
Latency-Aware Scheduling for Kubernetes: A
Custom Approach for Cloud Environments

MSc Research Project

Cloud Computing

Himanshi Painuly
Student ID: x22143220

School of Computing

National College of Ireland

Supervisor: Prof Jitendra Kumar Sharma

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Himanshi Painuly

Student ID: x22143220

Programme: Cloud Computing

Year: 2023/24

Module: MSc Research Project

Supervisor: Prof Jitendra Kumar Sharma

Submission Due Date: 12/08/2024

Project Title: Latency-Aware Scheduling for Kubernetes: A Custom Ap-
proach for Cloud Environments

Word Count: 5995

Page Count: 22

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 12th August 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Latency-Aware Scheduling for Kubernetes: A Custom
Approach for Cloud Environments

Himanshi Painuly
x22143220

Abstract

Cloud computing has made the microservices architecture a popular choice as
it scales and offers flexibility, but maintaining these interconnected components
efficiently is difficult. Current scheduling strategies in system such as Kubernetes
lead to poor performance since they do not properly handle microservice dependen-
cies leading to higher resource consumption and latency. In this research the focus
is on these inefficiencies, which are crucial for organisations that are aiming to
optimize network latency and reduce operational costs. Conventional Kubernetes
schedulers often fails to look the dynamic nature of network performance, focus-
ing primarily on static resource constraints like CPU and memory. Testing the
Latency-Aware Scheduler(LAS) in this research introduces a custom latency-aware
scheduler(LAS) that integrates real-time network latency measurements into the
scheduling process when it is compared to the default Kubernetes scheduler. This
custom scheduler calculates latency and available pods using custom node affinity
rules, with the goal of minimising network delay by placing dependant pods on the
same node. By modifying node affinity rules, incorporating a unique node scoring
function, and converting network latency measurements into scheduling decisions
it prioritises low network latency for maximum performance and user experience
in latency-sensitive applications. Real-world testing in various cloud environments
will reveal scalability and flexibility. This is essential for large-scale deployments.

Keywords: Kuberentes, Scheduling policies, Network Latency, AWS, Latency
Aware Scheduler

1 Introduction

Kubernetes has become the leading platform for orchestrating containerised applications,
providing powerful capabilities for managing deployments, scaling, and resource alloca-
tion. Nevertheless, with the rising adoption of microservices architectures and the de-
ployment of applications across various cloud environments, Kubernetes encounters a
number of obstacles. An important concern is the conventional scheduling approach,
which primarily emphasises static resource constraints like CPU and memory. This ap-
proach frequently overlooks the dynamic and intricate nature of network performance,
resulting in possible inefficiencies and issues with latency in service communication.

The basic Kubernetes scheduler’s limitations become obvious in scenarios where net-
work latency has significant effects on application performance. For latency-sensitive
applications that require speedy and efficient communication across microservices, the
typical scheduling algorithms fall short. They do not account for the real-time latency

1



between nodes and pods, which can result in inefficient pod placement, higher commu-
nication delays, and a general loss in application responsiveness and dependability. This
gap emphasises the need for a more advanced scheduling system that incorporates net-
work performance factors into its decision-making process. To address these difficulties,
this study presents a customised latency-aware scheduler that optimises pod placement
using real-time latency measurements. The custom scheduler uses network performance
statistics to ensure that pods are scheduled in a way that reduces latency and improves
communication efficiency across services. The scheduler enhances application perform-
ance and resource utilisation by exploiting real-time latency measurements, with a focus
on the inefficiencies of traditional Kubernetes scheduling.

Figure 1: Evolution of Containers

The solution is deployed on AWS EC2 instances and utilises Prometheus for real-
time monitoring and metrics collection. Prometheus, an open-source monitoring and
alerting toolkit, is essential for collecting latency data and offering valuable insights into
network performance. Through the integration of this data with the custom scheduler,
the deployment on EC2 allows for a scalable and responsive scheduling system that can
adjust to changing network conditions. This approach not only enhances the performance
of applications that require low latency but also improves the efficiency and reliability of
cloud-native deployments.

1.1 Background

With the rise of cloud-native architectures and the growing reliance on microservices,
the task of managing network performance and latency becomes increasingly intricate.
Although Kubernetes is highly proficient in deployment and resource allocation, it tends
to prioritise static resource constraints such as CPU and memory, often neglecting the
impact of network-latency between nodes and pods. This constraint results in less than
optimal pod placements and increased communication delays, which have a negative
impact on the performance of applications that are sensitive to latency.

2



In order to address these challenges, a new approach called latency-aware scheduling
has been developed. This approach takes into account real-time network performance
data when making scheduling decisions. With the inclusion of latency measurements,
this method guarantees the best possible placement of pods, resulting in minimised com-
munication delays and improved application responsiveness. This research presents a
specialised scheduler that prioritises latency awareness by utilising real-time latency data
collected through Prometheus on AWS EC2 instances. Through the optimisation of pod
placement according to real-time network conditions, this solution enhances network per-
formance and application efficiency, providing a more dependable and agile approach to
cloud-native deployments.

1.2 Motivation

The development and deployment of Latency-aware custom scheduler in Kubernetes is
a significant advancement in cloud computing and container orchestration, particularly
for serverless deployments. The main goal of this study is to find ways to deal with the
growing problems caused by network delay in modern cloud-native apps, especially those
that use Kubernetes for management. As microservices designs become more common,
how well services can communicate with each other has a direct effect on how well applic-
ations run and how users feel about them. Traditional Kubernetes schedulers are good
at handling static resources like CPU and memory, but they don’t take into account how
network delay changes over time. This can cause big performance problems and waste.

Real-time data processing systems, financial services, and engaging web applications
are all latency-sensitive and need the best network performance to make sure they have
fast response times and are reliable. The normal scheduler focusses on allocating resources
instead of network performance. As a result, these apps often have longer communication
gaps and less-than-ideal pod placements, which makes them less responsive and effective
overall. This gap shows how important it is to have a more advanced schedule system
that uses real-time network delay data to make decisions. This optimisation reduces
network latency and increases resource utilisation, enabling Kubernetes to be adapted to
an organization’s specific requirements. As a result, this method improves the scalability,
resilience, and efficiency of serverless applications, making them more cost-effective and
responsive to changing workloads.

1.3 Research Question

How can the pod scheduling policies, such as custom node affinity rules, be designed
in Kubernetes to outperform the default pod-by-pod scheduler in reducing pod start-up
time using the Latency-aware scheduler?

1.4 Objectives of Research

The objectives of this research is to develop a latency-aware scheduler(LAS) for Kuber-
netes which will optimizes the pod placement based on real-time network latency data,
improving the performance and efficiency of latency-sensitive cloud-native applications.

• Enhance Network Utilization: Develop and implement dynamic affinity-rules
in Kubernetes to place microservices in the best way possible based on how the

3



network is performing in real time. This will focus on reducing the latency and
improve communication efficiency between the interdependent services.

• Improve Quality of Service QoS: Increase resource efficiency by intelligently
allocating tasks based on VM load, thereby optimizing overall system performance
and resource usage.

• Develop a Custom Latency-Aware Scheduler: Design and implement a cus-
tom Kubernetes scheduler that will integrate real-time network latency measure-
ments to optimize pod-placement. This scheduler is designed to enhance the per-
formance by by considering network latency along with other resource constraints
such as CPU and memory.

• Integrate Real-Time Monitoring: Deploy and integrating Prometheus to mon-
itor real-time network performance within the Kubernetes environment. This in-
tegration will allow the collection and analysis of latency-data to inform scheduling
decisions, providing a dynamic approach to managing the pod placements. .

• Evaluate Performance Improvements: Evaluate the effects of the custom
latency-aware scheduler on application performance through a comparison with
the default Kubernetes scheduler. Metrics of interest involve decreases in network
latency, enhancements in communication efficiency, and overall application respons-
iveness.

• Deploy on AWS EC2: Implementing and testing the custom scheduler on AWS
EC2 instances is crucial to ensure optimal scalability and robustness in a cloud en-
vironment. This deployment will offer valuable insights into the performance of the
scheduler in real-world scenarios and its ability to effectively manage applications
with low latency requirements.

1.5 Outline

Finally, you can now close Section 1 by outlining the structure of the report, for instance:
The remainder of the report is organised as follows. Section 2 offers important theory and
evaluates works closely linked to the suggested strategy, laying the groundwork for under-
standing the next parts. Section 3 describes the suggested solution, which includes the
development of unique pod scheduling strategies and the incorporation of bespoke node
affinity criteria into a latency-aware scheduler. In Section 4, outlines the strategies used
to solve the highlighted issue, such as developing latency-sensitive scheduling algorithms
and test processes to evaluate the suggested strategy. goes over the implementation spe-
cifics, including process methods and the integration of the proposed solution into the
Kubernetes environment.Section 5, displays the assessment findings, which demonstrate
the proposed scheduler’s efficacy in decreasing pod start-up times and compare it to
the default schedulerSection 6. Section 7.presents findings and suggested future research
paths, emphasising areas for further development and optimisation.

2 Related Work

Fazio et al. (2016)The researcher critically proposed techniques for modelling and query-
ing microservices and datacenter resources, automating their selection and mapping de-

4



pending on a variety of performance requirements. He examined on frameworks for com-
posing application-agnostic microservices to increase knowledge reuse and simplify com-
plex interactions. The researcher also emphasised the need of monitoring microservices
and datacenter resources together, as well as investigating predictive models for dynamic
reconfiguration. The limitations remains due to the lack of standard microservice com-
munication protocols, complex integration, ineffective tools for configuration recommend-
ations, poor support for detailed dependencies in isolating microservice interference.

Shen et al. (2023)The research presents KaiS, a learning-based scheduling system built
for edge-cloud networks to increase the long-term request processing throughput. KaiS
uses graph neural networks to integrate system state information and various policy net-
works to control orchestration complexity, resulting in a 15.9% gain in throughput over
prior systems. Though, managing resources across edge-cloud networks and integrating
with Kubernetes (k8s) creates challenges because existing solutions frequently struggle
with dynamic and diverse settings and are incompatible with k8s. KaiS tackles these
difficulties by automating scheduling strategies and prioritising long-term throughput,
demonstrating the potential of learning-based techniques to improve scheduling in dy-
namic environments.

Kataru et al. (2023)The paper evaluates four AWS deployment techniques like Elastic
Beanstalk, EC2, CI/CD, and Docker & Kubernetes. It aims to identify the most efficient
method for deploying applications with minimal latency, stressing the importance of
technical nuances in AWS deployment strategies. The study emphasizes the need for
organizations to understand and choose the right deployment technique to optimize user
experience, focusing on cost efficiency and latency reduction. The challenges in the
research includes a narrow scope of performance metrics and insufficient consideration
of network configurations, data transfer costs, and regional variations also include factor
it overlooks factors like fault tolerance, disaster recovery, and compliance requirements,
which are crucial for comprehensive cloud application deployment. This research gap
highlights the need for further exploration into optimizing microservice dependencies
and enhancing the network latency to improve resource utilization and reduce network
bandwidth use in Kubernetes environments.

2.1 Kubernetes with respect to Microservices in Cloud Com-
puting

Miyazawa (2023)The objective of the study is to develop a communication latency-aware
container scheduler for edge cloud environments that optimizes the deployment and real-
location of application containers based on communication latency between end devices
and compute nodes. This scheduler addresses the challenges of heterogeneous network
connectivity by routing application access requests to the best-suited computing node,
thereby improving performance. However, the approach has limitations in effectively
managing the diverse and dynamic network conditions found in edge environments, mak-
ing it difficult to consistently make optimal, real-time decisions, which could have an
impact on the system’s overall performance.

Ding et al. (2023)The researcher proposed an integer nonlinear microservice placement
model for Kubernetes with the goal of minimising costs while taking into account dy-

5



namic resource competition, microservice availability, and shared dependent libraries. To
solve the model, a better evolutionary algorithm was used, resulting in faster through-
put at the same or lower costs, hence optimising Kubernetes placement method. The
model struggles to react to short-term and sudden request loads and potentially wasting
resources or failing to meet performance requirements.

Medel et al. (2016)A Kubernetes performance model that uses a reference net-based
technique to analyse and manage system resources. This model, which is based on real
data from a Kubernetes deployment, helps with capacity planning and application design,
notably the architecture of applications in terms of pods and containers. The study used
a benchmark-based approach to better understand Kubernetes behaviour, emphasising
the benefits of containers over virtual machines (VMs) due to their lower overhead. Yet,
the model’s reliance on VM cost as a restriction underscores the need for additional de-
velopment to meet dynamic and real-time application needs in Kubernetes deployments.

Selvakumar1 et al. (2023)The researcher created a machine learning-based approach
to dynamically reduce latency in microservices applications by assessing server capacity
and queue characteristics, then prioritising service instances based on the shortest pos-
sible queue waiting time. This technique, which uses Netflix open-source software com-
ponents, was evaluated with both interactive and non-interactive workloads and shown
considerable gains in load balancing and latency reduction for extended chains of mi-
croservices. Although, the complexity of integrating machine learning components may
provide implementation challenges and the solution’s emphasis on lengthy service chains
could make it ineffective for shorter chains or other performance concerns, limiting its
broader usefulness.

2.2 Custom Scheduler in Kubernetes

Centofanti et al. (2023)The researcher proposed a unique Kubernetes scheduling strategy
that prioritises user-perceived latency measured at the application layer above network-
layer data. This approach uses an iterative discovery process to dynamically choose the
best node for pod placement, which includes deploying ad-hoc service replicas to locate
the node with the lowest latency for end users. The experimental findings indicated that
this solution beats the default Kubernetes scheduler in terms of delay reduction. Nev-
ertheless, the efficiency of this approach is dependent on latency measurement accuracy,
which may be hampered by convergence time and user mobility issues. To solve these
restrictions, future work will focus on optimising scheduling algorithms.

Ning (2023)The researcher designed a customised Kubernetes scheduling technique to
improve node resource utilisation inside a cluster. This technique improves on the default
Kubernetes scheduler by assigning suitable Request values and generating an optimised
score mechanism to make better scheduling decisions. Performance assessments showed
that the unique technique improves node resource utilisation and load balancing through-
out the cluster. Though, the algorithm’s emphasis on optimising certain parameters may
restrict its effectiveness in cases that need consideration of additional aspects such as
network latency. Moreover, its scalability and generalisability to various large-scale de-
ployments have yet to be completely addressed.

6



Lai et al. (2023)To address the issue of node heterogeneity in Kubernetes-managed
edge computing systems, the researcher created the Delay-Aware Container Scheduling
(DACS) method. DACS assigns pods efficiently by taking into account both the leftover
resources of worker nodes and any delays induced by pod assignments. Performance test-
ing on a Kubernetes cluster constructed with VMware revealed that DACS dramatically
lowers processing and network delays, beating other schedulers such as kube-scheduler,
ElasticFog, TSRA, NAS, and KCSS. Yet the algorithm’s success is dependent on precise
delay measurements, and its scalability and adaptability in large-scale, dynamic edge
environments requires more investigation.

2.3 Need for the Advanced Scheduler

Gog et al. (2016) the researcher designed Firmament, a centralised scheduler that can
scale to over ten thousand computers with sub-second placement latency by combining
several min-cost max-flow (MCMF) algorithms, addressing the issue sequentially, and ap-
plying problem-specific optimisations. Experiments with a Google workload trace from a
12,500-machine cluster revealed that Firmament improves placement latency by 20 times
over the preceding Quincy scheduler and equals the latency of distributed schedulers for
short jobs. In addition, Firmament outperformed four popular schedulers in terms of
placement quality, improving batch job response time by six times. Despite its advant-
ages, Firmament’s reliance on continual rescheduling via MCMF optimisation may result
in computational cost in highly dynamic contexts. Moreover, being a centralised system,
it may encounter scalability and reliability difficulties, particularly under conditions of
unpredictable workload spikes or hardware failures.

Merkouche et al. (2022)The researcher developed TERA-Scheduler, an advanced schedul-
ing technique for Kubernetes that takes into account microservice dependencies to min-
imise the scheduling-duration and inter-pod traffic, resulting in a 39% improvement in
response times over the default Kubernetes scheduler. Experiments shown that TERA-
Scheduler improves latency-aware systems by detecting dependencies, obtaining resource
needs, and implementing effective scheduling algorithms. Nevertheless, effective schedul-
ing needs earlier identification of microservice dependencies, which adds complexity.
Moreover, while the results are encouraging, additional research is needed to combine
numerous resource measurements with QoS requirements and investigate implementa-
tion in private cloud settings for further optimisation.

2.4 Research Gap

Several research gaps have been discovered in existing microservice design and Kubernetes
scheduling methodologies. One major gap is the absence of standardised communication
protocols for microservices, which makes integration difficult and affects system efficiency.
The lack of these standards prevents smooth communication across microservices, result-
ing in operational inefficiencies. Another key difficulty is the complexity of integration
and setup procedures, especially in dynamic contexts such as edge-cloud networks, where
resource allocation and network circumstances are constantly changing. This complexity
typically leads to inefficient microservice setup and performance. Furthermore, present
systems lack adequate real-time monitoring and dynamic reconfiguration capabilities, and
current tools fail to deliver the critical real-time performance indicators required for op-

7



timum resource management. Pontarolli et al. (2020)Another important difficulty is the
improper management of microservice dependencies, which are difficult to manage and
may result in sub-optimal performance, particularly when they influence network latency
and application responsiveness. Finally, typical Kubernetes scheduling approaches pri-
oritise static resource measurements such as CPU and RAM while ignoring dynamic
considerations such as network latency, resulting in wasteful pod placements and reduce
the overall system performance.

Introducing a latency-aware scheduler is critical for filling important research gaps
in microservice design and Kubernetes scheduling. It optimises microservice placement
based on real-time network latency, hence increasing communication efficiency and system
performance. This dynamic technique enables constant adaptation to changing network
circumstances, improving resource utilisation and dealing with microservice dependen-
cies more efficiently. The scheduler increases program performance and user experience
by lowering network latency, particularly in real-time settings. Overall, a latency-aware
scheduler is critical for developing resource management tactics in dynamic and complic-
ated environments, providing significant improvements over standard static scheduling
approaches.

3 Methodology

This methodology provides a comprehensive overview of the architecture and components
of Kubernetes. It also introduces a specialised scheduler that is specifically designed to
enhance pod placement decisions by taking latency into account. An overview of the
Kubernetes master and worker nodes is provided, emphasising their roles and essential
elements like the API Server, Controller Manager, Kubelet, and other components. The
proposed custom scheduler incorporates real-time network latency data, which is collected
through Prometheus, into the scheduling process. This method improves the placement
of pods to prioritise applications with low latency requirements, resulting in better per-
formance and resource usage in a Kubernetes cluster, especially in a cloud environment
such as AWS EC2.

3.1 Components of Kubernetes and Proposed Design

3.1.1 Master Node

• Function: The master node is responsible for controlling the Kubernetes cluster,
handling tasks such as managing the cluster’s state, scheduling workloads, and
overseeing administrative duties.

• Components:
API Server: Serves as the interface for the Kubernetes API, managing all admin-
istrative commands and interactions with the cluster.
Controller Manager: Manages controllers responsible for performing routine
tasks like replication, node management, and deployment operations.
Scheduler: Allocates pods to nodes according to specified scheduling policies and
constraints.
etcd: It is a reliable and highly-available key-value store that effectively manages
the data and state of a cluster.

8



3.1.2 Worker Nodes

• Function: Worker nodes are responsible for executing applications and services.
Every worker node is responsible for hosting the containers and managing their
execution.

• Components:
Kubelet: A crucial component that monitors container status on the node and
maintains communication with the master node.
Kube-Proxy: Kube-Proxy handles network routing and load balancing for ser-
vices on the node.
Container Runtime: the software that handles the execution of containers, such
as Docker or containerd.

3.1.3 Pods

• Function: These are the smallest deployable units in Kubernetes. They encapsu-
late one or more containers that can share storage and network resources.

• Characteristics: Pods allow for the seamless deployment and management of
applications as a single unit.

3.1.4 Services

• Function: Manages a group of pods and offers a consistent endpoint for accessing
them, making it easier to balance the workload and find the services.

• Types: ClusterIP for internal access, NodePort for external access, LoadBalancer
for integration with cloud load balancers, and ExternalName for external services.

3.1.5 Namespaces

Facilitate the division of cluster resources among multiple users or teams, enhancing
resource organisation and management efficiency.

3.1.6 Deployments

Manage the deployment and scaling of pods, ensuring that the applications are maintained
in the desired state.

3.1.7 ConfigMaps and Secrets

It is used to manage configuration data and sensitive information for applications running
in the cluster.

3.1.8 Monitoring Tools

The Prometheus application will be accessible to external users through the Prometheus
Kubernetes Service. The Grafana application will be available through the Prometheus
Kubernetes Service, allowing external users to access and view the Grafana dashboards.

9



Figure 2: Kubernetes Custom Scheduler

3.2 Custom scheduler(Latency Aware)

The custom latency-aware scheduler is a major improvement compared to the traditional
Kubernetes scheduling approach. It incorporates real-time network latency measure-
ments into the scheduling process. Unlike the standard scheduler, which primarily con-
siders static resource constraints like CPU and memory, this solution takes into account
real-time latency data to enhance pod placement optimisation. This integration is accom-
plished through real-time monitoring with Prometheus, which consistently gathers and
offers latency metrics. Through careful analysis of these metrics, the custom scheduler
can make well-informed decisions regarding pod placements, guaranteeing that latency-
sensitive applications are deployed on nodes that minimise communication delays. This
approach tackles the performance limitations commonly found in traditional schedulers,
resulting in improved efficiency and reduced latency caused by less-than-optimal pod
placements.

Tang et al. (2023)The custom scheduler functions by collecting the latency data from
Prometheus, which is subsequently utilised to evaluate the present network conditions
between nodes and pods. The scheduler assesses potential placement options by consid-
ering latency information, with the goal of placing pods on nodes that provide the shortest
communication latency. When the ideal placement conditions are not met, the scheduler
has the ability to adapt its criteria and reassess the available nodes in order to achieve the
most optimal pod placement. This approach not only improves the responsiveness and
efficiency of latency-sensitive applications but also enhances overall resource utilisation
within the Kubernetes cluster. Deploying this scheduler on AWS EC2 instances allows
us to utilise scalable cloud infrastructure to efficiently handle real-world workloads and
confirm the success of our latency-aware scheduling approach.

3.3 Workflow of the proposed custom scheduler(LAS)

In order to further optimise the scheduling process, particularly for latency-sensitive
applications, several important components and enhancements have been incorporated,
building on the workflow of the custom Kubernetes scheduler.

• Latency Measurement Integration: The scheduler includes a latency meter

10



Figure 3: Workflow of the Proposed Custom Scheduler(LAS)

that dynamically assesses network performance between pods and nodes in the
Kubernetes cluster. This latency meter is implemented as a Go-based application
that acts as a proxy server, strategically placed within the cluster. It efficiently
captures and tracks the time it takes for requests to travel between nodes, con-
tinuously recording these metrics to offer valuable insights into the current network
conditions. Through the integration of latency measurements, the scheduler gains
the ability to make more precise evaluations when selecting the optimal node for
deploying pods, especially in environments where low latency is important.

• Prometheus Monitoring: In order to achieve real-time data collection and mon-
itoring, Prometheus is deployed alongside the scheduler. The latency meter sends
its captured data to Prometheus, which stores the metrics for ongoing analysis.
This configuration enables the custom scheduler to retrieve up-to-date and per-
tinent latency data for making scheduling decisions. Having access to real-time
latency information from Prometheus is essential for the scheduler to choose nodes
that minimise network delays, resulting in enhanced performance for deployed ap-
plications.

• Routing Manager: A pod called a routing manager is deployed within the Kuber-
netes cluster to handle the network requests and manage traffic routing. This pod
comes with specific annotations and environment variables that determine its be-
haviour, such as directing requests to a default service. The routing manager is
crucial in efficiently managing latency measurements and routing operations. With
its ability to manage traffic flow and route requests effectively, the routing manager
plays a crucial role in providing the scheduler with valuable insights for optimising
pod placements. .

• Scheduler Logic: The decision-making process of the scheduler is closely connec-
ted to the latency data that Prometheus collects and stores. When a new pod is
scheduled, the scheduler retrieves the latest latency metrics from Prometheus, as-
sesses the network conditions between potential nodes, and chooses the node with
the lowest latency. If the most optimal node is not available, the scheduler will
dynamically reassess and adapt its placement criteria to ensure that the next best
option is chosen. This logic guarantees that applications, especially those that are

11



sensitive to network latency, will experience decreased communication delays and
improved performance.

• Deployment and Testing: The entire system which includes the scheduler,
latency measurement services, and routing managers, is deployed well and tested
on AWS EC2 instances to validate its performance in a scalable cloud environment.
Configuration files in Kubernetes are utilised for deploying these components, while
scripts automate the process to guarantee accurate setup. This deployment phase
is critical for testing the scheduler’s effectiveness, with performance metrics such as
latency and overall application responsiveness being closely monitored to measure
improvements. With extensive deployment and testing, the custom scheduler is
optimised to provide top-notch performance in real-world cloud environments.

4 Design Specification

The custom Kubernetes scheduler was developed and tested using the AWS cloud services
to take advantage of the capabilities and flexibility of Elastic Compute Cloud (EC2) in
building a cluster that is both scalable and dependable. The Kubernetes cluster was set
up using Kubeadm, a tool that streamlines the process of creating multi-node clusters.
The cluster configuration consisted of a master node hosted on an EC2 t3.large instance.
The master node provided 2 CPUs, 16GB of storage for the master node, and 8GB
for the worker nodes. This configuration ensured that the master node had the required
computational power and storage capacity to efficiently oversee the entire cluster. Worker
nodes, which handle application workloads, were deployed on t2.medium instances.

The custom scheduler was developed using Bash scripting and YAML configuration
for its flexibility, simplicity, and minimal runtime overhead. Bash is a scripting language
that is commonly used in the deployment of microservices. It is a great option for in-
corporating custom scheduling logic into Kubernetes. Node Exporter was installed on
both the master and worker nodes to monitor the cluster’s health and performance. This
tool exports important metrics to Prometheus, a powerful monitoring system installed
on the master node. Additionally Prometheus was deployed to offer a user-friendly and
interactive platform for visualising the data that was collected. The installation and man-
agement of Prometheus were made more efficient by utilising Helm, a package manager for
Kubernetes, which automated the deployment process. This extensive monitoring system
ensured constant monitoring of the cluster’s performance, allowing for prompt responses
to any problems and maximising the overall efficiency of the Kubernetes environment.

4.1 Proposed Kubernetes Scheduler-Architecture

Kubernetes depends on its built-in scheduler, when it comes to assigning Pods to nodes
within a cluster, . The scheduler takes into account various factors such as resource
availability, node and pod relationships, and tolerations for taints. Nevertheless, if there
is any specific requirements, you can use a custom scheduler. Users have the ability
to define custom rules and logic for placing Pods, which can be extremely valuable for
managing specialised resource needs, complex scheduling requirements, or specific de-
pendencies. An example of a custom scheduler could be a Bash script that collects node
and Pod data, applies user-defined criteria, and then makes scheduling choices based on
that information. With these customisations, users can experience increased flexibility,

12



Figure 4: Tools and Technologies

optimised resource usage, enhanced system reliability and fault tolerance, resulting in
improved workload management and cluster performance.

4.1.1 Step 1: Formation of Kubernetes Cluster on AWS Cloud

Setting up a Kubernetes cluster on AWS EC2 instances is part of the initial stage. In
this configuration setup, an EC2 instance is utilised for hosting the Kubernetes master
node, while extra EC2 instances serve as worker nodes. The network architecture consists
of a master node and several worker nodes, usually two or more, which together create
the entire Kubernetes cluster. YAML files are commonly used to define and deploy
the required Kubernetes pods and services. These YAML files provide a comprehensive
overview of the configuration for different components, such as deployments, services,
and configurations.

4.1.2 Step 2: Installation of Docker, Kubernetes,and Kubeadm

The second stage involves installing Docker, Kubernetes, and Kubeadm on all nodes using
a shell script. This script provides the instructions and settings required to correctly
configure the container runtime and Kubernetes components. The installation method
involves running the script on both the master and worker nodes. It is essential to ensure
that all nodes have Docker and Kubernetes installed and configured appropriately for the
cluster and custom scheduler to run smoothly.

4.1.3 Step 3: Integration of Observability Tools

The observability tools such like Prometheus and Node Exporter are deployed to ensure
that the custom scheduler is used efficiently. Prometheus is used to gather and display
critical data including node availability, resource utilisation, and network bandwidth con-
sumption. Each node runs Node Exporter, which collects system-level metrics. Grafana
and Prometheus are connected to visualise the gathered data. This configuration provides
the custom scheduler with real-time measurements needed to make educated scheduling
choices based on latency and resource utilisation.

13



4.1.4 Step 4: Implementation and Execution of the Custom Scheduler

During this step, a custom latency-aware scheduler written in Go is deployed inside
the Kubernetes environment. This scheduler is designed to improve pod placement by
adding real-time latency and resource data into the decision-making process. It uses
a mix of filtering and binding algorithms to assess node appropriateness in terms of
latency and resource availability. The scheduler handles the difficulty of interdependent
microservices by placing relevant services on the same node to reduce communication
latency. This is accomplished by analysing latency data obtained from the Latency Meter
and Prometheus metrics, which informs judgements on optimum node selection. The
deployment process is optimised by automation using Bash scripts that handle YAML
settings, service deployments, and scheduler execution. This method assures that the
scheduler decreases network latency and increases overall application performance by
making live data-driven placement decisions.

Figure 5: Architecture diagram of the Custom Scheduler

14



5 Implementation

The custom scheduler(LAS) optimises pod placement by integrating various components
that consider real-time latency measurements. The key components consist of a latency
meter, Prometheus monitoring, and a routing manager, all working together to deliver a
complete scheduling solution.

• Latency Measurement Integrating: As part of their role, a database adminis-
trator utilises a latency meter, which is implemented in Go, to accurately measure
the network performance between pods and nodes. This meter functions as a proxy
server within the Kubernetes cluster, capturing the duration of requests as they
travel between nodes. It computes latency by utilising a specific formula.

Latency = End Time− Start Time (1)

where Start Time is defined as when a request is sent and End Time is when
the response is received. This dynamic measurement reflects the current network
conditions, providing real-time latency data is crucial for making the scheduling
decisions.

• Prometheus: It continually gathers and maintains latency measures, while the
latency meter sends data for real-time analysis. In this query indicates the average
duration of HTTP requests over the last 5 minutes, offering insights into network
performance. Prometheus collects metrics using queries like:

Latency Metric = avg over time(http request duration seconds[5m]) (2)

• Routing Manager: It is deployed as a Kubernetes pod, efficiently manages traffic
routing and ensures precise latency data collection. The scheduler handles the data,
choosing nodes based on their low latency and high resource availability. It uses a
scoring system to determine the best nodes

• Scheduler Logic: The custom scheduler handles latency data gathered by the
latency meter and Prometheus. When scheduling a new pod, the scheduler checks
Prometheus for the most recent latency data and assesses network conditions between
possible nodes. It finds the node with the lowest latency using the following method:

Node Score =
1

Average Latency
+ Resource Availability Score. (3)

The scheduler provides higher scores to nodes with lower latency and more resource
availability, ensuring that dependent microservices are clustered together to reduce
communication delays. If the best node is unavailable, the scheduler reconsiders
additional choices to ensure optimum placement.

• Deployment and Testing: The custom scheduler and its components are de-
ployed on AWS EC2 instances, allowing for testing and validation in a scalable
cloud environment. The deployment requires the application of Kubernetes config-
uration files for the scheduler, latency measurement services, and routing managers.

15



Automation scripts handle the setup process, ensuring that all components are prop-
erly configured and functioning. The performance of the scheduler is evaluated by
measuring latency and overall application performance, confirming its effectiveness
in optimising pod placement. This thorough approach guarantees that the custom
scheduler efficiently minimises communication delays and improves the performance
of latency-sensitive applications within the Kubernetes cluster.

5.1 Formation of a Kubernetes cluster

This section provides a detailed guide on how to set up a Kubernetes cluster on AWS
using EC2 instances. The cluster consists of a master node and two slave nodes. The
master node is configured on a T2.Large instance with Ubuntu 22.04 LTS to meet its
increased computational requirements. It is responsible for running the custom scheduler,
Control Panel, and API server. The two slave nodes are T2.Medium instances, each
equipped with two CPUs. Commands are executed on each instance to form the cluster.
Containerd is the container runtime in use, responsible for handling the entire container
lifecycle and serving as a crucial link between the operating system and Kubernetes.
Important components of Kubernetes are kubelet, which ensures containers run within
pods, kubeadm, which assists with cluster configuration, and kubectl, the command-line
tool for managing the cluster. The Container Network Interface (CNI) offers networking
capabilities for containers. Docker is a popular platform for building, packaging, and
running containers. Kubernetes is compatible with various container runtimes. With the
help of these tools and technologies, you can effortlessly deploy and manage a Kubernetes
cluster on AWS. This ensures that containers within the cluster are orchestrated and
operated smoothly.

5.2 Working of the Proposed scheduling algorithm

The custom scheduler, written in Go, seamlessly integrates with the Kubernetes control
plane through API calls during its startup phase. It sets up informers to keep an eye on
the cluster, specifically monitoring the status of nodes and unscheduled pods. When a
new pod needs scheduling, the scheduler enters the ”ScheduleOne” phase, during which it
chooses the most suitable node for deploying the pod. At the same time, a custom Bash
script is run to verify dependencies among microservices. This script utilises methods
such as ”identify available nodes()” and ”check any latency on the process running on
node()” to generate a comprehensive list of nodes and analyse any existing latency issues.

The scheduler evaluates the nodes, taking into account resource availability and the
results of latency checks, in order to select the optimal node for the pod. After a decision
is reached, the scheduler assigns the pod to the chosen node and sends out an event
to inform the system of its selection. This scheduler has a caching mechanism that
enhances network efficiency by facilitating data exchange between microservices, resulting
in reduced bandwidth usage within the Kubernetes framework. This design optimises
pod placement to minimise latency and network overhead, resulting in improved system
performance.

16



Figure 6: Proposed scheduling Algorithm working

5.3 Prometheus Monitoring Tool

Monitoring plays a vital role in Kubernetes, and Prometheus with Node Exporter greatly
improves this capability by capturing comprehensive node-level metrics. Node Exporter
offers comprehensive insights into system performance, including resource utilisation, net-
work behaviour, and overall system well-being. Integrating these metrics into Prometheus
provides a comprehensive understanding of node-specific performance. This information
can be utilised to enhance the custom scheduler by integrating real-time metrics for more
accurate node configurations. Having the ability to visualise these metrics in Grafana
dashboards provides a complete perspective of the cluster and its individual nodes. This
allows for well-informed decisions regarding workload distribution, resource optimisation,
and cluster management. Utilising Prometheus, Grafana, and Node Exporter together
forms a robust observability stack for Kubernetes. Following are the some components
of Monitoring tools :

• Data Collection Agents: Collect system and application metrics(e.g., Node Ex-
porter)

• Quering and Alerting : The querying and alerting engine is responsible for
retrieving data and triggering alerts when certain conditions are met.

• storage backend : The storage backend securely stores large volumes of collected
data.

5.4 Key Differences from the Default Kubernetes Scheduler

The custom latency-aware scheduler has notable differences compared to the default
Kubernetes scheduler. It utilises real-time network metrics to optimise pod placement
and minimise delays for latency-sensitive applications. This is in contrast to the de-
fault scheduler, which only prioritises resource availability. The custom scheduler seam-
lessly integrates with Prometheus to provide real-time latency data, empowering better

17



decision-making. In contrast, the default scheduler relies on fixed resource information.
It utilises sophisticated logic to allocate pods based on latency and dependencies, striv-
ing for improved co-location of microservices, while the default scheduler takes a more
generalised approach. In addition, it dynamically adapts placements according to cur-
rent latency conditions and utilises Prometheus for comprehensive monitoring, providing
better observability compared to the limited insights of the default scheduler.

6 Evaluation

To evaluate the effectiveness of our custom latency-aware scheduler, we conducted simu-
lations of network delays using the ‘tc‘ (traffic control) tool. Initially, we examined the
existing network setup by using the command ‘tc qdisc show‘ for the network interface
‘ens5‘. This provided us with a snapshot of the network’s configuration. Next, a 400-
millisecond delay was introduced to one of the nodes by utilising the command ‘sudo tc
qdisc add dev ens5 root netem delay 400ms‘. This caused a delay in the network con-
nection on that node. We confirmed the delay was applied correctly by running ‘tc qdisc
show‘ again.

Observing the custom scheduler’s handling of pod placement in the Kubernetes cluster,
we closely monitored the effects of the delay. Given the 400 ms delay on node 2, the sched-
uler made the decision to allocate pods on node 1 instead, as it had lower latency. This
demonstrated the scheduler’s ability to make intelligent choices by considering network
performance. It would select nodes with superior network conditions to reduce any delays
in pod communication. In general, the test results indicate that the scheduler successfully
takes into consideration network delays and optimises the placement of pods to enhance
performance.

6.1 Testing the Custom Scheduler

• Installing the Latency Meter: Use the command kubectl apply -f latency-
meter.yaml to deploy the latency meter app. This application is designed to monitor
and record network delays, and it will automatically transmit the collected data to
Prometheus.

• Configure the Routing Manage: Utilise the ‘kubectl apply -f routing-manager.yaml‘

18



command to deploy the routing manager and effectively manage traffic within the
cluster.

• Deploy a Test App: Deploy a sample app, such as Nginx, with ‘kubectl apply -f
nginx-deployment.yaml‘ to test how the scheduler works.

6.2 Simulate Network Issues

• Verify Current Network Configuration: Utilise the ‘tc qdisc show‘ command
to view the existing network setup on your nodes.

• Introduce Network Delay: To simulate a network delay on one node, execute
the command ‘sudo tc qdisc add dev ens5 root netem delay 400ms‘.

• Confirm the Delay: - Execute ‘tc qdisc show‘ once more to ensure that the delay
was implemented correctly.

6.3 Test Pod Placement

• Deploy Pods with the Custom Scheduler: Deploy a few test pods and observe
the placement decisions made by the custom scheduler.

• Monitor Placement Decisions: Verify whether the scheduler is assigning pods
to nodes with lower network delay.

6.4 Evaluate How the Scheduler Performs

• Verify Pod Placement: Utilise ‘kubectl get pods -o wide‘ to ensure that pods
are assigned to nodes with minimal latency.

• Reviewing Latency Data: Utilise Prometheus and Grafana to analyse the
collected latency data and assess the alignment between the scheduler’s decisions
and the simulated network conditions.

• Review Logs: Verify the logs of the custom scheduler and latency meter to ensure
proper functionality and accurate data usage.

19



6.5 Results

For the evaluation of the custom latency-aware scheduler, a Kubernetes cluster was de-
ployed on AWS EC2 instances. Realistic conditions were simulated by introducing net-
work latency to test its performance. This specialised scheduler, created to enhance
pod placement by taking network latency into account, was seamlessly integrated with
Prometheus for live latency monitoring and a customised latency meter to dynamically
assess network performance. For the purpose of emulating network conditions, a delay
of 400 milliseconds was implemented on one of the nodes using the ‘tc‘ (traffic control)
tool. This delay was implemented to simulate real-world network latency and evaluate
the performance of the custom scheduler in handling such situations. After that, the
custom scheduler was used to allocate pods within the cluster. The scheduler utilised
latency data gathered from Prometheus and the latency meter to make well-informed
placement choices. According to the figure and calculations, it clearly states that the
LAS is much capable when compared to default scheduler with consideration to network-
latency and resource utilisation. It is clearly evident LAS works better in the application
pod-placement.

Figure 7: Promotheus Results

The testing showed that the custom scheduler efficiently used the latency data to
prioritise nodes with lower network delays. As an example, when node 2 encountered
a delay of 400 milliseconds, the scheduler always chose to assign pods to node 1, which
had a lower latency. This behaviour showcased the scheduler’s ability to minimise net-
work delays and decrease communication overhead between microservices, aligning with
its design to improve performance by optimising pod placement according to current
network conditions.The Prometheus metrics provided precise and practical latency data,
while the Grafana visualisations confirmed that the scheduler made decisions based on
up-to-date network conditions. The graphs clearly demonstrated distinct variations in
latency among nodes, confirming the efficiency of the scheduler. The scheduler’s ability to
enhance application performance and responsiveness was demonstrated by the consistent
prioritisation of nodes with lower latency in simulated conditions.

On the other hand, the assessment also pointed out a few constraints. The simulated
latency may not accurately reflect the real-time fluctuations in network performance

20



encountered in live environments. In addition, the integration of Prometheus and the
custom latency meter can complicate matters and potentially lead to performance issues
if not handled properly.

7 Conclusion and Future Work

The efficiency of a custom scheduler (LAS)that takes into account real-time network
latency measurements to optimise pod placement within Kubernetes clusters. By incor-
porating a Go-based latency meter, utilising Prometheus for monitoring, and implement-
ing a custom scheduling algorithm, the scheduler is able to dynamically evaluate network
conditions. This results in a notable enhancement in performance as it effectively reduces
latency between dependent microservices. This approach differs from the default Kuber-
netes scheduler, which focusses on static resource metrics and may not consider network
performance, resulting in possible inefficiencies. The versatility of the custom scheduler
in adjusting to fluctuating network conditions highlights its potential for practical im-
plementation in a wide range of cloud environments. This, in turn, provides improved
efficiency for applications that are sensitive to latency.

In order to further enhance the scheduler’s capabilities, future research could focus
on testing its performance in dynamic network environments, assessing its scalability in
complex topologies and multi-cloud scenarios, and improving the scheduling algorithms
to incorporate metrics like throughput and packet loss. Incorporating the scheduler
with other Kubernetes components, such as horizontal pod autoscaling, can result in
more extensive optimisations. Collecting feedback from actual users and performing
usability testing will be crucial in improving the interface and configuration options of
the scheduler. These efforts can greatly improve the scheduler’s capabilities, leading
to more efficient Kubernetes deployments and better application performance in cloud-
native environments.

References

Centofanti, C., Tiberti, W., Marotta, A., Graziosi, F. and Cassioli, D. (2023). Latency-
aware kubernetes scheduling for microservices orchestration at the edge, 2023 IEEE
9th International Conference on Network Softwarization (NetSoft), pp. 426–431.

Ding, Z., Wang, S. and Jiang, C. (2023). Kubernetes-oriented microservice place-
ment with dynamic resource allocation, IEEE Transactions on Cloud Computing
11(2): 1777–1793.

21



Fazio, M., Celesti, A., Ranjan, R., Liu, C., Chen, L. and Villari, M. (2016). Open issues
in scheduling microservices in the cloud, IEEE Cloud Computing 3(5): 81–88.

Gog, I., Schwarzkopf, M., Gleave, A., Watson, R. N. M. and Hand, S. (2016). Firmament:
Fast, centralized cluster scheduling at scale, 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), USENIX Association, Savannah, GA,
pp. 99–115.
URL: https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gog

Kataru, S. S., Gude, R., Shaik, S., Kota, L. V. N. S. S. S., S, S. and M, B. R. (2023).
Cost optimizing cloud based docker application deployment with cloudfront and global
accelerator in aws cloud, 2023 International Conference on Sustainable Communication
Networks and Application (ICSCNA), pp. 200–208.

Lai, W.-K., Wang, Y.-C. and Wei, S.-C. (2023). Delay-aware container scheduling in
kubernetes, IEEE Internet of Things Journal 10(13): 11813–11824.

Medel, V., Rana, O., Bañares, J. and Arronategui, U. (2016). Modelling performance
resource management in kubernetes, 2016 IEEE/ACM 9th International Conference
on Utility and Cloud Computing (UCC), pp. 257–262.

Merkouche, S., Haroun, T., Bouanaka, C. and Smaali, M. (2022). Tera-scheduler for
a dependency-based orchestration of microservices, 2022 International Conference on
Advanced Aspects of Software Engineering (ICAASE), pp. 1–8.

Miyazawa, H. (2023). A latency-aware container scheduling in edge cloud computing
environment, 2023 Congress in Computer Science, Computer Engineering, Applied
Computing (CSCE), pp. 1728–1731.

Ning, A. (2023). A customized kubernetes scheduling algorithm to improve resource
utilization of nodes, 2023 3rd Asia-Pacific Conference on Communications Technology
and Computer Science (ACCTCS), pp. 588–591.

Pontarolli, R. P., Bigheti, J. A., Fernandes, M. M., Domingues, F. O., Risso, S. L. and
Godoy, E. P. (2020). Microservice orchestration for process control in industry 4.0,
2020 IEEE International Workshop on Metrology for Industry 4.0 IoT, pp. 245–249.

Selvakumar1, G, J. and L. S., A. S. (2023). Csse - tech science press.
URL: https://www.techscience.com/csse/v46n1/51304

Shen, S., Han, Y., Wang, X., Wang, S. and Leung, V. C. M. (2023). Collaborat-
ive learning-based scheduling for kubernetes-oriented edge-cloud network, IEEE/ACM
Transactions on Networking 31(6): 2950–2964.

Tang, J., Jalalzai, M. M., Feng, C., Xiong, Z. and Zhang, Y. (2023). Latency-aware task
scheduling in software-defined edge and cloud computing with erasure-coded storage
systems, IEEE Transactions on Cloud Computing 11(2): 1575–1590.

22


	Introduction
	Background
	Motivation
	Research Question 
	Objectives of Research
	Outline

	Related Work 
	Kubernetes with respect to Microservices in Cloud Computing
	Custom Scheduler in Kubernetes 
	Need for the Advanced Scheduler 
	Research Gap 

	Methodology
	Components of Kubernetes and Proposed Design
	Master Node
	Worker Nodes
	Pods
	Services
	Namespaces
	Deployments
	ConfigMaps and Secrets
	Monitoring Tools

	  Custom scheduler(Latency Aware)  
	  Workflow of the proposed custom scheduler(LAS) 

	Design Specification 
	 Proposed Kubernetes Scheduler-Architecture 
	 Step 1: Formation of Kubernetes Cluster on AWS Cloud 
	 Step 2: Installation of Docker, Kubernetes,and Kubeadm 
	 Step 3: Integration of Observability Tools 
	 Step 4: Implementation and Execution of the Custom Scheduler 


	Implementation
	 Formation of a Kubernetes cluster
	 Working of the Proposed scheduling algorithm
	 Prometheus Monitoring Tool 
	Key Differences from the Default Kubernetes Scheduler 

	Evaluation
	Testing the Custom Scheduler 
	Simulate Network Issues 
	Test Pod Placement 
	Evaluate How the Scheduler Performs 
	Results

	Conclusion and Future Work 

