~

""—-
\ National
College

Ireland

Optimizing Movie Recommendations with
MLOps in AWS

MSc Research Project
Cloud Computing

Priyal Patil
Student ID: 22209573

School of Computing
National College of Ireland

Supervisor: Jitendra Kumar Sharma

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Priyal Patil
Student ID: 22209573
Programme: Cloud Computing
Year: 2024
Module: MSc Research Project
Supervisor: Jitendra Kumar Sharma
Submission Due Date: 12/08/2024
Project Title: Optimizing Movie Recommendations with MLOps in AWS
Word Count: 6284
Page Count: 23

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 15th September 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Optimizing Movie Recommendations with MLOps in
AWS

Priyal Patil
22209573

Abstract

In the age of streaming services and online content, there has been a signific-
ant increase in the need for personalized movie suggestions. This has led to the
creation of complex recommendation systems capable of managing large amounts
of data and quickly adapting to evolving user preferences. This study explores
enhancing movie recommendation systems by incorporating Machine Learning Op-
erations (MLOps) in Amazon Web Services (AWS) environments. The research
focuses on the increasing demand for efficient and easily expandable recommenda-
tion systems due to the growth of digital content. Conventional machine learning
methods frequently encounter difficulties when being implemented in real-world
situations, especially when dealing with vast amounts of data and adjusting to user
behavior. The Project highlights the significance of operational elements when
it comes to implementing and upkeeping machine learning models in a produc-
tion environment. Utilizing AWS’s strong cloud infrastructure, the project seeks
to develop a streamlined MLOps pipeline to enable ongoing integration, delivery,
and monitoring of machine learning models. This method guarantees that the re-
commendation system will be able to grow, stay dependable, and respond quickly,
leading to enhanced user happiness. The project utilizes different AWS services
such as SageMaker for constructing models, Lambda for executing serverless func-
tions, and S3 for storing data, in order to establish a smooth, automated pipeline
which results emphasize how MLOps can improve the performance and scalability
of movie recommendation systems, offering valuable insights for future applications
in this area.

1 Introduction

In this today’s rapidly evolving domain of digital content, movie recommendation systems
has become essential for any streaming platforms. As the volume of content available to
users continues to growing exponentially, hence the need for effective and personalized
recommendations is critical and important than ever. These systems are not only es-
sential for enhancing user engagement but also for increasing overall user satisfaction by
delivering content which aligns closely with individual preferences.

This thesis mainly focuses on the integration of Machine Learning Operations (MLOps)
with the cloud-based environments, especifically use of poppular cloud platform Amazon
Web Services (AWS), for optimizing the performance of these recommendation systems.
Not like the traditional machine learning approaches that primarily concentrate on al-
gorithmic enhancements, this research highlights its significance of the operational aspects

which is involved in deploying and maintaining machine learning models in production
environments. After shifting the focus towards MLOps, the research aims for bridging
the gap between model development and real-world application, ensuring that the de-
ployment, monitoring, and continuous improvement of these models are as efficient and
scalable as possible. Karamitsos et al.| (2020)

The goal of this research is to create a robust pipeline of MLOps which not only
streamlines the deployment of machine learning models but also improves their scalability
and efficiency. with the help of this pipeline, the recommendation system can continually
learn and adapt new techniques , improving its accuracy and responsiveness in delivering
recommendations. This holistic approach ensures that the system remains relevant and
effective in the face of changing user behaviors and preferences.

However, by utilizing AWS’s popular services, the research highlights how cloud infra-
structure can be used in different way to support the continuous integration and delivery
(CI/CD) of machine learning models. This approach not only minimizes the time as well
as effort required to managing the lifecycle of these models but also provides a scalable
and reliable framework that can handle the demands of modern streaming platforms.

This thesis aims for contributing to the knowledge on MLOps by providing more
advancements which can guide future implementations in the field of movie recommend-
ation systems. The findings from this research will offer significant insights into the
operational benefits of MLOps, paving the different way for more efficient and effective
machine learning applications.

1.1 Background

The idea behind the development of an advanced recommendation systems came from
the tremendous growth in digital content and the audience across the globe. As we know
the traditional machine learning approach often falls when it comes to deployment in
real-world scenario. Few models fail for transitioning from development to production. It
happens due to the complexities of handling the large-scale data and ensuring that mod-
els were adapted and evolved for responsing to user feedback and behavior. However | the
integration of these models into the production environments has significant challenges.
It shows a significant gap between model development and operational deployment. This
gap is where DevOps has evolved software development stages. It promoted faster devel-
opment cycles and more reliable releases throughout the automated pipelines, continuous
integration, and delivery practices.

1.2 Importance of Research

The integration of MLOps to a cloud computing frameworks have a promising answer
to all of the challenges. MLOps extends DevOps principles into a machine learning
domain. It aims for streamlining and automation of the machine learning lifecycle in
cloud environments. This approach not only has operational bottlenecks but also uses
the scalable infrastructure of cloud services like AWS to improve the performance and
reliability of machine learning systems. The importance of this research fit in its potential
for providing an empirical evidence and methodological advancements in the application
of MLOps, especifically altered to the needs of movie recommendation systems. This
thesis aims to fill the current research void by offering detailed insights into the operational
benefits of MLOps, thereby guiding future implementations and innovations in this field.

1.3 Research Objectives and Question

Guided by the need to enhance operational efficiency and model efficacy, this research is
structured around a central question: "How can the integration of MLOps within cloud
computing environments, specifically AWS, optimize movie recommendation systems in
terms of scalability, accuracy, and user satisfaction?” This question seeks to dissect the
multifaceted benefits of MLOps, comparing it against traditional machine learning de-
ployments to quantify its impact on system performance and user experience.

1.4 Report Structure

The remainder of this report is structured as follows: Section 2 is a comprehensive lit-
erature review, shows the evolution of recommendation systems and the role of MLOps
for addressing existing challenges. Section 3 is the research methodology, detailing the
tools, data, and procedures used in the development of the MLOps pipeline. Section 4
contains Design specification where each component is discussed while Section 5 provides
detailed implementation steps. Other sections includes the evaluation in the context of
the original research questions, and conclude with recommendations for future research
and practical applications of MLOps in movie recommendation systems.

2 Literature Survey

The development and optimization of movie recommendation systems have been signific-
antly evolved through advancements in machine learning and the integration of MLOps
practices. This literature review aims for exploring the evolution of recommendation sys-
tems, with a focus on movie recommendation systems, the role of collaborative filtering,
the architecture and significance of MLOps, and also the existing gap in the application
of MLOps to movie recommendation systems

2.1 Recommendation Systems

Recommendation systems has been evolved throughout the years as crucial tools in every
domains, such as music, books, and movies, driven by the need to handle large volumes
of data and provide personalized user experiences. Old recommendation systems were
primarily content-based and mainly they were relied on explicit user feedback for gen-
erating recommendations. Although, with the use of machine learning, these systems
have become more sophisticated, use of this algorithms that can be learn from implicit
user interactions and vast datasets. s collaborative filtering and hybrid models tech-
nique can be widely adopted which significantly improves the accuracy and relevance of
recommendations across different industries.

2.2 Movie Recommendation System

There was need of a specific focus on Movie recommendation system. Different types of
the approaches were proposed and tested by each and every researchers for improving
the performance of these systems. For instance, PireciSejdiu et al. (2022) the researcher
compared the performance of machine learning models such as Naive Bayes, neural net-
works, and logistic regression in movie recommendation systems. The result showd the

effectiveness of these algorithms for handling the vast amount of data of movies. Sim-
ilarly, other studies also explored the integration of deep learning models and hybrid
approaches, combining collaborative filtering with content-based techniques to improve
recommendation precision |PireciSejdiu et al.| (2022)

2.3 Collaborative Filtering Approach

Recently,collaborative filtering is the most popular techniques in any recommendation
systems, but especially for movies. It can operate on the principle that users who have
agreed in the past will continue to agree in the future, it allows the system for making
predictions based on the user similarities. This method has been widely used and liked as
it has simplicity and effectiveness. However, it was not without drawbacks. One prom-
inant limitation is the cold-start problem, where the system was struggled for making
accurate recommendations for new users or any items due to the lack of sufficient data-
sets. Additionally, collaborative filtering can also suffer from scalability issues such as
the dataset grows, leading to increased computational costs and latency in generating
recommendations Mu and Wu| (2023)). Despite these challenges, collaborative filtering
remains a cornerstone of modern recommendation systems.

2.4 Content Based Filtering

Content-based filtering evolved as a more advanced method where the system suggests
items that share similarities with ones the user has enjoyed in the past, focusing on
item characteristics. These attributes consist of meta data such as genre, keywords or
author or other brief details. The system creates profile for the user by analyzing past
preferences, typically showing vector of item characteristics they have engaged in past
Pazzani and Billsus| (2007). Building a user profile which is vector of features which
represents the user’s preferences, combining characteristics of the items. The system
calculates similarity of the user profile to other different items in the database. Generally
used metrics, such as cosine similarity, Euclidean distance, Pearson correlation, are often
utilized Sekar et al. (2023)). This technique examines the content or characteristics of
items and aligns them with user choices to produce recommendations Lops et al.| (2011)
Content-based filtering provides suggestions for new users by analyzing characteristics of
the initial items they cope up with, solving the cold start issue.

2.5 MLaaS Machine Learning as a Service

The rise of Machine Learning as a Service (MLaaS) has sped up the use of recommenda-
tion systems on the cloud. MLaaS platforms like Google Cloud Al, Amazon SageMaker,
and Microsoft Azure Machine Learning offer ready-made machine learning models, tools,
and APIs for developers to smoothly incorporate into their applications. These services
enable businesses to utilize advanced recommendation systems without requiring extens-
ive knowledge in machine learning or managing intricate infrastructure Crankshaw et al.
(2017). These cloud-based platforms provide functions such as automatic model training,
hyperparameter optimization, and model deployment, which simplify the development
process and facilitate quicker iteration and experimentation. With the ability to utilize
pre-trained models, automated machine learning (AutoML), and sync with other cloud

services, companies can efficiently iterate on models and release them into production
environments, ultimately decreasing time-to-market (Crankshaw et al.| (2017)

2.6 MIOps

MLOps (Machine Learning Operations) is an hot topic which applies DevOps principles
for the machine learning lifecycle. It involves the automation of different steps of machine
learning, from model training to deployment and monitoring. It ensures continuous integ-
ration and delivery of ML models. The architecture of MLOps typically includes following
components for data ingestion, model training, validation, deployment, and monitoring,
all integrated into a seamless pipeline Makinen et al. (2021)). MLOps practices are im-
portant to any organizations aiming to scale their machine learning operations, as it can
provide the necessary infrastructure to manage multiple models, handle large datasets,
and ensure the reproducibility and reliability of ML deployments Makinen et al.| (2021).
The need for MLOps becames particularly evident in complex environments where fre-
quent model retraining and deployment are required, such as in dynamic recommendation
systems.

2.7 Projects using MLOps

Few projects has successfully implemented MLOps for improving the development and
deployment of machine learning models. These projects highlights the benefits of MLOps,
such as enhanced collaboration between teams, quicker deployment, and better model
performance in production environments. For example, the application of MLOps in
cloud-based environments has enabled organizations for automating their end-to-end ML
pipeline, like from data preparation to model deployment, significantly reducing the time
to market for new models Kumara et al.| (2023)). But , despite these advantages, challenges
such as tool integration, managing model drift, and ensuring data privacy and security
remain. however, there is still a gap in the literature regarding the application of MLOps
especifically to movie recommendation systems.

2.8 Gap Identified

While searching I got to know that MLOps has been widely used, explored and imple-
mented in different types of machine learning projects, but it is a notable gap in its
application to movie recommendation systems. Despite the potential benefits of MLOps,
such as improved scalability, reliability, and maintainability of recommendation systems,
there is also limited research for integration of these practices into the development and
operation of movie recommendation models. This gap highlights the opportunity of a
future research to explore how MLOps can be leveraged to enhance the performance
and scalability of movie recommendation systems, addressing the challenges identified in
current implementations.

| Author(s) [Title Proposed Solution Limitations Gaps Identified
Zhang et | Deep Learning | Advancements in | High computational | Pointed out the need
al. (2019) | Dased Recom- | using deep learning | demand and integra- | for streamlined ML
mend Sysitem: A | models like CNNs | tion difliculties with | operations Lo improve
Survey and New [and RNNs lor movie | multiple iypes ol | deploymeni efliciency.
"erspectives recommendation data.
systems.
Amershi, Software Engin- | Emphasized the com- | Manual processes in | Identified a critical
et al., | eering for Machine | plexity of managing | ML model deploy- | need for continuous
2019 Learning: A Case | ML data compared to | ment leading to slow | integration and deliv-
Study software code, advoc- | updates and scaling | ery pipelines for ML
aling lor beller dala | issues models.
managemenl Lools.
Karamitsos| Applying De- | Integration of De- | Existing opera- | Advocated for the
et al., | vOps Practices | vOps practices into | tional bottlenecks | scamless integration
2020 of Continuous | ML life cycle to | in traditional ML | of MLOps to enhance
Automation for | support continuous | deployment. operational efficiency.
Machine Learning | automation and
update deplovment.
arg, el | On Continuous | Advoeated for the use | Operational chal- | Highlighted the ne-
al., 2021 Integration / Con- | of Cl/CD practices | lenges in deploying | cessity of adopting
tinuous Delivery | in ML to facilitate | ML models, like man- | DevOps principles to
for Automated | smoother transitions | aging dependencies | boost agility and reli-
Deployment of | from development to | and environment | ability of ML systems.
Machine Learn- | production. consistency.
ing Models using
MLOps
Kumara, Architecting Discussed the evolu- | Challenges in tool se- | Calls for a deeper
et al.,, | MLOps in the | tion of MLOps as a | lection and configur- | understanding of
2023 Cloud: From The- | response to applying | ing services to stream- | MLOps to better sup-
ory to Practice DevOps practices to | line ML workflows. port data scientists’
ML, supporting full needs
ML life cycle.
Mikinen, | Who Needs | Focused on oper- | Did not provide | Need lor more
el al., | MLOps: Whalt | ational challenges | specilic solutions for | research on seam
2021 Data Scientists | faced by data sci- | the integration issues | less integration of
Seek to Accom- | entists that can be | noted. MLOps into existing
plish and How | mitigated through workflows.
Can MLOps Help? | MLOps practices.

Figure 1: Gap Identified

3 Research Methodology

This research aims to harness the power of MLOps to improve the effectiveness of movie
recommendation systems in theAWS cloud environments. By using AWS services, this
project aimsto construct a robust MLOps pipeline that facilitates the continuous integra-
tion, delivery, and monitoring of machine learning models, thereby addressing scalability,

efficiency, and maintenance challenges area also their.

Data Preprocessing Deploy Pickle

Figure 2: Process Flow

3.1 Process Flow of Methodology
3.1.1 Data Collection and Prepocessing

The data collection process has utilized the Anime movies dataset, which contains in-
formation on user ratings from 73,516 users on 12,294 anime. As it is a open dataset
with CCO: Public Domain license. AWS Sagemaker notebook is been used for purpose of
extracting, transforming, and load the data,. It also ensures it is cleaned and formatted
correctly for use in training the recommendation models.

3.1.2 Training

Model was trained initially in the notebook with the help of content-based filtering ap-
proach and afterwards converted into a python script for executing it with sagemaker
pipelines. Cosine similarity was used to get similarity matrices which could recommend
movies having similar values.

3.1.3 Deploy Pickle

Then, The trained model was then converted into a pickle file after executing and dumped
into a S3 bucket as a source for the frontend application to load and recommend movies
once invoked.

3.1.4 Infrastructure

The proposed system architecture has the integration of various AWS services for sup-
porting the lifecycle of a movie recommendation model. AWS SageMaker was used for
model building and training as well while AWS Lambda, AWS Elastic Container Service
(ECS), and Amazon Elastic Container Registry handled the whole deployment of fron-
tend and backend . This integrated environment has goal to be sure that all components
work seamlessly to supporting continuous training, evaluation, and deployment of the
recommendation models and flask application for user to consume.

4 Design Specification

4.1 Architecture Diagram

S3 Bucket
(Dataset.csv,

AWS Cloud
~
Model.py)
Uploads New
Dataset C
—_—t Cloudwatch C\\ Flask
© Q <> Application

Data Scientist . Github
Continuous Code Pipeline
Monitoring 53 Bucket Continuous Integration

(Model.pkl)

Lambda
Continuous Deployment
I

Continuous Training

Application Pipeline

¢

ML Sagemaker Pipeline Elastic Container

Registry
@ Users
—
@ J@l ER

Notebook Model Pipeline

Elastic Container
Service

Figure 3: Architecture Diagram of the Project (Original Tllustration

The architecture diagram (3| explains complete flow of my MLOps project where each
step is independent of human intervention and each pipeline flows without interruption.
Each component of this project is explained in detail below with reason why they were
used in this project:

1. Amazon Web Services (AWS) Cloud Platform: AWS Cloud is leading public
cloud provider across the globe. It provides on-demand computing resources and
APIs to individuals, companies, and governments, on a pay-as-you-go basis
\Web Services (2024). Tt is chosen for its extensive global infrastructure, reliability,
scalability, and integration options, making it an ideal environment for deploying
machine learning operations (MLOps) and handling complex data workflows.

2. Identity Access Management (IAM): IAM provides fine-grained access control
to AWS resources, ensuring that only authorized and authenticated users and ser-
vices can access your AWS resources. In MLOps projects, IAM is crucial for defining
roles and permissions for AWS services and users to interact securely with resources
like S3 buckets, SageMaker, Container service (ECS) and Lambda functions.

e SageMaker Execution Role: “AmazonSageMaker-ExecutionRole-20240630T161935”
execution role acts on behalf of SageMaker to perform call other AWS services
without any issue. I have Provided S3 Full access policy to fetch input data
from S3 bucket and push artifacts to S3. Additionally, provided AWS ECR
access to build image and train model on training container

e Lambda Execution Role: “Lambda-SageMaker-Pipeline-Execution-Role”
allows Lambda functions to trigger SageMaker Pipeline. Provided SageMaker
access to this role to invoke pipeline in SageMaker once the lambda function
is invoked due to PUT API called on S3 bucket (i.e New Dataset is added in
S3 bucket).

3. Sagemaker: SageMaker is a fully managed machine learning (ML) as a service in
AWS [What 1s Amazon SageMaker? - Amazon SageMaker| (n.d.). SageMaker sim-
plifies the process of developing, training, and deploying machine learning models
on a large scale. In just a few steps, we can launch a model into a secure and
scalable environment using the SageMaker console. |What is Amazon SageMaker?
- Amazon SageMaker| (n.d.))

e Jupyter Notebook: Integrated directly within SageMaker, these notebooks
are used for interactive data exploration, visualization, and model develop-
ment.

e Sagemaker Pipeline: This feature automates the stages of a machine learn-
ing process, like data preprocessing, model creation, and implementation, to
guarantee consistent and effective procedures.

4. Simple Storage Solution (S3): S3 is a service for storing objects that provides
scalability, data availability, security, and performance. It is utilized in this project
for the storing and accessing of various data types, like training datasets, model
artifacts, and output results. Use of s3 with the mlops is a great idea because it
helps in flexibility, automation and reliability as well. Also, S3 acts as a centralized
storage of a datasets, model artifacts, logs, and other resources which are necessary
throughout the ML lifecycle.

5. CloudWatch: CloudWatch keeps track of the AWS resources and the applications
that run on AWS. It is utilized for gathering and monitoring metrics, logs, setting
alarms, and automatically responding to changes in AWS resources, it is essential
for managing and optimizing machine learning models. In this project, Cloudwatch
is used to store logs of Lambda function, sagemaker training process etc.cloudwatch
is also used for monitoring the performance and health of the sagemaker endpoints
where ML models are deployed. CLoudwatch metrics and alarm can be configured
in such a way that it can trigger autoscaling actions for AWS resources such as
remove or add instances.

6. EventBridge: EventBridge is a serverless platform that links application data
from your own applications, software as a service (SaaS), and Amazon Web Ser-
vices (AWS) offerings. Automating workflows and enabling application integra-
tion are facilitated by automatically routing data between software applications, a
crucial element for initiating processes in MLOps pipelines Amazon EventBridge
Documentation (n.d.). EventBridge can also triggers specific actions in the MLOps
pipelines which are based on real time events such as new data involving in S3 or
changes committed in databases. it also facilities the integration of AWS resources
such as Lambda, step function and SageMaker with third party SaaS applications
like Datadog.

10.

11.

12.

Lambda: Lambda enables you to execute code without the need to allocate or over-
see servers. It is utilized to carry out behind-the-scenes operations in reaction to
AWS service events (such as modifications in an S3 bucket), vital for activities need-
ing instant processing such as real-time data processing or request handling. AWS
Lambda helps for automatically scaling the volume of incoming events which make
it ideal for handling bursts of activity in MLOps tasks. Lambda operates on a pay
as you go concept which only charges for computed time during task execution.this
is really cost effective.

AWS Elastic Container Service (ECS): ECS is a container management service
that is highly scalable and high-performance, it supports Docker containers and
enables you to run applications on a managed cluster of servers. ECS is utilized for
launching containerized apps, such as web apps and backend services.ECS integrates
smooth;y with the CI/CD pipelimes and also enables automated deployments of the
containerized applications. This is particularly useful in MLOps where models can
automatically containerized tested or deployed in scalable environments.

Fargate: Fargate is a feature for Amazon ECS that enables running containers
without the need to handle servers or clusters. It eliminates the necessity of setting
up and adjusting the compute, allowing for a more concentrated effort on creating
and developing applications. Fargate automtically manages the ongoing computing
resources which are required for running in your container for example scale up or
scale down on workload demand. also with the help for applications task to run on
its own isloated environment as well.

AWS Elastic Container Registry (ECR):ECR is a Private Docker container
registry that makes it easy for developers to store, manage, and deploy Docker
container images. In this project, it is used to:

e Flask Docker Image: Manage the Docker image for the Flask application
to facilitate simple deployment and version control of my web application.

e Sagemaker Training Image: Store custom Docker images used for model
training in SageMaker. It contains all required dependencies installed in that
image.

Cloud9: Cloud9 is an online integrated development environment (IDE) based on
the AWS that allows to write, execute, and troubleshoot code in a web browser. It
offers a platform for coding, testing, and troubleshooting code while developing and
testing applications in AWS. Cloud9 was used in AWS due to its feature of deploying
or pushing our code into AWS services seamlessly as AWS keys and access keys are
not exposed outside of AWS.cloud9 is allows multiple developers to work along with
in realtime on same code base which enables efficient teamwork and code reviews.
It is available in AWS by default and allows to interact with other AWS services
directly.

CodePipeline: CodePipeline performs the automated tasks to continuously de-
ploy software updates in the phase setup in the pipeline. In this project, code
pipeline is used to create a CI/CD pipeline for Flask application. CodePipeline is
used over Jenkins, CircleCI or other CI tool because it has benefit of being part
of AWS environment which can seamlessly access other AWS services within the

10

5

13.

14.

network (Reducing access-based issues). Codepipeline integrates seamlessly with
IAM helping for fine grained access control over anyone who can access and modify
it. also, it works with other AWS developer tools. this native integration simplifies
the setup and management of entire CI/CD

GitHub: GitHub is a hosting service for Git repositories that also offers tools
for version control and teamwork. Enables multiple developers to collaborate on
projects remotely, a critical aspect of team-based software development. I preferred
GitHub over CodeCommit as my SCM tool as it is matured and user friendly.as
it integrates with a wide range of third party tools such as GitHub actions for
CI/CD pipeline, project management tools and also with the communication tools.
Githubs Pulls request system is powerful which has code review and collaboration
feature

Flask Application Framework: Flask is a light-weight WSGI python based web
application framework. Its purpose is to facilitate a quick and easy start, and it
can also grow to handle advanced applications. In this project, Flask is utilized
to develop a user-friendly web interface for interacting with the machine learning
model.Flask Modular design allows an developer to easily extends the applications
with the third party plugins which makes it highly adaptable for different project
needs. Its lightweight nature and simplicity makes it easy for integration with
popular ML libraries such as Tensorflow or scikit-learn

Implementation

The project begins with development of a robust MLOps pipeline which automates the
end-to-end lifecycle of machine learning models from data preprocessing and model train-
ing to final deployment and monitoring. Using AWS services such as SageMaker, Lambda,
and ECS, the pipeline improves the scalability, efficiency of the recommendation system.
There are two major steps in implementation: ML Pipeline and CI/CD Pipeline

11

5.1 ML Pipeline

User upload file to 53

@ Triggers Lambda Function

----------------- Starts SageMaker Pipeline
& _________________ Train and Update Model

Genarating Pickle file

53

Figure 4: SageMaker ML Pipeline (Original Illustration)

1. Sagemaker Domain: I created a SageMaker domain to isolate my project from
other machine learning projects within the organization. This is a standard proced-
ure when there are numerous projects in progress. This newly created space includes
all the required SageMaker tools such as Jupyter notebooks, pipelines, model re-
gistry, MLFlow, Data Wrangler and others which supports project development.
\What is Amazon SageMaker? - Amazon SageMaker| (n.d.)

2. JupyterLab Notebook: I started a JupyterLab environment using the ”ml.mb.large”
instance to manage the required computing power for the initial model training in
the notebook. I developed notebook with exploratory data analysis (EDA), data
preprocessing, and model training codes using the dataset stored in S3. I have
submitted the notebook (.ipynb) file in code artifact submission.

3. Training Script: Upon completing data preprocessing, exploratory data analysis,
and model training in the notebook, I converted the notebook into an executable

12

script (.py file) and transferred it to S3 bucket. The S3 bucket is connected to the
pipeline and uses the .py file for training the model with new datasets uploaded
in S3. I have submitted the executable python script (.py) file in code artifact
submission.

4. Pipeline: After finishing above steps, I created the pipeline notebook where I used
ScriptProcessor module of sagemaker to process executable file created earlier. 1
have also provided the image URI for the container to use execute .py file for model
training. [

[Processing_job.ipynb X | A pipeline.ipynb X | (8] Recommendation system for X | +
B+ X0 » =8 C » Code v @ &t M Notebook [§ Cluster Python 3 (ipykernel) (
[37]: | import json TN TR

from sagemaker.workflow.pipeline import Pipeline

pipeline = Pipeline(
name=pipeline_name,
parameters=|
processing_instance_count,
processing_instance_type,
steps=[stepl_process],
)

definition = json.loads(pipeline.definition())

print(definition)

WARNING: sagemaker.workflow.utilities:Popping out 'Processingloblame’ from the pipeline definmition by default since it will be overridden at pipeline ex
ecution time. Please utilize the PipelineDefinitionConfig to persist this field in the pipeline definition if desired.

{'Version': '2020-12-01', 'Metadata': {}, 'Parameters': [{'Name': 'ProcessingInstanceCount’', 'Type': 'Integer’, 'DefaultValue': 1}, {'Name': 'Processin
glnstanceType', 'Type': 'String', 'DefaultValue': 'ml.t3.large'}], 'PipelineExperimentConfig': {'ExperimentName': {['Get': 'Execution.PipelineName'}, 'T
rialName': {'Get': 'Execution.PipelineExecutionId'}}, 'Steps': [{'Name': 'RecommendationModelProcess', 'Type': 'Processing', 'Arguments': {'ProcessingR
esources': {'ClusterConfig': {'InstanceType': {'Get': 'Parameters.ProcessingInstanceType'}, 'InstanceCount': {'Get': 'Parameters.ProcessingInstanceCoun
t'}, 'VolumeSizeInGB': 30}}, 'AppSpecification’: {'Imagelri': '5801835699263.dkr.ecr.eu-west-1.amazonaws.com/my-sagemaker-training-image:new2', 'Contain
erEntrypoint': ['python3', '/opt/ml/pracessing/input/code/model.py']}, 'RoleArn’: 'arn:aws:iam::598183699263:role/service-role/AmazonSageMaker-Executio
nRole-26246636T161935", 'ProcessingInputs': [{'InputName': 'imput-1', 'AppManaged’': False, 'S3Input': {'S3Uri': 's3://mlops-datasets-movie/dataset/’,
"LocalPath': '/opt/ml/processing/input’, 'S3DataType': 'S3Prefix’', 'S3InputMode’: 'File', 'S3DataDistributionType': 'ShardedByS3Key', 'S3CompressionTyp
e': 'Hone'}}, {'Imputame': 'code', 'AppManaged': False, 'S3Input': {'S3Uri': 's3://mlops-datasets-movie/scripts/model.py’, 'LocalPath': '/opt/ml/proce
ssing/input/code', 'S3DataType': 'S3Prefix’, 'S3InputMode’: 'File', 'S3DataDistributionType': 'FullyReplicated', 'S3CompressionType': 'None'}}], 'Proce
ssingOutputConfig': {'Outputs': [{'OutputName': 'output-1', 'AppManaged': False, 'S30utput’': {'S3Uri': 's3://recommendation-pipeline-output/sagemaker-p
ipeline-output/', 'LocalPath': '/opt/ml/processing/output’, 'S3UploadMode’: 'End0fiob'}}1}311}

Figure 5: SageMaker ML Pipeline

5. Pickle File: Once the model is trained, The pickle file of the model is dumped
into a S3 bucket which is accessed by the Flask application. [0]

13

model.py > ...

def upload_file to_s3(bucket_name, c

s3 = boto3.client('s3")

s3.put_object(Bucket name,
print(f*File {o - name} uploaded to
True
Exception e:
print(f“Upload failed: ")

Fa =

model data - (indices, similarity, movie)
buffer = BytesIO()
pickle.dump(model data, buffer)
buffer.seek(@)

upload_file to_s3('recommendation-pipeline-output®, ‘model.pkl®, buffer.getvalu

Figure 6: Pickle Dump Code

6. S3 bucket for input dataset, script: S3 is used to store the input dataset, script
and the model pickle file. S3 is the main component in both the pipelines and it
has source files to trigger the sagemaker pipeline and the pickle file which is loaded
in flask application for user interaction. [7]

Amazon $3 » Buckels ¥ mlops-dalasels movie) latestdatasets/ Amazon S3 D Buckels » mlops-datasels-movie > scripts/ Amaaon 83) Buckels 3 recommendation-pipeline-output
latestdatasets/ scripts/ recommendation-pipeline-output .
Objects i Objects Properties Permissions Metrics Management
! " Objects Properties

A Objects (3) into
Objects (2) wta) (3 ¢
H Objects are the fundamental entities storec in Amazon S3. ¥ou cain use Amazon S3 inventer
Objects are the fundamental entities stored in Amazon 53, You can use Amaron 531 ‘ODjects (1) info c ¥ EmazON 53 INGNED;

Objects are the fundarmental entities stored in Amazon $3. You ran use Aman

Q Find objects by prefix
Q, Find objects by prefix

Q Find objects by prefix ‘ a Name a

Type
] Name A Type ype
— I [Flask_A) Felder
(] [anime.csv csv Name - Type
[m| @ model.pkl pKL
) madel, py
] [rating csv csv [modelpy [m] [oulputs/ Fulder

Figure 7: S3 Buckets

7. Lambda Trigger On S3 Bucket PUT API: This ML pipeline developed is
actually triggered by a PUT API called on S3 bucket where a new dataset in
inserted. In response, lambda is triggered and sagemaker pipeline is invoked.

14

Lambda » Functions » SageMaker-Pipeline-53-Trigger

SageMaker-Pipeline-53-Trigger

» Function overview infa

ouorn

ﬂ SageMaker-Pipeline-53-Trigger

@ Layers]

5
<+ add trigger

Code Test Manitor Configuration Aliases Versions

Code source Info

a File Edil Find View Go Toos Window -

Q ® lambds_function Enviranment Var = Execution results =
g - 2 1
B SageMaker-Fipeine b+ 5
z £*] lambea_function py El
i 4
= 5
= &
8 ipel o
5 pipeline_name sagomaker-mlaps -train-pipeline
1@
1 try:
1z tart the pipeline exscution
13 response - cliemt.start_pipeline_exccutian
14 Fipelinchame<pipel ine_nanc,
15 FipelineExcout ionhisplayName-* ExcoutionFromLanbda’
16)
17 return
18 *statusfode’: 208,
18 ‘body’ : json.durps('Successfully started pipeline execution: * + response[‘PipelincExecutionarn’])
: 1
il cucopt Exception as e:
2 tiz)
23 m {
F *statusfode’: 508,
25 ‘body’: json.durps(‘Failed to start pipeline exccution: * ¢ stried)
2% }

Figure 8: SageMaker Pipeline Trigger Lambda Function

8. Training Image On ECR: The image URI provided in step 4 image [9] is built
and stored in AWS ECR which contains dependencies required for the successful
training of model. The dockerfile used to build the docker image is given below.

15

Amazon ECR » Private registry » Repositories

Private repositories

Repositories (2)

‘ Q, Filter status

R it
epository a UR)
name
o mlops-repository- 590183699263 .dkr.ecr.eu-west-
aws 1.amazonaws.com/mlops-repository-aws

590183699263.dkr.ecr.eu-west-
my-sagemaker-

O L 1.amazonaws.com/my-sagemaker-training-
training-image .
image

Figure 9: ECR Repository

9. Cloudwatch Logs: There are log groups created to monitor lambda trigger func-
tionality and model training job as “/aws/lambda/SageMaker-Pipeline-S3-Trigger”
and “/aws/sagemaker/ProcessingJobs” respectively.

16

5.2 Flask Application CI/CD

Development

Environment

Code Pushed

to main branch Creating a Docker Image

and stored on AWS ECR

CodeFipeline
Triggered

CodePipeline

CodeDeploy AWS ECR

User

Figure 10: CI/CD Pipeline of Flask Application

1. Cloud9: AWS Cloud9 is an online IDE which is used to develop my flask applic-

ation and push it to git repository. Cloud9 spin off a EC2 instance in background
to host the IDE. The image |11 depicts code deployed.

17

&» File Edt Find View Go Run Tools Window Support Preview . Run

@ app.py

TlasKk 1mport Flask, request, JSONlty, render_template
t pickle

t boto3

t pandas

t numpy

io import BytesIO

home/et

app = Flask(__name_)

health_status True

BUCKET_NAME

PICKLE_FILE_KEY

s3 = boto3. ()

response s3. (Bucket=BUCKET_NAME, Key-PICKLE_FILE_KEY)
model_str = response[’ ()

model_stream = BytesIO(model_ str)

indices, cosine_sim_matrix, movie pickle. (model_stream)

bash - "ip-172-31-22-108. x | (+)

demo-user:~/environment $

Figure 11: Flask Application in Cloud9

2. GitHub: Github is used as a source code repository for the flask application. This
is a source for the AWS CodePipeline to start its execution.

3. CodePipeline: CodePipeline is used to establish a CI/CD pipeline to host the
flask application on the docker container on AWS ECS Container service. There
are 3 phases in this CI/CD pipeline which are.

e Source Phase: This acts as the starting point of the pipeline which is invoked
by the push on the main branch of the above github repository.

e CodeBuild: Build Docker image using docker file- install dependencies and
move project code and run application on boot. It also pushes the latest image
on ECR repository.

e Deployment: Container service AWS ECS used with Fargate which acts as
serverless container to host the flask application. It saves cost of running
containers 24x7.

Below [12] is the screenshot of the successful execution of my CI/CD pipeline:

18

& AWS ¢ & fla x [@ Bastic @

(& 2% eu-west-1.console.aws.amazon.com/codesuite/codepipelin... & o

» YouTube [Imported From Fire.. @ AWS Console &5y SageMaker Studio (&) Priyal-RIC @ RIC Project Login

[A B 4 @ & Irelandv demo-user @ 5901-8369-9263 v

@ Elostic Beanstalk | @Y Amazon SageMaker {51 53 {83 RS {8} Secrets Manager CodePipeline | Lambda [£]]l AP Gatews

Developer Tools » CodePipeline » Pipelines » flask-app-pipeline

flask-app-pipeline

‘ £ Notify w H Edit H Stop execution H Clone pipeline Release change

Pipeline type: V2 Execution mode: QUEUED

@ Source Ssucceeded

Pipeline execution ID: 2e9dbe39-9081-469a-b8e0 6d851c742ada

Source
GitHub (Version 1) B2

(@ Succeeded - 8 minutes ago

05baz6bs [

@5ba26b5 [2 Source: Final Commit
@ Build @ succeeded o

Pipeline execution ID: 2e9dbe39-9081-469a-b8e0-6d851c742ada

Build
AWS CodeBuild

@ Succeeded - 6 minutes ago

@5ba26b5 (4 Source: Final Commit
|
© Deployment ® succeeded

Pipeline execution ID: 2e9dbe39-9081-469a-b8e0-6d851c742ada

ECS_Deployment
Amazon ECS P4

(@ Succeeded - 1 minute ago

View details

85ba26bs [4 Source: Final Commit

[Cloudshell Feedback Privacy Terms Cookie preferences

© 2024, Amazon Web Services, Inc. or its affiliates.

>) D 1553

Figure 12: CI/CD Pipeline of Flask Application (Original Illustration)

¢ AWS ECR: Private Docker repo for prod image of my flask app and training
image of sagemaker.

e CloudWatch Logs: Monitoring is enabled for the build phase of pipeline in
cloudwatch under log group “/aws/codebuild/mlopsbuild”. ECS container in-

19

sights logs are named as “/aws/ecs/containerinsights/ MLOpsProdClusterECS /performance”

6 Evaluation

The evaluation of the MLOps pipeline and the movie recommendation system was carried
out by examining several key metrics that highlight the benefits of integrating MLOps
practices within AWS.

1. Precision: Precision is an important evaluation for checking the performance of a
recommendation system. It is also defined as the ratio of relevant recommendations
I.e true positives to the total number of items recommended I.e sum of true positives
and false positives. With respect to movie recommendations, a high precision score
indicates that the system predominantly suggests good movies that users will likely
to find appealing. This metric is particularly important in scenarios where the cost
of false positives—recommending irrelevant movies—is high, it will directly impacts
user satisfaction.

2. Monitoring: This evaluation metric consists of two metrics:

e CPU Utilization: CPU utilization method will measures the percentage of
available CPU capacity used during different stages of the MLOps pipeline,
such as data processing, model training, and inference. High CPU utilization
will typically indicate that the system is performing intensive computational
tasks, such as complex calculations or processing large datasets. on the other
hand, low CPU utilization can suggest that resources are underutilized, which
could indicate inefficiencies in the pipeline. Monitoring CPU utilization is es-
sential for optimizing the allocation of computational resources, hence ensuring
that the system operates efficiently without unnecessary resource expenditure.

e Memory Usage: Memory usage will tracks the amount of RAM consumption
during the execution of tasks in the pipeline, particularly during model training
and inference. Efficient memory management is crucial asit helps for handling
large models and datasets, as insufficient memory can lead to performance
bottlenecks, such as increased latency or system crashes. By monitoring and
optimizing memory usage, the system can easily maintain high performance.
If there is heavy workloads or with complex models that it require significant
Memory resources.

3. Cost Efficiency: Cost efficiency is an important metric which evaluates the rela-
tionship between resource utilization and the cost of running the MLOps pipeline.
It involves computation of used resources, memory, and storage consumed during
the pipeline’s operation translate into meaningful improvements in model perform-
ance or user satisfaction. After correlating these metrics with the associated costs,
the system can be fine-tuned to maximize performance while minimizing expenses,
ensuring that the recommendation system remains both effective and cost-efficient.

4. Re-Training: Model is retrained within few minutes once the new dataset is placed
in the S3 bucket. On average it takes 2 minutes 30 seconds to train the model on
the container and dumps new pickle file. The time taken to train the model can be
improved by using large container size.

20

5. User Feedback: This evaluation metrics was not addressed in this project due to
time constraints. I propose this as a future scope to be implemented.

7 Conclusion and Future Work

This thesis was successfully developed and implemented a robust MLOps pipeline within
the AWS environment, mainly goal was to optimizing movie recommendation systems.
The integration of different poppular AWS services such as SageMaker, Lambda, and
ECS. it helps for the continuous training, deployment, as well as the monitoring of ma-
chine learning models, significantly improving its scalability, efficiency, and reliability of
the recommendation system. The implementation results shows that the MLOps frame-
work not only enhances the accuracy of recommendations but also streamlined the oper-
ational workflow. It helps to reduce the complexity and manual intervention which are
specifically associated with deploying machine learning models in the production.

The evaluation of the system showed promising improvement and in performance
validating the effectiveness of the MLOps approach in a real-world application. Also,
there are different opportunities for further enhancement . Future work could primarily
focus on integrating real-time user feedback for updating it dynamically also improving
recommendation relevance and accuracy. Second task is, the exploration of multi-modal
data sources can also offer a richer, more personalized user experience by incorporating
diverse types of user data.

7.1 Future Work

Future work should be focus on improvement of the adaptability and customization of
the movie recommendation system by integrating the concept of real-time user feedback
mechanisms. This would also involve the development of a system which is capable of
continuously learning and updating recommendations based on live user interactions. It
will lead to more accurate and responsive suggestions. Advances in machine learning
and natural language processing continue to enhance the effectiveness of content-based
filtering, making it a key component of modern recommendation systems.

On the other hand, exploring the integration of multi-modal data sources, like as
user-generated content, social media activity, or visual media analysis, can significantly
enhances the capabilities of recommendation engine’s . By use different types of the data
, the system can offer a more holistic and personalized user experience. Solve cold start
problem

This research not only build the bridges the gap between model development and
operational deployment but also provides a scalable framework which can be adapted
for various recommendation systems. Future work can also explore the real integra-
tion of real-time user feedback and multi-modal data sources to further refine the sys-
tem. The findings also suggest potential commercial applications, particularly for small
and medium-sized enterprises seeking to leverage advanced machine learning capabilities
without significant upfront investment.

7.1.1 Commercialization Approach

From a commercial perspective, these advancements can be packaged in the scalable
Software-as-a-Service (SaaS) platform which will offer a robust, customizable recom-

21

mendation solutions to any businesses across various industries,for example streaming
services or an e-commerce.

Furthermore, there is also potential for commercialization of this MLOps design de-
veloped in this project by offering enterprise-level consultancy services, which will help
an organizations to implement and optimize their machine learning operations with best
practices derived from this research.

In summary, this project not only achieved its primary goals but also gave a solid
foundation for future advancements in the field of MLOps and machine learning-driven
recommendation systems, with clear paths for both academic research and commercial
exploitation.

References

Amazon EventBridge Documentation (n.d.).
URAL: https://docs.aws.amazon.com/eventbridge/

Amazon Web Services (2024). Page Version ID: 1239117327.
URL: https://en.wikipedia.org/w/indez.php ?title=Amazony ebgervicesoldid =
1239117327

Crankshaw, D., Wang, X., Zhou, G., Franklin, M. J., Gonzalez, J. E. and Stoica, I. (2017).
Clipper: A {Low-Latency} online prediction serving system, 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 17), pp. 613-627.

Karamitsos, I., Albarhami, S. and Apostolopoulos, C. (2020). Applying DevOps Practices
of Continuous Automation for Machine Learning, Information 11(7): 363. Number: 7
Publisher: Multidisciplinary Digital Publishing Institute.

URL: https://www.mdpi.com/2078-2489/11/7/363

Kumara, I., Arts, R., Di Nucci, D., Van Den Heuvel, W. J. and Tamburri, D. A. (2023).
Requirements and reference architecture for mlops: insights from industry, Authorea
Preprints .

Lops, P., De Gemmis, M. and Semeraro, G. (2011). Content-based recommender systems:
State of the art and trends, Recommender systems handbook pp. 73-105.

Makinen, S., Skogstrom, H., Laaksonen, E. and Mikkonen, T. (2021). Who Needs MLOps:
What Data Scientists Seek to Accomplish and How Can MLOps Help?, pp. 109-112.

Mu, Y. and Wu, Y. (2023). Multimodal movie recommendation system using deep learn-
ing, Mathematics 11(4).
URL: https://www.mdpi.com/2227-7390/11/4/895

Pazzani, M. J. and Billsus, D. (2007). Content-based recommendation systems, The
adaptive web: methods and strategies of web personalization, Springer, pp. 325-341.

PireciSejdiu, N., Ristevski, B. and Jolevski, 1. (2022). Performance Comparison of Ma-
chine Learning Algorithms in Movie Recommender Systems, 2022 57th International
Scientific Conference on Information, Communication and Energy Systems and Tech-
nologies (ICEST), pp. 1-4.

URL: https://ieeexplore.ieee.org/document /9828583

22

Sekar, S., Dhanasekaran, D., Charlyn, G. and Latha, C. (2023). Content-Based Movie Re-
commendation System Using MBO with DBN, Intelligent Automation and Soft Com-
puting .

What is Amazon SageMaker? - Amazon SageMaker (n.d.).
URL: https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html

23

	Introduction
	Background
	Importance of Research
	Research Objectives and Question
	Report Structure

	Literature Survey
	Recommendation Systems
	Movie Recommendation System
	Collaborative Filtering Approach
	Content Based Filtering
	MLaaS Machine Learning as a Service
	MlOps
	Projects using MLOps
	Gap Identified

	Research Methodology
	Process Flow of Methodology
	Data Collection and Prepocessing
	Training
	Deploy Pickle
	Infrastructure

	Design Specification
	Architecture Diagram

	Implementation
	ML Pipeline
	Flask Application CI/CD

	Evaluation
	Conclusion and Future Work
	Future Work
	Commercialization Approach

