

Effective Optimization strategies to utilize

Fully Homomorphic Encryption in Cloud

Platforms

MSc Research Project

MSc in Cloud Computing

Prajwal Seethur Raveendra

Student ID: 22228811

School of Computing

National College of Ireland

Supervisor: Aqeel Kazmi

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Prajwal Seethur Raveendra

Student ID:

22228811

Programme:

MSc in Cloud Computing

Year:

2024

Module:

MSc Research Project

Supervisor:

Aqeel Kazmi

Submission Due

Date:

12/08/2024

Project Title:

Effective Optimization strategies to utilize Fully Homomorphic

Encryption in Cloud Platforms

Word Count:7897

 Page Count: 20

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Prajwal Seethur Raveendra

Date:

12/08/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Effective Optimization strategies to utilize Fully

Homomorphic Encryption in Cloud Platforms

Prajwal Seethur Raveendra

22228811

Abstract

In the age of big data, meeting the data regulatory requirements is a fundamental

need for companies who store and process private data in the cloud. The GDPR states

that any personal information processed by any business has to be done with consent and

with high security. Privacy-preserving models can be implemented in cloud environment

to store and process personal data. These models guarantee privacy protection of each

individual’s private information but implanting these models can be computationally

intensive. Homomorphic Encryption is privacy-preserving model that performs

arithmetic operations on encrypted data without decryption. The first Fully

Homomorphic Encryption scheme was invented in 2009 but it was not fit for real world

applications because of its high computational requirements. Previous research focused

on algorithmic advancements while this research aims to provide an efficient approach to

utilize the existing Fully Homomorphic Encryption algorithms(schemes). A framework

was developed using data splitting, parallel processing and AWS Lambda. The tenseal

python library was used to homomorphically encrypt the values of a synthetic health

care dataset. The evaluation was performed and results are reported. The results show a

drastic 94% CPU time reduction when compared to other FHE schemes and a significant

82.88% reduction in memory usage after using data splitting and parallel processing.

1 Introduction

Cloud computing has been on a rise since the last few decades, taking over the IT industry.

Many companies like META, ESPN and LinkedIn have made huge profits by utilizing cloud

services from companies like AWS and Microsoft Azure. More than 50% of the companies in

the world use the public cloud and 85% of all corporate organizations predicted to move a

“cloud-first” strategy by the end of 2025 (Goasduff, 2021). Despite the fact that many

businesses are shifting to the cloud, security and privacy remain a concern, which causes

them to reconsider. There have been many cases where hackers were able to successfully

breach into the company’s data and steal private information of the customers. Take for

example the notorious 2011 Sony PlayStation Network Outage during which millions of

customer data such as email, address, passwords and credit card information were stolen

overnight and cost the company a lot of money to recover from the damage dealt (Arthur,

2011). A cloud storage company Dropbox also had their data breached due to a bug that

temporarily led any user to access anybody’s account by using any random password and

because of this a lot of sensitive data were leaked online (Pepitone, 2011). Such instances

brought attention to the risk associated with cloud services. Indeed, a great degree of security

2

is currently provided by all cloud providers, and they guarantee the privacy of their data, but

how can we be certain of that? Since we are unaware of the locations where our data is

stored. The cloud data centres are only open to authorized personnel. To further strengthen

security and guarantee greater privacy, AWS even stopped offering student visits inside the

data centres. Even now, a lot of businesses are hesitant to move their critical data to the

cloud. The majority of businesses appear to be hesitant to move to the public cloud due to

concerns about security and privacy, so it is very important to make sure that company data,

especially the sensitive ones, are handled carefully by providing some sense of privacy to the

data.

In order to maintain confidentiality of private data, companies use privacy-preserving models

to protect their sensitive information. Privacy-preserving models are mechanisms used to

protect the sensitive data that are migrated to the external untrusted environments. It helps in

maintaining the confidentiality, privacy and integrity of sensitive data and at the same time

retain the originality of the data for it to be effective when used for analysis or calculations.

When data is outsourced to cloud settings, we have to give up a lot of control over the data

since the cloud service provider handles everything, including infrastructure maintenance and

monitoring. This is really one of the main reasons why a lot of businesses are hesitant to shift

to the cloud; they think that maintaining their confidential information on-site will increase

transparency. Therefore, before outsourcing sensitive data to any cloud environment, it is

crucial to adopt privacy-enhancing technologies to conceal or anonymize it in order to

address the privacy dilemma. These models are also essential for maintaining compliance

with GDPR regulations and maintaining confidentiality. Fairness, transparency, data

minimization, and secure storage of personal data are all emphasized by the GDPR, and clear

consent from data subjects is a crucial need. By following guidelines, cloud service

companies may gain their consumers' confidence (Paul Voigt, 2017).

In cloud computing, a wide variety of privacy-preserving approaches are employed. Several

popular ones are Secure Multi-Party Computation, Differential Privacy, Homomorphic

Encryption, Data Anonymization/Masking, Federated Learning, and others. Every one of

these approaches has benefits and drawbacks, so businesses must do in-depth study before

selecting a model that best meets their needs while keeping in mind the compromises that

come with a given choice. But when it comes to strictly about computation, Homomorphic

Encryption is the most prominent option since it performs computations on encrypted data.

The traditional way of performing computations on sensitive data is by using classic

Encryption, which requires decryption before the actual computation. Homomorphic

Encryption However takes it the next level by performing calculations on Encrypted data

(cipher Text) without having to decrypt it. For instance, Healthcare and Financial data are

very much sensitive and they are to be handled very carefully and ethically. In a healthcare

setting, Useful insights can be taken extracted from patients’ data by analysing the data but it

should be ethical, as in no individual’s sensitive information (like PII) be revealed, and make

sure that it is done with consent. Homomorphic Encryption ensures the privacy and security

of such sensitive data while providing useful insights.

3

Since calculations are done on cipher text, it up a lot of the computational resources which in

turn leads to overheads. Researchers are still actively trying to come up with new schemes to

make it practical. Since Craig Gentry’s first scheme on Fully Homomorphic Encryption in

2009 till recent advancements in this field of study, Computational Intensity still seems to be

a major drawback. Large arbitrary multiplication of numbers and a technique called

Bootstrapping are the most computationally intensive tasks. There have been many schemes

after Gentry with different Bootstrapping approach and algorithms all together to try and

minimize the computational intensity but is still very hard to make it practical in the business

world. Although, there are other schemes that is possible to have a practical implantation of

Homomorphic Encryption with limited amount of multiplication depth like Somewhat

Homomorphic Encryption (Brenner, 2012).

1.1 Research Questions

• How can the privacy preservation and computational efficiency of Fully

Homomorphic Encryption be optimized for secure cloud environments in large

datasets?

• How to effectively utilize Fully Homomorphic Encryption on sensitive data in

untrusted cloud environment?

1.2 Objective of the research

The main goal of this research is to balance privacy and computational cost of FHE and

demonstrate a more practical approach by using existing FHE tools and library. The approach

in this research is very much different from others as the goal is to develop a framework

using data splitting and parallel processing. The idea is to split the dataset based on

sensitivity and perform FHE operations only on the ones which are very sensitive and process

the calculations parallelly to further enhance the performance. In previous works, different

algorithmic approaches have been taken to optimize the performance of FHE, like enhanced

bootstrapping techniques or different noise management mechanisms. However, in this

research, the existing algorithms (FHE schemes) are used in a more efficient way.

2 Related Work

The related work is grouped as follows, section 2.1 to 2.5 has all of the papers that proposed a

new FHE Scheme and the section 2.6 has the papers that utilized hardware accelerators to

enhance FHE performance.

2.1 Gentry’s Initial Ideal Lattice based FHE

As part of his thesis, Stanford University graduate student Craig Gentry invented the first

fully homomorphic encryption technique in 2009. Gentry was the first to suggest use an

ideal-lattice based approach for fully homomorphic encryption. A mathematical structure

4

called an ideal lattice is employed in cryptography, specifically in encrypted calculations.

Additionally, the concept of bootstrapping—which is essential to FHE—is introduced in this

study. It is used to refresh the encrypted text and minimize the error vector's size or also

known as “noise”, which grows larger with each operation. Simply said, error vectors are

random vectors that are appended to the vector point during the encryption process. When the

decryption process takes place, these error vectors are introduced to restore the original plain

text. Gentry's Fully Homomorphic Encryption (FHE) approach uses a specific "squashing"

mechanism to deal with the noise that builds up in cipher texts after several homomorphic

operations. Because of bootstrapping and large multiplication operations, fully homomorphic

encryption can be computationally expensive; this problem has been addressed by several

studies since Gentry (Gentry, 2009). Since the goal of this research is to solve this problem, it

is crucial to understand the findings of earlier studies and the novel strategies they suggested

for enhancing FHE performance.

Numerous studies have been conducted in the wake of Gentry's work. Regev, for example,

offers a classical public-key cryptosystem that is more effective than previous lattice-based

systems. The size of the public key in earlier cryptosystems was around O(n4), while the size

of the message grew after encryption by roughly O(n2). More realistic and effective, the

proposed cryptosystem increases message size by around O(n) and decreases public key size

to about O(n2). An extension of Regev (2009), Lyubashevsky et al. (2010) developed a novel

Learn with Errors approach over integers. Since the encryption system is predicated on the

difficulty of solving the approximate-gcd issue, any attack against it may be turned into a

strategy for solving the problem. The technique uses a public key that is a string of numbers

drawn from a certain distribution and a private key that is an odd number chosen at random.

Although Lyubashevsky et al. (2010) scheme allows more FHE operations before the noise in

the cipher texts becomes excessive, the cipher texts' noise level still limits this approach.

Additionally, ring-LWE, an algebraic variant of LWE, is proposed in this study. But there are

challenges in resolving the computational overhead problem (Regev, 2009).

2.2 BGV Scheme

The Brakerski-Gentry-Vaikuntanathan (BGV) Fully Homomorphic Encryption (FHE)

scheme marks a significant step forward in the development of practical homomorphic

encryption. Expanding upon Craig Gentry's groundbreaking work from 2009, which was the

first to show that FHE was feasible, the BGV scheme sought to resolve the inefficiencies and

high computational costs related to Gentry's first FHE scheme. Optimizing bootstrapping

procedures and introducing more effective noise control strategies, the BGV system

leverages the Ring Learning with Errors (Ring-LWE) problem as its security foundation. This

made it possible to implement FHE in more useful ways that could still preserve the secrecy

and integrity of the underlying data while carrying out arbitrary calculations on encrypted

data. The BGV scheme's support for levelled homomorphic encryption, which allows for a

set number of ciphertext operations without the need for regular bootstrapping, is one of its

key advances. This new optimized approach of bootstrapping is brilliant because not all

operations require bootstrapping, some simple arithmetic operations does not require

5

bootstrapping which consumed much of the computational resources and time. This

improvement greatly lowers the computing cost, increasing the scheme's applicability in

practical settings. Furthermore, the BGV technique maintains control over noise levels by

using modular arithmetic for noise management, which keeps ciphertexts decryptable even

after repeated operations. BGV offers strong security guarantees and robust performance,

based on well-established hardness assumptions in lattice-based cryptography, and strikes a

balance between efficiency, flexibility, and security in comparison to other FHE schemes

such as the original Gentry scheme, the Brakerski-Vaikuntanathan (BV) scheme, and the

Fan-Vercauteren (FV) scheme. The BGV scheme is used in many sectors that requires secure

data processing in untrusted environment, especially in cloud computing. It is also used in

encrypted machine learning to the train the models with sensitive data in securely and

efficiently (Zvika Brakerski, 2014).

2.3 FV Scheme

The authors of the paper “somewhat practical fully homomorphic encryption” adapt

Brakerski's FHE technique to the ring-LWE scenario, therefore expanding upon it. The FHE

strategy is based on the Learning with Errors (LWE) issue. The goal of this shift is to

optimize relinearization procedures, which will speed up computations and minimize the

amount of relinearization keys. Relinearization is a mechanism that converts the complex

cipher texts, that accumulates after homomorphic multiplication, into a much simpler and

decryptable cipher texts. As mentioned previously homomorphic multiplication can be quite

computationally intensive and relinearization helps in optimizing these operations in

particular. Relinearization is similar to bootstrapping but it is only dedicated to simplifying

homomorphic multiplication in cipher texts. In-depth analyses of many homomorphic

processes, including bootstrapping, relinearization, and multiplication, are presented in the

work, together with exact worst-case limitations on the noise these operations generate. In

particular, a modulus switching approach is used to speed the analysis of the bootstrapping

stage of the scheme. Additionally, the authors provide certain guidelines that guarantee a

particular degree of security, making the system entirely homomorphic in these

circumstances (Vercauteren, 2012).

The study presents an RLWE-based encryption technique that keeps the fundamental design

of Brakerski's FHE while introducing practicality-enhancing modifications. The enhanced

relinearization approach, which streamlines the procedure and lowers computer cost, is the

scheme's main novelty. Furthermore, noise accumulation—a major problem in FHE

schemes—is further minimized by bootstrapping, which makes use of a straightforward

modulus switching technique. The robustness of the approach is shown by the authors'

meticulous noise analysis and security parameter choices. It is anticipated that this work will

provide a more probable solution for FHE applications.

2.4 TFHE Scheme

6

In (Chillotti, 2019), Fast Fully Homomorphic Encryption over Torus (TFHE), an additional

approach was put forth. This also was predicated on the approximate gcd problem. Because

TFHE's bootstrapping method is significantly quicker than that of other FHE schemes, it is a

good fit for homomorphic encryption in cloud computing. TFHE is popularly known for its

C++ implementation. The TFHE approach aims to maximize efficiency in terms of cipher

text size, memory use, and computational cost. It does this by fusing symmetric key

encryption with bit-wise operations. Additionally, it makes rotation operations easier, which

enables efficient evaluation of circuits containing loops or variable-length operations.

2.5 CKKS Scheme

Cheon et al.'s study "Homomorphic Encryption for Arithmetic of Approximate Numbers"

solves these issues by presenting a new HE technique tailored exclusively for approximation

arithmetic. The core idea is to include noise as part of the inaccuracy inherent in

approximation computations, allowing for speedy and secure arithmetic operations that

prioritize large figures. This approach employs a rescaling process that truncates ciphertexts

to control the size of the plaintext, successfully limiting accuracy loss. The decryption

structure of this approach returns an approximate value of the plaintext with preset accuracy,

which is a considerable advance over prior methods that frequently resulted in the destruction

of most significant bits (MSBs) during homomorphic operations. The authors base their

approach on the Ring Learning with Errors (RLWE) issue and use the BGV scheme's

multiplication mechanism to increase the ciphertext modulus. They offer a batching approach

that transfers plaintext polynomials to message vectors of complex numbers using a

canonical embedding map, keeping the precision of plaintext after encoding while without

bloating the magnitude of mistakes (Jung Hee Cheon A. K., 2017).

After their first paper on approximate arithmetic in FHE, a noteworthy addition is made by

Jung Hee Cheon et al. with their complete RNS variation of approximation HE, which

addresses performance issues in earlier implementations. Constraints on ciphertext modulus

selection made it impossible for previous HE schemes, like the HEAAN, to integrate RNS

decomposition with the Number Theoretic Transformation (NTT). By putting forth a unique

form for the ciphertext modulus that permits the use of RNS decomposition and NTT

conversion, Cheon et al. get around these problems. Because their approach only uses word-

size operations instead of multi-precision arithmetic, it is more efficient and performs far

better for fundamental operations such as homomorphic multiplication and decryption (Jung

Hee Cheon K. H., 2019).

Performance optimization in polynomial arithmetic in HE has been greatly aided by the

adoption of the double-CRT representation. Gentry et al. have emphasized the double-CRT

technique, which breaks down polynomials into smaller components using the Chinese

Remainder Theorem (CRT) to facilitate efficient calculations in smaller rings. This invention

guarantees that homomorphic operations may be performed effectively without resorting to

bigger integer representations, such as modulus flipping and rescaling. As a result, their

method performs on par with, if not better than, other cutting-edge HE libraries, exhibiting

7

notable speedups in a variety of operations, including those crucial for machine learning

applications.

The researchers demonstrate the usefulness of their complete RNS variation in practice by

providing experimental findings that corroborate their contributions. Significant performance

advantages are achieved by their implementation, most notably in lowering computation

times for complicated tasks like constructing logistic regression models from encrypted data.

This development is essential to bringing HE to be practical, especially in industries like

banking and healthcare that need safe data processing. Thus, the complete RNS variation of

approximation HE is an important discovery in cryptography research, as it allows new

opportunities for privacy-preserving solutions by efficiently performing complex calculations

on encrypted data.

2.6 Hardware Acceleration Approach

Cheon and team introduced the CKKS system, which is appropriate for applications needing

numerical accuracy since it allows approximation arithmetic on encrypted data. Still,

bootstrapping requires a lot of resources to run. In order to increase FHE performance, recent

research has concentrated on utilizing hardware acceleration and improving bootstrapping.

These issues are resolved by the paper's suggested BTS (Bootstrappable, Technology-driven,

Secure) accelerator, which optimizes calculations using homomorphic encryption. In contrast

to other methods, BTS uses coefficient-level parallelism (CLP) to effectively manage large-

scale calculations while balancing data transport and processing. In benchmarks like logistic

regression and ResNet-20 inference, this architecture achieves up to 5,556× speedup,

indicating considerable performance improvements (Kim, 2022).

By tackling the substantial computational overhead connected with the bootstrapping

procedure, the paper "Over 100x Faster Bootstrapping in Fully Homomorphic Encryption

through Memory-centric Optimization with GPUs" by Wonkyung Jung et al. expands on the

body of work already done in the field of fully homomorphic encryption (FHE). The time-

consuming nature of bootstrapping, which can take several minutes on standard hardware,

has prevented practical applications from taking full use of FHE's infinite operations

capabilities on encrypted data. While other attempts, including the PrivFT technique and the

open-source library cuFHE, have made progress in using GPUs to speed up different

homomorphic encryption algorithms, none have successfully targeted the RNS form of

CKKS or executed bootstrapping at this degree of efficiency. The paper's listed related

studies emphasize the uniqueness of the authors' methodology, drawing attention to the lack

of GPU-accelerated bootstrapping solutions for CKKS and laying the groundwork for their

contributions (Wonkyung Jung, 2021).

With an amortized bootstrapping time of 0.423 microseconds per bit, the authors achieve a

7.02× speedup for a single CKKS multiplication by a thorough study and implementation of

memory-centric optimizations such as kernel fusion and reordering main functions. This

8

performance is 257× better than single-threaded CPU implementations and outperforms

current GPU implementations. Furthermore, the authors show a 40× speedup over an 8-

thread CPU implementation by incorporating these optimizations into a logistic regression

model, demonstrating the usefulness of their work for privacy-preserving machine learning

applications. The implementation of safe, effective data analysis tools in practical settings is

made possible by this noteworthy development in lowering the computing load of FHE

bootstrapping.

(Wang, 2012) employ a distinct methodology to address the computational intensity issue in

Fully Homomorphic Encryption. The study suggests a more efficient method that will assist

lower a large portion of Gentry's algorithm's computational overhead by making use of GPU-

GPU acceleration and parallel processing technologies. The main findings of this

experimental investigation are noteworthy since they demonstrate a notable improvement in

performance when using the NVIDIA C2050 GPU. The paper's findings show a speedup of 8

for decryption, 8 for encryption, and 7.6 for recrypt when compared to the CPU

implementation. Barrett's modular reduction method on a GPU and Strassen's FFT-based

approach were used by the authors in an effort to accelerate the computationally expensive

million-bit modular multiplication in FHE.

3 Research Methodology

Significant advancements have been made in the field of Fully Homomorphic Encryption

both algorithmically and in terms of utilizing hardware accelerators for specific FHE

operations to improve the overall performance. Researchers have come up with new schemes

and ideas to reduce the computational intensity but there is little to none practical

implementations of FHE in the business world. The main objective of this research is to come

up with a better approach to make use of the existing Fully Homomorphic Encryption

Schemes to make it more practical in real world application. The proposed solution is to

adapt data splitting and parallel processing to efficiently perform Homomorphic calculations

on large-scale sensitive dataset. This section details the specific approach taken to address the

research questions.

3.1 Process overflow

There are many different FHE libraries and choosing which ones to implement is crucial

because each schemes offer different level of security and efficiency. For example, the CKKS

scheme has good noise control and faster than other schemes but it is based on approximate

arithmetic, meaning the result is just an approximate value of the output but not the exact

number. There are many different libraries that implement FHE, few popular ones are

Microsoft SEAL, Helib, Pyseal, Concrete-python, Tenseal and pyfhel. Each of these libraries

offer different schemes.

One of the goals of this research is to show that it is possible to use the existing tools/libraries

available in Fully Homomorphic Encryption and develop a framework that effectively

9

utilizes FHE. The main idea is to split the dataset based on sensitivity of the data. In a dataset,

not all columns have sensitive or personal information. Encrypting the whole dataset will

take up a lot of resources and processing power. So, in order to effectively utilize FHE, we

can split the dataset into two sections. One chunk of the dataset can have sensitive

information and the other chunk can have non sensitive information. In this way we can

perform Homomorphic operations only on the sensitive chunk and perform regular

calculations on the non-sensitive data. This should potentially reduce much of the

computational intensity of these operations.

To further improve the efficiency and performance of FHE operations on large scale dataset

we can utilize parallel processing technologies. By distributing the workload across multiple

processors, parallel processing will help take much of the load off of single CPU and will

help avoid the CPUs to overheat. Certain FHE operations like long arbitrary multiplications

can take a lot of time to execute. A certain noise is added to every Homomorphic operation to

make the calculations secure. After each FHE operations, especially multiplication, the noise

accumulates to a point where it becomes very hard to manage that noise. Bootstrapping was

introduced to help with noise management and excessive bootstrapping itself can be

intensive. So, integrating parallel processing in our code can help in faster bootstrapping and

multiplication.

3.2 Setup of scenarios/case studies

Proper methodology needs to be followed to effectively assure the validity, reliability, and

reproducibility of research findings, allowing for correct conclusions and valuable

contributions to the field. Various case studies are to be carried out to get valuable

information of the proposed approach by checking if the approach is valid when

implemented. Various Fully Homomorphic Encryption Schemes will be compared in terms

of CPU time, CPU usage and memory utilization using a simple Homomorphic operations

like addition and multiplication by integrating the proposed approach. In the case studies,

three FHE schemes have been compared, namely CKKS scheme, BGV scheme and BFV

scheme, with the proposed methodology or framework. In order to conduct these case

studies, we will have to setup a Linux environment because it works well with most of the

available FHE libraries.

3.3 Framework Development

The end goal of this research is to develop a framework or a tool that effectively utilizes

Fully Homomorphic Encryption. The reason for a framework development is because there

aren’t any ready to use tools for companies to utilize Fully Homomorphic Encryption. The

framework was built using various cloud technologies like AWS lambda handle

homomorphic calculations and normal calculations and API gateway to invoke the lambda

function from the client environment. The framework is built to handle huge datasets that

contains thousands of sensitive data. The research specifically targets health care data

10

because it contains patients’ personal information. Various analysis can be done with the data

ethically by protecting the patient’s privacy in a faster and more efficient manner.

4 Design Specification

Figure 1: Architectural diagram of the developed framework

In this section, the entire process overflow is explained. The client script contains the URL of

the REST API of the lambda functions and splits the dataset into two. One has sensitive data

like patient id, age and PPI or email, the other chunk of dataset has non-sensitive patient

health information like Blood pressure or body temperature. Two lambda functions are

implemented to handle homomorphic (secure) calculations and the other handles normal

calculations. Lambda is Function-as-a-service mechanism that allows you to focus on code

and not worry about the underlying infrastructure. Lambda functions are usually used to

perform a specific task of an application. These Lambda functions are invoked through API

Gateway (REST) that is integrated to each lambda function. API Gateway is a fully managed

API service managed by AWS. In this diagram, API Gateway takes the request from the

client script, sends the request to the appropriate lambda function. The sensitive csv is sent to

the sensitive lambda handler and it the data is sent in a JSON format. The JSON formatted

data is converted back to its original state and encrypted calculations are performed on the

dataset and the calculations leverage parallel processing. Parallel processing allows to

process multiple tasks concurrently. This will help speed up the homomorphic operations

performed on the lambda function. The results are converted back to JSON format and sent

back to the client script. The non-sensitive chunk of the dataset is sent to the non-sensitive

data handler and the calculations are done without encryption. After processing the data, it is

sent back to the client through REST API. After receiving both of the processed outputs from

their respective lambda functions, both of these data chunks are converted back to their

original format and are rejoined, and the final processed output is displayed.

11

5 Implementation

This section shows how the proposed approach was implemented and also mentions what

tools and languages were used to develop the framework. The purpose of this research is to

demonstrate how the existing Fully Homomorphic Encryption libraries can be efficaciously

used in huge datasets. Hence, the framework was built on top of the CKKS scheme using the

tenseal python library.

5.1 Technologies and tools used

Serverless technology allows you to focus on coding without having to worry about the

underlying infrastructure, including OS and server maintenance. AWS lambda has the ability

to scale up and down the compute resources based on demand. Two lambda functions were

programmed and deployed on to the AWS cloud. One lambda function handles homomorphic

operations and the other handles normal arithmetic operations. This is a better and more

optimized approach in secure data processing of sensitive data. By distributing the load to

two different lambda functions, the computational intensity is greatly reduced. The lambda

function that handles the sensitive (homomorphic operations) dataset has the python version

3.10 because the tenseal python library faced some dependency issues while trying to install

that on a lambda server with the latest python version 3.12. The data frame is turned into a

dictionary before sending it to the lambda function because the lambda functions are invoked

using a payload that is in a dictionary format.

A “REST” API is integrated into the lambda function so that it can be invoked through a

HTTP request. The datasets are sent to their respective lambda functions in the form of a

JSON payload through API Gateway. The lambda functions take ‘data’ and ‘operation’

parameters payload from the client. ‘data’ contains the sensitive or non-sensitive chunk of the

dataset and ‘operation’ specifies what kind of operation is done on the dataset. The Cross-

Origin Resource Sharing (CORS) mechanism should be enabled in order for the client to be

able to communicate with the lambda function. If not, the client application will not be able

to access or invoke the lambda function through HTTP request.

The lambda functions were programmed using Python. Python is a high-level programming

language and easy to read. The Homomorphic Encryption is done using python’s tenseal

library. The tenseal library supports both the CKKS and the BFV schemes. I decided to use

the CKKS scheme for homomorphic encryption because it is designed for approximate

arithmetic and effectively utilizes hardware accelerators. To manipulate the data formats, the

pandas library is used. It is used to read the dataset from the csv file and convert that into a

data frame, so that it can be encrypted and meaningful calculations can be performed on it.

The python built-in library ‘multiprocessing’ is used to perform the operations parallelly by

breaking down the task into chunks and distributing them across multiple processors. A client

12

script is written to split the dataset and access the lambda function using the REST API

Gateway.

5.2 Parameter Selection

The Tenseal context is set for initializing the encryption parameter before encrypting the data

frame by choosing the type of Fully Homomorphic encryption Scheme used, In this case

CKKS scheme. The polynomial modulus degree is set to 8192. This parameter is carefully set

to balance performance and security because large polynomial modulus degree will be

expensive computationally even though it increases performance. The degree of polynomial

modulus specifies how hard the hidden mathematical problem will be. There has been many

research conducted, trying to find the best parameter for polynomial degree modulus and

8192 is said to be appropriate for practical implementations of FHE schemes (Fan et al.,

2024). The coefficient modular bit sizes determine the level of precession the resulting

numbers will offer. The generate galois keys parameter is used when rotation operation is

performed. The global scale parameter is simply a factor used to encode and decode values.

The main purpose of this parameter is to maintain a necessary level of precession while

performing homomorphic operations.

Figure 2: Tenseal Context Setup

The above code is a code snippet of teasel context set up. In the BGV and BFV scheme, the

plaintext modulus is also specified and these parameters are also to be chosen appropriately

to balance security and computational cost (Albrecht, 2021).

5.3 Homomorphic Operations

The framework itself supports three homomorphic arithmetic operations namely addition,

multiplication and average. The addition operation performs sum of all the values in a

column, the multiplication multiplies the values and the average finds the average of the

values. Each of these values are encrypted and to encrypt each and every value, it is passed

inside a for loop. The code snippet blow shows how average is calculated securely in the

Lambda function.

13

Figure 3: Encrypted Operation Example

More meaningful operations can be implemented. This is just to showcase that this approach

viable.

5.4 Processed output

The client script combines the two datasets received from the lambda functions and displays

the final output. The diagram below shows how the data is manipulated and processed back

to the original structure of the dataset.

Figure 4: Dataset diagram after data splitting

5.5 Challenges and Resolutions

Initially when the lambda function that handles the homomorphic computations was

deployed, it encountered timeout errors due to the time complexity of the encrypted

operations. The default timeout for a lambda function is 5 seconds and it had to be increased

14

to 15 mins. During this process the assigned memory usage was also increased to 150 MB. In

the real world the dataset sizes will be quite huge so the server that handles the homomorphic

operation should have advance hardware components.

Ran into several formatting errors because the payload was not sent in the right format. The

dataset is first converted into a dictionary format and the data sent from the lambda is also in

the dictionary JSON format.

Dependency errors had occurred during the deployment of the lambda function. After doing

some research it was found that the python version on the local machine where the code is

written should be the same as the python version on the lambda function. The python version

was updated manually in the WSL machine.

6 Evaluation

This section contains the comparisons of different Fully Homomorphic schemes with the

developed framework and see how it performs in terms of execution time, CPU usage,

memory used, voluntary context switches and involuntary context switches. Synthetic data

has been used through out the case studies and every column of the dataset carries out

addition operation to check how they perform in when compared with each other. For the

purpose of this case study, a synthetic dataset containing 6000 rows has been used for

evaluation. The dataset has 8 columns in which 4 of them contain sensitive information, like

patient id and age, and the remaining are not sensitive. As the dataset is split into two in the

framework, only the sensitive chunk is homomorphically encrypted. But in the other 3 FHE

programs, the entire dataset is homomorphically encrypted. The case studies were conducted

on a Windows Subsystem for Linux system with 13th gen intel core i7 processor, 32GB

DDR5 memory, 1TB SSD and NVIDIA GeForce RTX 4070 Laptop GPU. In order to get

accurate results, Garbage collection has been integrated in each of the python codes to avoid

memory leaks and automate memory management. A separate script was written without

using the lambda functions for the framework. The data is split and processed on the local

machine to provide fair and consistent results.

15

6.1 Time Elapsed

Figure 5:CPU Time for Different FHE Schemes

CPU time is one of the most important metrices to check how much time the processor takes

to finish a task. Faster CPU time indicates faster and smoother processing capabilities of a

program. The above bar chart illustrates the time taken by each the Fully Homomorphic

Encryption schemes to complete its execution when compared to the developed framework.

The total execution time is calculated by taking the difference of the start time and the end

time.

6.2 CPU Usage

Figure 6:CPU Usage for Different FHE Schemes

Fully Homomorphic Encryption schemes are known to be computationally intensive because

they utilize most amount of CPU resources available. The figure above shows the CPU usage

16

of each FHE schemes during the execution in comparison to the developed framework.

Lower CPU consumption is preferable for FHE to be more practical in the real world

especially for companies with insufficient resources. The CPU Usage of the python scripts

were calculated using the psutil library.

6.3 Memory Usage

Figure 7:Memory Usage for Different FHE Schemes

Memory usage refers to the amount of Random-Access memory potentially used during the

execution of code. Less memory usage means the program utilized only a small portion of the

memory during the completion of its task. Effective memory utilization is crucial when it

comes to Fully Homomorphic Encryption because of the noise accumulation after

consecutive Homomorphic operations and large cipher text sizes, it can take up much of the

memory space and only some left for the remaining calculations. It is desirable to consume

less memory during execution. The above histogram shows the memory usage of each FHE

schemes in comparison to the developed framework. Memory usage is calculated using the

python library called memory profiler.

Bootstrapping is a mechanism that refreshes the noise in the cipher text when the noise gets

too large. This also one of the reasons why FHE is so computationally intensive. Since only

the sensitive columns are encrypted, bootstrapping is not regularly triggered when compared

to the traditional schemes. Moreover, as the data is spread across multiple cores, the noise

accumulation is also less compared to the traditional schemes.

17

6.4 Voluntary Context Switches

Figure 8:Voluntary Context Switches during Execution in Different FHE Schemes

Voluntary Context Switches arise when a process voluntarily surrenders the CPU while

waiting for external operation (I/O operation). If a process is able to voluntarily give up

control over the CPU, then it is safe to say that it has completed its assigned task within the

allotted time stamp. Voluntary Context switches does not always mean it’s a bad thing but

frequent voluntary context switches can sometimes lead to overheads. The above chart

demonstrates the number Voluntary Context Switches occurred during homomorphic

operation on a synthetic dataset.

6.5 Involuntary Context Switches

Figure 9:Involuntary Context Switches during Execution in Different FHE Schemes

18

Involuntary Context Switches happen when a process is running for too long and the

Operating System suspends the process from the CPU. Excessive Involuntary Context

Switches can heavily impact the performance. If the scheduler has to forcefully take control

over the CPU means that the process was not able to finish the given task on time. The above

bar graph displays the number of Involuntary Context Switches that occur during the

execution of different FHE schemes when compared to the developed framework.

6.6 Discussion

From the above graphs we can get meaningful insights on how the developed framework

performs when compared to other Fully Homomorphic encryption schemes in terms of CPU

time, CPU usage, Memory usage and context switches.

CPU Time: The developed framework showcases the fastest execution time when compared

to the other 3 FHE schemes. Since only the sensitive columns are Homomorphically

encrypted, it takes much of the load off the CPU resulting in faster execution time. Normal

arithmetic operations do not take much time to execute. It took 18.68 seconds to compute

addition operation on the dataset while the other 3 FHE schemes took around 300 seconds to

complete execution on the entire dataset. The Homomorphic calculations are processed

parallelly which makes the calculations much faster.

CPU Usage: The developed FHE framework seem to have brought down the computational

intensity. The proposed approach effectively balances the trade-off between computational

complexity and protecting user privacy. The frame work utilized only 0.80% of the CPU

since the tasks are offloaded to multiple processors instead of one. The other FHE schemes

on the other hand recorded 99% of the CPU resources. The framework is efficiently utilizing

the CPU and hence it drastically reduces overhead occurrences. The noise inside the cipher

texts almost doubles than the one before after each operation and since only a part of the

dataset is homomorphically processed, CPU is not overused.

Memory Usage: The framework uses less memory when compared to the FHE schemes

because the data is almost reduced to half and there is not much bootstrapping necessary to

refresh the noise since the noise accumulation is much less when compared to the schemes

without data splitting. The BGV scheme used the most memory because it generates larger

key size when compared to other FHE schemes and the bootstrapping technique is also not as

efficient as others. The framework used 15.36 Mega Bytes of RAM during execution, which

is significantly less compared to other schemes.

Voluntary Context Switches: By looking at the figure it is clear that the developed

framework has the most amount of voluntary context switches with 46. Although Voluntary

Context Switches does not always mean it’s a bad thing but it can have an impact on the

performance when it happens too frequently. This can be because of large I/O operations or

long waiting periods for external resources. This can be a problem when dealing with large

datasets with 100,000 rows. This matter can be looked into by further investigating and the

code can be optimized to reduce the voluntary context switches.

Involuntary Context Switches: The number of Involuntary Context Switches that happened

during the execution was around 1 or 3 times in the framework. The CKKS scheme had the

most amount of Involuntary Context Switches and due to its frequent disruption from the OS

19

it affects its overall performance and hence it took the most amount of time to complete

execution when compared to others.

Schemes CKKS BGV BFV Developed

Framework

CPU Time 335.93 seconds 313.37 seconds 301.88 seconds 18.68 seconds

CPU Usage 99.70% 99.68% 99.67% 0.80%

Memory usage 78.77 MB 63.50 MB 122.118 MB 15.36 MB

Voluntary

Context

Switches

14 31 22 46

Involuntary

Context

Switches

55 31 29 1

7 Conclusion and Future Work

A novel framework was successfully implemented using serverless architecture in AWS

lambda. The main contribution of this research lies in splitting the dataset based on sensitivity

and perform secure calculations by utilizing multiprocessing only on the sensitive chunk of

the dataset. The framework was successfully able to send and retrieve data from the Lambda

function through API Gateway. The framework was compared to the CKKS, BGV and BFV

scheme where the whole dataset was Homomorphically encrypted regardless of sensitivity.

After thorough evaluation the results show that the proposed approach out performs in almost

every metrices including CPU Time, CPU Usage, Memory Usage and Involuntary Context

Switches. But the number of Voluntary Context switches was the highest when compared to

other Fully homomorphic Encryption Schemes. Since only a part of the dataset is

homomorphically encrypted and the process is distributed, the CPU has more resources

available which reduces the chances of overheads drastically.

The framework itself is not perfect and it can be further optimized by reducing the network

buffers. AWS Lambda is a lightweight serverless architecture with limited amount of

computing resources. The incoming and outgoing payload requests can only take around 20

MB. This maybe be more than enough for general purpose applications with basic

functionalities but in FHE things like context setup and cipher text sizes can lead to large

payload sizes. Moreover, if you’re dealing with large datasets the payload invocation size can

exceed past the maximum limit. Different technology with less network buffers and more

processing capabilities can be setup to deploy the framework on to the cloud. More

meaningful operations can be implemented like variance and median to get meaningful

insights. A context aware bootstrapping mechanism can be implemented using machine

learning to trigger bootstrapping only when absolutely necessary to improve the overall

performance.

8 References

20

Arthur, B. Q. (2011, April 26). PlayStation Network hackers accessed data. The Guardian.

https://www.theguardian.com/technology/2011/apr/26/playstation-network-hackers-data

Brenner, M., Perl, H., & Smith, M. (2012, July). Practical Applications of Homomorphic

Encryption. In SECRYPT (pp. 5-14).

Fan, S., Deng, X., Tian, Z., Hu, Z., Chang, L., Hou, R., ... & Zhang, M. (2024). Taiyi: A

high-performance CKKS accelerator for Practical Fully Homomorphic Encryption. arXiv

preprint arXiv:2403.10188.

Gentry, C. (2009, May). Fully homomorphic encryption using ideal lattices. In Proceedings

of the forty-first annual ACM symposium on Theory of computing (pp. 169-178).

Goasduff, L. (2021, November 10). Gartner says cloud will be the centerpiece of new digital

experiences. Gartner. https://www.gartner.com/en/newsroom/press-releases/2021-11-10-

gartner-says-cloud-will-be-the-centerpiece-of-new-digital-experiences

Chillotti, I., Gama, N., Georgieva, M., & Izabachène, M. (2020). TFHE: fast fully

homomorphic encryption over the torus. Journal of Cryptology, 33(1), 34-91.

Cheon, J. H., Kim, A., Kim, M., & Song, Y. (2017). Homomorphic encryption for arithmetic

of approximate numbers. In Advances in Cryptology–ASIACRYPT 2017: 23rd International

Conference on the Theory and Applications of Cryptology and Information Security, Hong

Kong, China, December 3-7, 2017, Proceedings, Part I 23 (pp. 409-437). Springer

International Publishing.

Cheon, Jung Hee, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song. "A full

RNS variant of approximate homomorphic encryption." In Selected Areas in Cryptography–

SAC 2018: 25th International Conference, Calgary, AB, Canada, August 15–17, 2018,

Revised Selected Papers 25, pp. 347-368. Springer International Publishing, 2019.

Kim, S., Kim, J., Kim, M. J., Jung, W., Kim, J., Rhu, M., & Ahn, J. H. (2022, June). Bts: An

accelerator for bootstrappable fully homomorphic encryption. In Proceedings of the 49th

annual international symposium on computer architecture (pp. 711-725).

Albrecht, M., Chase, M., Chen, H., Ding, J., Goldwasser, S., Gorbunov, S., ... &

Vaikuntanathan, V. (2021). Homomorphic encryption standard. Protecting privacy through

homomorphic encryption, 31-62.

Voigt, P., & Von dem Bussche, A. (2017). The eu general data protection regulation

(gdpr). A Practical Guide, 1st Ed., Cham: Springer International Publishing, 10(3152676),

10-5555.

https://www.theguardian.com/technology/2011/apr/26/playstation-network-hackers-data
https://www.gartner.com/en/newsroom/press-releases/2021-11-10-gartner-says-cloud-will-be-the-centerpiece-of-new-digital-experiences
https://www.gartner.com/en/newsroom/press-releases/2021-11-10-gartner-says-cloud-will-be-the-centerpiece-of-new-digital-experiences

21

Pepitone, J. (2011, June 22). Dropbox says it has fixed security flaw that exposed passwords.

CNN. https://money.cnn.com/2011/06/22/technology/dropbox_passwords/

Regev, O. (2009). On lattices, learning with errors, random linear codes, and

cryptography. Journal of the ACM (JACM), 56(6), 1-40.

Fan, J., & Vercauteren, F. (2012). Somewhat practical fully homomorphic

encryption. Cryptology ePrint Archive.

Wang, W., Hu, Y., Chen, L., Huang, X., & Sunar, B. (2012, September). Accelerating fully

homomorphic encryption using GPU. In 2012 IEEE conference on high performance extreme

computing (pp. 1-5). IEEE.

Jung, W., Kim, S., Ahn, J. H., Cheon, J. H., & Lee, Y. (2021). Over 100x faster

bootstrapping in fully homomorphic encryption through memory-centric optimization with

GPUs. IACR Transactions on Cryptographic Hardware and Embedded Systems, 114-148.

Brakerski, Z., & Vaikuntanathan, V. (2014). Efficient fully homomorphic encryption from

(standard) LWE. SIAM Journal on computing, 43(2), 831-871.

https://money.cnn.com/2011/06/22/technology/dropbox_passwords/

