that an extra

layer is added to the lambda function. The layer’s main purpose is only to install the pandas

python library.

Figure 2: Sensitive.zip files

3

The tenseal library is a homomorphic encryption library that supports CKKS and BFV

Schemes (Benaissa, Retiat, Cebere, & Belfedhal, 2021).

Figure 3: Non sensitive lambda handler

The non sensitive data lambda handler code was directly written on the lambda text editor

since this code does not require any third-part library. The padasSDK layer was to this

lambda function as well. This lambda function is running on the latest python 3.12 version

Linux environment.

4 AWS API Gateway

4

AWS API Gateway is integrated into the lambda functions so that it can invoked from the

client script. CORS (Cross Origin Resource Sharing) is enabled to allow requests from the

client script.

data = prepare_data_for_lambda(df, sensitive_columns, operation)

 non_sensitive_url = 'https://d1ci2kx43g.execute-api.eu-west-

1.amazonaws.com/non_sensitive/'

 sensitive_url = 'https://1gjf7bj3f0.execute-api.eu-west-

1.amazonaws.com/sensitive/'

The API endpoints are entered in the framework client script.

5 Case studies conducted

This section contains all the important code snippets used in all the case study scripts.

5.1 FHE Schemes codes

The evaluation was performed by writing code for all FHE Schemes to do the comparisons.

The whole dataset was encrypted for other FHE Schemes while only the sensitive data is

encrypted in the framework. A separate program was written for the proposed FHE

framework without using AWS lambda. The case studies were performed using a synthetic a

dataset.

Figure 4: Generates synthetic dataset

5

Figure 5: CKKS Scheme context setup, encryption and decryption function functions and

encrypted calculations.

Figure 6: BGV Scheme context setup

The Tenseal library only supports the CKKS scheme and the BFV Scheme. The BGV scheme

was coded using the python library Pyfhel (Ibarrondo & Viand, 2021). It supports all the

basic Homomorphic operations like the tenseal library.

6

Figure 7: BFV Context setup

Remaining sections of the code is pretty much the same except for the context setup part.

5.2 Case study framework code

Figure 8: Framework main functions

The framework case study code utilizes the CKKS scheme. The data is split based on

sensitivity. The sensitive data worker handles the sensitive data calculations while the non-

7

sensitive data worker handles non sensitive data calculations. These operations are processed

parallelly in the process_data_parallel function using the python library called

multiprocessing.

6 Framework development

Figure 9: Sensitive lambda handler

8

Figure 10: Non-sensitive lambda handler

7 Framework Output

After processing the data in their individual lambda functions, the processed output is sent

back to the client. The data chunks are rejoined and displayed.

9

References

Benaissa, A., Retiat, B., Cebere, B., & Belfedhal, A. E. (2021). Tenseal: A library for

encrypted tensor operations using homomorphic encryption. arXiv preprint

arXiv:2104.03152.

Ibarrondo, A., & Viand, A. (2021, November). Pyfhel: Python for homomorphic encryption

libraries. In Proceedings of the 9th on Workshop on Encrypted Computing & Applied

Homomorphic Cryptography (pp. 11-16).

