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1 Prerequisites

1.1 Software Requirements

• Node.js: Version 14.x or higher

• npm: Version 6.x or higher (comes with Node.js)

• Docker: Latest version

• Git: For version control

• wrk: HTTP benchmarking tool

• ghz: gRPC benchmarking tool

• SSH Client: For connecting to AWS EC2 instances

1.2 Hardware Requirements

• AWS EC2 instances - for this project I have used free tier (t2.micro free)

• Minimum 2 GB RAM for local testing

1.3 Setup cloud account

1. Create an AWS Account: Please follow the below link to setup an AWS account -
Create AWS account

2. Creating an EC2 instance: Please follow the link given to create an ec2 instance -
Create an Ec2 instance

NOTE: Please store your pem keys provided by AWS safely with correct permission
for later to use it to ssh into the server.

2 Environment Setup

This section provides a detailed guide for setting up the project environment, pulling
code from repositories, running the servers, and performing benchmarks. The steps are
organized for clarity, ensuring that each part of the setup is correctly implemented.
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2.1 Environment Setup

NOTE: This setup is for both Local setup and cloud instance setup.

NOTE: This setup is for configuring, running and testing application both manu-
ally(through code) and using docker image from dockerhub.

If you are running this directly in cloud environment using docker, then you don’t
need to setup node environment as the docker image will be packed with the required
environment. You can skip the Node.js Environment steo in sub section 2.1.1.

2.1.1 Node.js Environment

To set up the Node.js environment, follow these steps:

# Install Node.js, npm, and nvm

sudo apt install -y nodejs npm

# For installing nvm

curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.7/install.sh | bash

# Switch to the latest LTS version using nvm

nvm install --lts

nvm use --lts

# Verify installation

node --version

npm --version

2.1.2 Docker Environment

Set up Docker by executing the following commands:

# Install Docker

sudo apt install docker.io

# Add Docker to the user group to avoid using sudo with Docker commands

sudo usermod -aG docker $USER

# Verify Docker installation

docker --version

2.1.3 Homebrew for Tool Installation

Install Homebrew to manage additional tooling:

/bin/bash -c \

"$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
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2.2 Cloning and Running the Code

2.2.1 Cloning the Repositories

Clone the repositories for both HTTP and gRPC servers:
HTTP Server:

git clone https://github.com/oliashish/http-server-primary

git clone https://github.com/oliashish/http-server-replica

gRPC Server:

git clone https://github.com/oliashish/gRPC-server-primary

git clone https://github.com/oliashish/gRPC-server-replica

2.2.2 Running the Servers Manually

Navigate to the directory of each server and run the following commands:
NOTE: Run the replicas first to obtain IP and service running for primary.

For HTTP Replica:

cd replica

npm install

node replica.js

For HTTP Primary:

cd primary

npm install

node primary.js

For gRPC Replica:

cd replica

npm install

node replica.js

For gRPC Primary:

cd primary

npm install

node primary.js
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2.3 Setting Up with Docker

Use Docker to set up the environment with publicly available images:

docker run -d --rm --name=http-replica -p 3001:3001 http-replica

docker run -d --rm --name=http-primary -p 3000:3000 http-primary

docker run -d --rm --name=gRPC-replica -p 50051:50051 gRPC-replica

docker run -d --rm --name=gRPC-primary -p 50050:50050 gRPC-primary

2.4 Testing the Code

2.4.1 Testing the HTTP Server

You can test the HTTP server using a web client like Postman, ThunderClient, or ‘cURL‘:

curl -X POST -d '{"task": "Test string for checking word and character count"}'\

http://localhost:3000/execute

2.4.2 Testing the gRPC Server

For gRPC server testing, use ‘grpcurl‘ as normal web clients won’t work:

brew install grpcurl

# Test gRPC API

grpcurl -plaintext -import-path ./ -proto tasks.prot\

-d '{"task": "Test string for checking word and character count"}' \

localhost:50051 TaskService.Execute

2.5 Benchmarking Setup

2.5.1 Benchmarking HTTP Server with wrk

Install ‘wrk‘ for benchmarking the HTTP server:

sudo apt-get install build-essential libssl-dev git -y

git clone https://github.com/wg/wrk.git wrk

cd wrk

sudo make

sudo cp wrk /usr/local/bin

Create a ‘post.lua‘ file in the root directory of the HTTP primary server project:

wrk.method = "POST"

wrk.body = '{"task": "Test string for checking word and character count"}'

wrk.headers["Content-Type"] = "application/json"
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Run the ‘wrk‘ command:

wrk -t12 -c400 -d30s -s post.lua <your domain or local IP>/execute

2.5.2 Benchmarking gRPC Server with ghz

Install ‘ghz‘ for benchmarking the gRPC server:

brew install ghz

Run the ‘ghz‘ command:

ghz --insecure --proto ./tasks.proto --call TaskService.Execute \

-d '{"task": "Test string for checking word and character count"}' \

--concurrency=50 --connections=20 --duration=30s \

<your domain or local IP>

2.6 Analyzing Benchmark Results

Pipe the results to a file for analysis:

wrk -t12 -c400 -d30s -s post.lua \

<your domain or local IP>/execute > http-results.txt

ghz --insecure --proto ./tasks.proto --call TaskService.Execute \

-d '{"task": "Test string for checking word and character count"}' \

--concurrency=50 --connections=20 --duration=30s \

<your domain or local IP> > gRPC-results.txt

Now you can analyze the results to understand the performance and efficiency of the
HTTP and gRPC servers.

3 Analyzing results

Now let use see what is the report structure of the benchmarking tools that we have and
how it will look like when you test it on your local machine

1. wrk:

When you run wrk for benchmarking with following command:

wrk -t12 -c400 -d30s -s post.lua <your domain or local IP>

You’ll see a similar result structure as below.
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Figure 1: wrk benchmarking results structure

• number of connections

• latency - avg, min, max

• throughput - avg, min, max

• socket errors

• number of request

• request/sec

• transfer/sec

2. ghz:

When you run the benchmarking for gRPC using ghz you’ll see the following output
format

• Summary: request summary with count, slowest, fastest, average etc.

• Response time: of different reequest in different timestamp

• Latency distribution; infomation abuot the latency in different request

• overall status: of OK and Unavailable stamp
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Figure 2: ghz benchmarking results structure
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