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Using Machine Learning in Edge Computing for 

Optimizing Resource Scheduling 

 
Bhavna Jasmine Maria Rathna Kumar 

22185101 

 
Abstract 

Edge computing is an emerging trend that has faced challenges in the allocation of 

resources in light of its dynamic and distributed nature with implications on latency, 
computational power and energy. Central data processing is no longer sufficient for high- 

real time applications such as IoT, self-driving cars, and smart cities. To address these 

problems, this project proposes a framework that applies machine learning approaches 
such as Random Forest, Decision Tree, AdaBoost, and Gradient Boost to improve 

resource scheduling. The purpose of the project is to establish whether the integration of 

fusion models and cloud computing can enhance resource management. This project 

established the most effective fusion model through experimentation and implemented it 
on AWS to prove that cloud-based systems enhance computation and dependability. This 

framework directly solves the problem stated in the research question of how to improve 

the resource scheduling for enhancing edge computing services and how the advanced 
analytics and cloud infrastructure can be used to improve the performance in several 

latency critical applications. 

 

 

1 Introduction 

1.1 Overview on Edge Computing 

Edge computing is a new concept in data processing wherein instead of transmitting data to 

central data centers for processing, computations are done near the source of data. In contrast, 

edge computing models do not transfer data to a far-off data center for computation, as seen 

in normal cloud computing. This approach is very useful for applications that are latency- 

sensitive and have real-time processing needs such as IoT devices and autonomous vehicles 

and smart cities (Xiong, et al, 2020). Edge computing refers to the process of data creation at 

the network’s perimeter by devices such as sensors, smartphones, IoT devices, and self- 

governing vehicles. This data is then transferred to the edge nodes which are the intermediate 

processing elements like gateways, routers or edge servers which are specialized in analysis 

of the data. The smaller edge data centers located at the edge as compared to the centralized 

data centers offer extra computing power and storage. These components are connected 

through LAN, WAN, and the internet to enable efficient transfer and analysis of data at the 

network’s periphery (Deng, et al, 2020). 
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1.2 Need for Optimizing Resource Scheduling for Edge Computing 

Resource scheduling in edge computing is vital in order to maximize the its benefits in the 

enhancement of computational capabilities as well as low latency. By placing more 

computing resources near the data source, edge computing reduces the load on central data 

centers and shortens the time required to deliver services. Resource scheduling is a dynamic 

element that makes computation jobs tractable by implementing scheduling procedures 

available or in demand to gain maximum tractability (Wang, et al, 2021). It also supports the 

optimization of energy usage and energy consumption in edge devices, which is important for 

counts as longer battery life, critical for sustainability of the Internet of Things (IoT) setup. In 

addition, the schedules are thereby optimized to promote scalability: it becomes easy to 

incorporate new devices and application into the system without straining the framework. 

Due to a smaller number of interconnections and better resource utilization, the edge 

computing can offer more reliable and faster services which are mostly required in 

applications like autonomous cars, smart cities, and industries (Mao, et al, 2020). 

1.3 Need for resource scheduling in edge computing 

This concept of edge computing is informed by an increased explosion of data generation at 

the frontier of the chosen network in the resource scheduling. Typical centralized cloud 

computing environments are limited by latency and bandwidth when handling the vast data 

output of IoT devices, sensors, and other edge devices. Edge computing solves these 

limitations by distributing computing and storage and moving computations closer to where 

the data is produced. This close location minimizes the time and resources needed for data 

processing and decision-making since these can be done in real time or close to it (Qian, et al, 

2020). Edge computing uses an efficient strategy of sharing computing resources across edge 

nodes to manage and response to different workloads and application requests. This approach 

does not only increase the system performance and stability but also increases the scalability 

and yet low cost since it does not require a lot of data transfer and processing in a central 

way. Therefore, it can be concluded that edge computing is critical to efficient resource 

management as well as the adaption of computing architectures based on the location of data 

sources (Teoh, et al, 2021). 

1.4 Problem Statement 

Edge computing is a new model that has been adopted in the current world of data processing 

where data is processed near the source rather than in central data centers. This approach is 

crucial for low latency applications that involve real time processing like IoT devices, self- 

driving cars and smart cities. However, the problem of resource management and its 

optimization at the edge of the network is still an open issue. The standard techniques used in 

managing resources are inadequate in dealing with the dynamic and distributed 

characteristics of the edge environments and this results in suboptimal utilization of 

computational resources and energy. Current approaches have limitations in terms of latency, 

computational costs, and energy consumption, which become a problem when dealing with 

large amounts of data from IoT devices, self-driving cars, and smart cities. To overcome 

these problems, it is necessary to develop the most efficient resource schedule which can be 



3  

implemented with the help of machine learning techniques. This project seeks to address the 

existing gap in the management of Edge Computing Resources by presenting a 

comprehensive model that encapsulates different machine learning techniques such as hybrid 

models, and implement them in a cloud environment. In terms of scalability, the AWS is used 

to improve the efficiency of the resource scheduling in edge computing systems while 

RestAPI (Bottle API) is used to develop real time predictions. 

1.5 Aim 

This research project aims to develop a framework to enhance the management of resources 

in edge computing through the incorporation of various machine learning strategies that are 

the fusion models and the best model of is deployed in cloud environment. The proposed 

project is to address the research void that exists in the optimization techniques employed in 

edge computing. In this manner, this model will assist in the development of better and more 

efficient edge computing structures suitable for several applications. 

1.6 Research question 

Do fusion models integrate with cloud helps Optimizing Resource Scheduling for better Edge 

computing services? 

Fusion models are combinations of the multiple models of machine learning algorithms that 

are implemented by combining two or three algorithms to achieve the best performance in 

terms of accuracy. 

1.7 Objectives 

 To conduct a detailed literature survey based on edge computing, resource allocation 

in cloud environment. 

 To implement machine learning algorithms like, Random Forest, Decision Tree, 

Adaboost, and Gradient Boost, construct fusion models of the above-declared 

algorithms and evaluate. 

 To deploy the best fusion model saved in JSON format in AWS cloud environment 

for optimizing resource allocation process. 

 To utilize Flask API and finding the best server for the allocated resources in the 

AWS cloud environment. 

1.8 Importance of Research 

If the full potential of edge computing is to be deployed, then there details an efficient 

resource allocation method . Organisations can consequently adjust their operating costs and 

elevate edge application availability, robustness and scalability if their resource allocation 

procedures are optimised. With these improvements the capability of scheduling resources to 

support latency sensitive applications in the different edge computing paradigm is now 

possible to include; autonomous systems, augmented-reality and real time analytics. 
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2 Related work 

2.1 Emerging Trends and Innovations in edge computing 

The future of the decentralized computing architecture is defined by the trends and 

innovations in the edge computing. Among the trends it is possible to identify the application 

of 5G technology which will greatly contribute to the development of edge computing due to 

the possibility of using ultra-low latency and high bandwidth connections. This paves way for 

real time data processing and applications in various sectors such as automotive, 

manufacturing and others such as self-driving cars, industrial automation (Talaat, 2022). 

Also, the integration of artificial intelligence and machine learning in edge computing is 

enhancing decision making as well as predictive analysis at the network’s edge. These 

technologies help in better utilization of resources, dynamic workload management, and 

adaptive systems which can work based on the changes in environment. New architectures 

are being proposed to enhance the edge-cloud collaboration, thus, facilitating the 

interconnection between the edge devices and the cloud computing core. All these trends in 

the future propel innovation and improvement of edge computing systems and increase the 

possibilities of even more effective, adaptable, and secure edge computing applications (Tan, 

et al, 2021). 

2.1.1 Recent Technologies used for Resource allocation in edge computing 

In other studied instances of automotive edge computing, Gao, J. et al. , (2022), offer a two- 

layer solution for offloading scheduling and resource management. The issue with their 

project can be pinpointed at the general issues related to resource management in vehicular 

environments where the vehicles themselves are considered as edge nodes with limited 

processing capabilities. The proposed method attempts to improve the effectiveness and 

dependability of automotive edge computing systems through the integration of offloading 

scheduling with resource allocation. Their work uses the GD method as the proposed 

technique, which attempts to minimize the latency with energy consumption of VEC system 

for different network parameters aiming at improving the effectiveness of resource 

scheduling. Nevertheless, it will be useful to compare the suggested algorithm with other 

innovative approaches not only to task offloading with resource allocation in VECs but to 

analyze the ways to adjust the weight factor of the objective function to find the best trade-off 

between delay and energy consumption since their research also compares their approach 

with several existing benchmark systems. 

There is a paper of Aghapour, Z. et al. , (2023) which is one significant contribution in this 

field; the paper focuses on presenting an algorithm for resource allocation and task offloading 

for distributed AI execution tasks in IoT edge computing environment through deep 

reinforcement learning. An analysis of how the suggested approach in this work performs on 

several IoT device deep learning workloads is done with different sophisticated cloudlet 

server’s capabilities. In their work, the authors identify that simulation results revealed that 
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the proposed algorithm yields enhancement in criterion than techniques such as full local, full 

offload and Jointly Resource allocation and computation Offloading PSO (JROPSO) with 

percentage improvement of 92 %, 17 % and 12 % respectively. It also has the least delay and 

energy utilization. However, the project states that regardless of the variability of the 

offloading choice, it belongs to the NP-hard MINLP (Mixed Integer Nonlinear 

Programming). Therefore, the matter demands correct algorithms to address it. 

Like this, Alfakih, T. et al. , (2020) proposed a deep reinforcement learning based on SARSA 

to provide a framework for the resource allocation & job offloading for the Mobile Edge 

Computing. Their work is about the enhancement of the resource management decisions for 

the betterment of MEC systems especially in the conditions with dynamic features of the 

network as well as variable resources with the help of reinforcement learning methods. This 

is mainly works on the application of reinforcement learning, moreso, the OD-SARSA for 

job offloading and resource allocation for mobile edge computing (MEC). However, it work 

highlights that MEC entails a suitable compute offloading that is because of the variability 

and unpredictability of the mobile edge networks that may lead to high energy consumption 

and challenges with latency demands. 

In Wang, T. et al, (2022) a reinforcement learning based optimization for the scheduling of 

mobile edge computing is proposed. This project’s approach incorporates performance and 

scalability of optimization in resource allocation in mobile edge environments. Their project 

focuses on the problem of scalability in edge computing systems and applies reinforcement 

learning approaches to solve it. 

However, the other long term optimization based on the RL for the schedule is given by 

Xiong, X. et al (2020) where the major objective being to minimize the long term average of 

the needed resources and the time taken to complete the jobs in the IoT edge computing 

system. All of them have involved the computing resource allocation, job queue status, 

adjusting indication, requested computing resources, and backlog of open jobs in the state 

information and the authors have claimed that their proposed approach is effective in 

reducing the complete time of the jobs and the consumption of the resources in the IoT edge 

computing system compared to other referred policies. However, their project underscores 

that it regarding the resource allocation strategy it suggested that they endeavour to employ a 

strategy that arrives at minimizing the mean of resource usage and the mean time for tasking 

overtime in the long run this means that this necessitates research on the specific resource 

allocation for IOT edge computing systems. 

2.2 Research using Machine Learning Models in Resource Scheduling 

Djigal, et al, (2022) project provides an extensive examination of machine learning and deep 

learning-based resource allocation algorithms in mobile edge computing (MEC). Initially, the 

authors provide lessons that showcase the benefits of using ML and DL in Mobile Edge 

Computing (MEC). Then, the authors proceed to describe the technologies that facilitate 

effective machine learning and deep learning training and inference operations in MEC 

environments. Then, authors present a detailed review of the most recent works that applied 

ML and DL techniques for the purpose of resource management in MEC. The analysis is 
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grouped into three main sections based on the ML/DL methods used in offloading, 

scheduling, and joint resource management. Finally, the authors meet the research challenges 

and opportunities that can be suggested for the use of ML and DL to allocate resources in 

mobile edge computing networks. 

Wang, et al, (2020) research aims at enhancing the task and resource management in MEC 

networks via the use of machine learning. This process includes DRL, DQN, and CNN for 

the proper allocation and optimization of resources and tasks. Therefore, the dynamic and 

diverse nature of the MEC networks’ characteristics is addressed in regard to managing the 

utilization of the resources and minimizing latency. It was also established that the costs are 

lower, the latency time is short, and there is better resource management as compared to the 

conventional methods. These techniques enhance the ability of the system to adapt to the 

changes in the network and hence make the system stable in its performance. Following are 

the conclusions derived from this research concerning the application of DRL and DQN for 

MEC systems to enhance their efficiency in their dynamic environments. Hence, such 

algorithms show that the network management of this type can become more effective in the 

future of MEC systems’ evolution. The project describes how machine learning allows for the 

evolution of the schedule of resources in edge computing for the development of more 

efficient applications across industries and real time analytics, automation and augmentation. 

So, employing the mentioned techniques, MEC systems will be able to serve the highly 

latency-sensitive applications more effectively and hence enhance the efficiency and 

practicality of the systems. 

The article by Hussain, et al, (2020) is a systematic and elaborate review of the ML and DL 

resource management techniques used in cellular wireless and IoT networks. The first focus 

is on the challenges which are related to the resource management in the cellular IoT and 

low-power IoT networks. The authors then review the traditional approaches employed in 

IoT networks for resource management and explain why it is possible to apply ML and DL in 

such management. Subsequently, the authors discuss in detail the current state of affairs in 

terms of the ML- and DL-based approaches to controlling the resources in wireless IoT 

networks. Also, the authors present solutions that are appropriate for HetNets, MIMO, and 

D2D communications as well as NOMA networks. Moreover, the authors also present the 

possible research directions in applying the ML and DL for the management and allocation of 

resources in IoT networks. 

2.3 Research gap and novelty 

Previous works have analyzed numerous machine learning models and their use in resource 

management. There is limited literature that presents an overall framework of these models in 

real-world edge computing systems, especially with the use of fusion models. For example, 

Gao et al. (2022) have utilized only one machine learning algorithm for vehicular edge 

computing while Aghapour et al. (2023) have used single machine learning algorithm for IoT 

scenario while there is possibility to get better results by integrating several algorithms. 

However, work by Alfakih et al. (2020) and Wang et al. (2022) has shown the effectiveness 

of deep learning and reinforcement learning in resource management but little is known of 

how these can be practically applied in cloud platforms such as AWS. The application of 
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fusion models in the cloud for the management of resource scheduling in edge computing is 

relatively less explored (Djigal et al., 2022). This gap is important because the deployment of 

cloud can greatly improve the scalability, flexibility, and real-time processing of edge 

computing systems. Hence, this research aims at addressing these gaps by proposing a 

framework that involves the integration of different machine learning techniques, the fusion 

models, and the implementation of the best models on the AWS cloud environment. This 

work intends to show how the combined methods are beneficial to enhance the management 

of resources, scalability, and real-time processing for edge computing applications as a way 

of filling the gap that exist in optimization methods. 

3 Research Methodology 

The first aspect of the investigation is on the usage of the work which refers to the method 

and the tool used in tackling research question. This section explains the general approach 

used in the resource scheduling optimization conducted in the context of edge computing. 

According to the works’ objective the project aims to develop context-sensitive self- 

organizing algorithms with resource allocation based on network conditions and data source 

and workload characteristics. 

3.1 System design 

AWS is chosen for its scalability, reliability, and cost-effectiveness, with Flask for its flexible 

architecture, and machine learning techniques like Random Forest, Decision Tree, AdaBoost, 

and GBM for their strengths in handling diverse data types. The Kaggle’s dataset on 5G 

Quality of Service contains various differentiator concerning the quality of the 5G network. 

The main file “Quality of Service 5G.csv” has several fields/parameters including Latency, 

Bandwidth, Signal Strength, Packet Loss and User Equipment parameters. They are critical to 

identify the quality of service in 5G networks, and to comprehension network performance in 

various scenario, as well as resources management. It is useful for research in the field of 

wireless mobile networks and specially in the construction of the 5G network. The first main 

experiment will be focused on identifying the best models for the resource scheduling. 

Totally four machine learning algorithms and one neural network algorithm and one fusion 

based algorithm will be implemented for this research for resource scheduling. Machine 

learning and deep learning algorithm will be implemented using scikit learn package where 

all the methods will be called from the package. The fusion model will be created using 

voting classifier which will be implemented using the scikit learn package. The voting 

classifier will create a single best model (fusion) learning from several models based on 

voting majority to predict resource scheduling efficiently and precisely. Theoretically this 

approach will reduce bias and variation and will increase the performance. This increase in 

performance will be by combining the predictions of many models. The fusion model will 

forecast the resource scheduling based on the voting majority. We will use hard and soft 

voting in our fusion model. The fusion model created for the resource scheduling is deployed 

in AWS cloud environment using Flask application. FastAPI is employed for the 

development of APIs which can enable interoperability and obtain the model. The integration 

of AWS and Fast API used in the project helps to provide high-quality, efficient, and scalable 
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solutions in the field of machine learning to meet the performance and operational objectives 

in the changing conditions. Fusion models combining these algorithms will be evaluated 

based on accuracy, precision, recall, F1 score, and time, with the best model deployed on 

AWS using EC2 instances and RestAPI (Bottle API) for real-time predictions and secure data 

management. This approach aims to enhance resource scheduling efficiency in edge 

computing environments. 
 

Figure 1 Implementing ML and Combined models- Step 1 of the Implementation 
 

 

Figure 2 Implementing ML Model in cloud- Step 2 of the Implementation 
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Figure 3 Implementing and Integrating API with the Model- Step 3 of the 

Implementation 

 

 

4 Design specification 

4.1 Choosing the model for the deployment 

The selection of the machine learning model is crucial for optimizing resource allocation in 

edge computing. To address this, the project evaluates various models, including Random 

Forest, Decision Tree, AdaBoost, and GBM, each known for its distinct strengths in handling 

different types of data and problem-solving scenarios. By developing and testing fusion 

models that combine these algorithms, the project aims to identify the most effective 

approach for accurate, efficient, and scalable resource management. The chosen model will 

be deployed in the AWS cloud environment, leveraging its scalability and real-time 

capabilities to enhance edge computing performance. 

4.2 Implementation of fusion model in cloud 

4.2.1 AWS Cloud Service 

AWS is one of the most popular and diverse cloud computing services which provides a 

multitude of IT solutions. AWS has gained its reputation due to the pay as you go model 

which makes the users pay for what they actually use without making huge investments in 

infrastructure (Chakraborty et al., 2023). It has a wide range of data centers which allows 

users to launch applications and services closer to the consumers thus decreasing the response 

time and increasing the level of user satisfaction. Some of the services offered by AWS are 

computation, storage, database, analytics, machine learning and networking among others to 

meet different business needs (Singh et al., 2023). It is also secure as it provides data 

encryption, compliance certifications, and several security tools in order to protect the data 

and abide by the set legal standards. To that end, AWS is a reliable, large, and dynamic 

solution for digital transformation because of its constant change and frequent updates so that 

enterprises can utilize the most up-to-date technologies without having to worry about the 

management of their IT infrastructure. 

4.2.2 Role of RestAPI (Bottle API) 

RestAPI (Bottle API) is a fast (high-performance), web framework for building APIs in 

Python that is simple to learn and use. RestAPI (Bottle API) is known to be simple and 

effective and shines when it comes to dealing with asynchronous operations which are 
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essential in the cloud where there is a need to manage multiple requests at the same time 

(Voron, 2023). It enables the creation and management of good APIs that can easily integrate 

with the cloud services and applications. The simplicity of using RestAPI (Bottle API) for the 

API development along with the dynamic nature of Python and its support from the vast 

library makes it perfect for cloud native application. These include auto generated API 

documentation where operations are done concurrently, compatibility, speed and 

microservices (Surendar et al., 2024). RestAPI (Bottle API) helps to overcome the problems 

of contemporary web applications by creating performant, powerful and documented APIs 

for the organization’s needs, especially since more and more companies are using cloud 

services. 

4.2.3 EC2 Instance 

Amazon EC2 is a web service that provides resizable virtual machines in the cloud to 

organizations and developers to use as per their requirement (Linder et al., 2024). The 

payment on EC2 is also made in the form of instances used and this eliminates costs that 

would have been incurred on hardware. EC2 instance types that are available in AWS include 

the following: Compute optimized, Memory optimized, Storage optimized, and GPU 

instances which can be used depending on the application’s requirements with regard to the 

processing power, memory, and storage. Some of the parameters of the EC2 instances include 

multiple operating systems to choose from together with highly configurable security, 

network, and storage settings. Some of the important characteristics include flexibility, the 

ability to modify resources as per the need of the hour, and scalability, which means that it is 

possible to add or remove resources without affecting the application’s performance. AWS 

has made it possible to have been tributed global network that makes it easy to have low 

latency and high availability in all the regions thus improving the effectiveness of the EC2 

instances (Dancheva et al., 2024). 

4.2.4 JSON Format 

This project identified that JSON is a critical format for deploying machine learning models 

in AWS cloud environments, especially regarding the portability and to exchange data 

through APIs. JSON enhances the compatibility with several systems and languages due to 

effective serialization and deserialization of the ML models at the time of deployment 

(Hofmeier et al., 2023). This approach saves the model’s attributes and configurations, which 

allows for easy replication of environments in the cloud. JSON also includes meta-data 

information and all the configurations in the model which enable it to run with high 

efficiency and scalability. It synchronizes with other AWS services like Lambda functions 

and EC2 instances as it supports the flexible application design and efficient resource 

management (Maltsev et al., 2024). 

4.2.5 Flask Application 

Flask is a python web application framework that is lightweight, easy to learn and yet very 

powerful. Some of which include URL and HTTP request handling routes, and templating 

through Jinja 2 which forms the core of building modern and efficient web applications 
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(Syach et al., 2024). Flask has a simple structure and does not include many built-in 

instruments, it is possible to expand the functionality of the framework for such tasks as 

working with a database and creating an API, which makes it possible to use Flask for a 

variety of tasks. Flask is a WSGI web framework based on Werkzeug which guarantees a 

proficient request and response handling leading to the efficiency and stability of the 

framework. Due to its simple architecture and the ability to work with cloud services, Flask 

can be used for small projects as well as large companies, thus enabling efficient and scalable 

web application development. 

 

 

 

5 Implementation 

The experiment chapter focuses on the real-world implementation of the proposed machine 

learning models for effective resource allocation in edge computing systems. It describes the 

methods of data cleaning and transformation, model building and optimization, and model 

assessment with a focus on deploying the top model on AWS and creating the UI using the 

Flask framework. 

5.1 Data Preparation 

The dataset was first loaded into the system and the shape of the dataset, data types, and the 

first few rows of the dataset were checked to understand the structure and content of the 

dataset. The data is then cleaned to eliminate missing values and duplicates to ensure that the 

data used was accurate. Some variables were eliminated; for example, Timestamp, 

Source_IP, and Dest_IP since they are not useful in the analysis and only add up to the 

dimensionality of the feature space. Categorical variable was transformed to numerical values 

to feed into the machine learning algorithms through the encode of labels. In addition, the 

cleaned data was stored to be used in the future in the analysis and modeling of the further 

stages. 

5.1.1 Exploratory Data Analysis 

In the course of Exploratory Data Analysis (EDA), the distribution of the target variable 

‘Server_ID’ was depicted to check for class imbalance which may affect the performance of 

the model. To analyze the correlation between the features and to help in the selection of the 

features and model understanding, a heatmap of the correlation matrix was created. To 

enhance the performance of the models and manage class imbalance one of the classes in the 

target variable ‘Server_ID’ was eliminated. 

6 Evaluation 

The data set was further divided into training, testing, and validation to guarantee the model’s 

performance was properly analyzed. The training set was employed to build various models 

while the testing and validation sets provided the evaluation of the models. This was followed 

by applying feature selection and building and assessing a Decision Tree classifier which was 
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hyper-tuned using grid search to determine the best hyperparameters. The model’s accuracy 

was measured on the validation and testing sets and the results were presented graphically 

through confusion matrices. Afterwards, AdaBoost, Gradient Boost, and Random Forest 

classifiers were employed and fine-tuned in the same manner. All the algorithms are also 

integrated to create the fusion models and assessed in the same manner as other algorithms. 

All the models were evaluated on the validation and testing sets to guarantee the effectiveness 

of the methodology. The following tables give the overall validation and testing results of the 

algorithms implemented respectively. Table 3 refers to the confusion matrix of Adaboost 

algorithm with test data and validation data. The following is a bar graph representing the 

results of algorithms implemented and their validation results. 

Table 1 Validation Results 
 

Model Validation-Time Precision Recall F1-score Accuracy 

DT 0.06 1.00 1.00 1.00 1.00 

Adaboost 0.05 1.00 1.00 1.00 1.00 

GB 0.08 1.00 1.00 1.00 1.00 

RF 0.22 1.00 1.00 1.00 1.00 

Fusion Model 0.08 1.00 1.00 1.00 1.00 

 

 

Figure 4 Validation Graph 
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The table below represents the results of testing of all the algorithms following which is a bar 

graph of the results. 

Table 2 Testing Results 
 

Model Testing-Time Precision Recall F1-score Accuracy 

DT 0.06 1.00 1.00 1.00 1.00 

Adaboost 0.05 1.00 1.00 1.00 1.00 

GB 0.08 1.00 1.00 1.00 1.00 

RF 0.20 1.00 1.00 1.00 1.00 

Fusion Model 0.08 1.00 1.00 1.00 1.00 

 

Figure 5 Testing graph 

Table 3 Confusion matrix of Adaboost with test and validation data 
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Confusion Matrix of Test data with 

AdaBoost 

Confusion Matrix of Validation data with 

AdaBoost 

The above figures represents the confusion matrix of Adaboost algorithms with the validation 

and testing data. All the classifiers such as DT, AdaBoost, GB, RF, and Fusion models 

achieved a perfect performance with an accuracy of 1.00. on weighed precision, recall, f1 

score and accuracy both in the validation and the testing sets. All models had high accuracy, 

and AdaBoost had the least training (0.30 sec) and testing (0.05 sec) time, hence, making it 

the most efficient in terms of computational time. Hence, all the models were quite effective, 

but the AdaBoost was recommended to be the best model considering its efficiency. 

Therefore, it was selected as the best working model and was saved for possible use. Thus, 

the proposed method allowed for selecting the most efficient model for resource allocation 

optimization in edge computing. 

6.1.1 Testing the Deployed Service 

Once the API was deployed in the EC2 instance, it was tested through the help of Postman in 

order to check the effectiveness of the API. First, the service was opened by using the given 

URL and several cases were used to try to get the response from the API and check the 

accuracy of the predictions. The testing was done by making POST calls to the API endpoint 

where we checked the response to see if the returned predictions were the same as what was 

expected. Below figure represents the code snapshot of testing of deployed services. 
 

 

Figure 6 Testing deployed service 

The success of the deployment was known as the API returned the correct results in the form 

of JSON which proved that the Bottle API was properly coupled with the pre-trained model 

and was operative. The successful deployment and testing of the API illustrate that AWS 

cloud infrastructure is suitable for hosting and managing any machine learning applications. 
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Figure 7 Hosting ML applications 

 

6.1.2 UI Interface and Execution 

The Flask application has an implementation of frontend user interface in the form of a web 

page intended for interaction with a resource scheduling API. The application includes two 

primary HTML templates: The following is the input. html and output. html. The input. This 

HTML template displays a form that is built with Bootstrap and enables users to provide 

different parameters that relate to resource scheduling, like the Protocol, Request Size, and 

Response Size, among others. Upon submission, the form data is sent to the backend API at 

http://ec2-18-118-1-44.us-east-2.compute.amazonaws. com:8080/resource-scheduling 

through a POST request with a JSON value. The output. After that the page also design its 

output according to an HTML template and shows the server ID and the parameters that are 

to be submitted and in an orderly manner. This way, the data submission and response 

display are done efficiently and in an organized manner making the process convenient for 

the user. The following is the frontend UI where the input parameters are passed through 

form data. 

 

 

Figure 8 Resource scheduling frontend 

The following is the output generated by the service hosted in the AWS EC2 instance 

provided. 

http://ec2-18-118-1-44.us-east-2.compute.amazonaws/
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Figure 9 Resource scheduling output 

 

 

 

 

6.2 Summary 

Each of the models like Decision Tree, AdaBoost, Gradient Boost, and Random Forest was 

tested for its effectiveness in resource scheduling for edge computing in the experimentation 

phase. All models got the highest possible score in the validation and testing steps and the 

fastest and most effective model is AdaBoost. The chosen AdaBoost model was implemented 

on the AWS using a Bottle API to perform predictions and was thoroughly tested. The 

deployment proved that the cloud resources and machine learning played a significant role in 

improving the edge computing. 

7 Critical Analysis 

7.1 Analysis of this Cloud Integration 

 
Cloud computing integrated with edge computing is an important new concept for managing 

and enhancing the use of resources. Using cloud infrastructure and especially AWS, the 

project targets an essential issue in edge computing, which is the proper management of 

resources. Through the implementation of the AdaBoost model, the use of AWS EC2 and its 

capabilities on edge computing is highlighted. This setup also enhances the resource sharing 

efficiency while at the same time guaranteeing efficient processing and real time data 

analysis which can be very useful in IoT devices and autonomous systems. The non-intrusive 

and easy integration and expansion of the cloud infrastructure support the need for edge 

computing systems. 

 

The utilization of AWS for the implementation of Bottle API points out the significance of 

cloud computing in application development such as adaptability, cost, and maintainability. 

AWS offer a reliable infrastructure that assists in the running of machine learning models and 

aids in the management of resources. Thus, the successful implementation of the API proves 

that cloud integration can efficiently solve the issues of edge computing and manage 

distributed resources to improve the overall system performance. 
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7.2 Analysis of the Integration of the Cloud with Machine Learning and 

UI Interface 

Machine learning models that are combined with cloud infrastructure allow for the 

improvement of resource management in edge computing systems. Through the 

implementation of the AdaBoost model on AWS, the customer is able to use machine 

learning algorithms to dynamically control and manage the use of the resources. The cloud 

platform offers the required computational resources for prediction and model execution in 

real time; this is important for computation intensive applications that need quick decisions 

and minimum response times. This integration makes it possible for edge computing 

framework to have access to the advanced analyses as well as the effective utilization of 

resources that enhance the performance and reliability of the framework. 

 

The introduction of the UI interface developed with Flask for the interaction with the API to 

the cloud-based system enhances its usability. The frontend interface of this created model 

incorporates the use of Bootstrap to provide users with a platform through which they can 

input data and get predictions while not having to understand the complex algorithms that are 

behind the model. This integration becomes useful in the functionality of the system since it 

makes the system more versatile for use in different contexts and improves the user 

interaction with the system. All in all, the proposed use of cloud resources, machine learning, 

and the user-friendly UI create a helpful solution for managing the edge computing resources. 

7.3 Applications of this Research in Future 

 
The findings of this project have important implications for the development of edge 

computing and resource allocation. Thus, this research contributes to the development of new 

and highly efficient edge computing systems that can be applied to various and time- 

dependent tasks. This project can be extended in the future as other machine learning 

methods and fusion techniques are considered in order to improve the resource allocation 

process. Also, the use of the cloud computing along with edge computing can result in the 

enhanced and more effective solutions for the new applications like automotive and 

transportation, smart city, and augmented reality. 

 

The framework proposed in the current project may be generalized and implemented across 

different sectors given that efficient resource management is paramount. For instance, it can 

be applied in health care to track and analyze the patients’ information in real time or in 

manufacturing to control and enhance manufacturing strategies. The applications are almost 

limitless and as edge computing and machine learning technologies develop further, this 

research serves as a basis for further research and development of better methods of resource 

allocation and management. 

7.4 Practical Challenges 

Some real-world issues can be identified when integrating cloud computing with edge 

computing and machine learning. Another problem is to find and obtain the proper dataset for 
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training and testing the proposed machine learning model. The dataset must correspond to the 

edge environment and include a rich set of samples to enhance the model’s performance 

effectiveness. Another problem is the identification of the suitable cloud service provider and 

the setup of the environment for the particular project. It is important to evaluate each cloud 

provider because the selection affects the performance, scalability, and cost. 

Also, the appropriate rights for different services have to be set up properly, which can prove 

to be a challenging task especially when it comes to setting up access control and security 

measures. Some of the concerns include, for instance, how to work with folder locks when 

accessing EC2 instances locally and challenges with setting permissions through 

sudo_chmod. At the end, human mistakes that occur during the UI development process can 

result in functionality problems and may require rather time-consuming debugging and 

testing. To this end, it is crucial to tackle these challenges when deploying and using cloud- 

integrated edge computing solutions. 

8 Conclusion and Future work 

8.1 Conclusion 

From this project, it can be concluded that the proposed machine learning algorithm when 

combined with cloud computing can greatly improve the scheduling of resources in edge 

computing systems. The present project has described the performance of the AdaBoost 

fusion model that has been developed and deployed on AWS for the management of resource 

allocation problems. This success on the AWS EC2 platform relied on the scalability and the 

computational power of the cloud to boost latency aware applications such as IoT and self- 

governing cars. The model’s compatibility with the cloud infrastructure not only enhanced 

the computational speed but also assured the required versatility and dependability for real- 

time analysis. 

The experimentation phase revealed that the cloud-based environment was superior at 

managing the complicated and ever-changing resource management issues compared to the 

traditional approach. The identified framework used the available AWS services in order to 

meet the main goals regarding the efficient resource management and low latency. The 

results obtained in the presented cloud environment suggest that further developments can be 

built on the successful application of the machine learning models, which means that 

integrating advanced analytics with the cloud can open new horizons for edge computing. 

8.2 Future Work 

Further studies should be conducted to investigate the use of other patterns of machine 

learning and other cloud solutions to improve edge computing resource management. Other 

cloud services and architectures can be explored, for instance, AWS Lambda for serverless 

computing which might be more efficient and cheaper for dynamic workloads. Moreover, the 

use of multi-cloud strategies may provide better reliability and redundancy when resources 

are spread across the different cloud providers, decreasing the chances of getting a single 

point of failure and increasing the overall system efficiency. 
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The future work should be directed towards the improvement of the methods for the 

integration and interface for the end user to ease the process of use. The use of the latest 

cloud-based monitoring, and automation tools can assist in efficiently managing the resource 

and maintaining the models’ optimality. Also, the issue of security measures should be 

considered as well as the real-time data analysis for the improved performance. Thus, the 

future work can be focused on developing the proposed framework further to create even 

more effective and versatile approaches for the edge computing applications. 
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