
Performance improvement in Communication
Protocols in Node.js-based Microservices
framework for Enhanced Latency and

Scalability in Globally Dispersed Systems

MSc Research Project

Cloud Computing

Ashish Oli
Student ID: x23102926

School of Computing

National College of Ireland

Supervisor: Sean Heeney

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Ashish Oli

Student ID: x23102926

Programme: Cloud Computing

Year: 2024

Module: MSc Research Project

Supervisor: Sean Heeney

Submission Due Date: 12/08/2024

Project Title: Performance improvement in Communication Protocols in
Node.js-based Microservices framework for Enhanced Latency
and Scalability in Globally Dispersed Systems

Word Count: 6293

Page Count: 21

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Ashish Oli

Date: 12th August 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□



Performance improvement in Communication
Protocols in Node.js-based Microservices framework
for Enhanced Latency and Scalability in Globally

Dispersed Systems

Ashish Oli
x23102926

Abstract

This research measured the performance of HTTP and gRPC as communication
protocols within a Node.js framework running in a distributed environment. The
objective was to learn how these protocols would impact latency, throughput, and
resource utilization in a distributed microservices architecture. This research im-
plemented both an HTTP server and a gRPC server and benchmarked them to get
full data on their performance metrics. The results show that gRPC performed bet-
ter in latency than HTTP, at 183.16 ms against that of HTTP at 811.52 ms. This
latency reduction is very critical for real-time applications requiring fast response
times. Again, gRPC is more resource-efficient, as manifested by its low consumption
of CPU and memory usage and reduced network bandwidth consumption, making
it very suitable for large distributed applications.

Despite this, high throughput is combined with a large number of failures and
high latency of the HTTP server, which became a good vivid case on how far it
is from being reliable under heavy loads. The distinction of the gRPC server in
performance comes from the efficient serialization via Protocol Buffers and support
for HTTP/2, owing to which it is able to provide both better performance and
fine-grained scalability. The current work outlines the importance of choosing the
right communication protocols for microservices and gives some useful insights into
the optimization of distributed systems. This research contributes several prac-
tical recommendations regarding the performance and scalability of microservice
architectures and their communication protocols, which would be beneficial for de-
velopers and organizations that aim to enhance these features of their distributed
applications.

Keywords: Microservices, Distributed systems, NodeJS, Cloud

1 Introduction

In distributed computing, requirements for effective and scalable frameworks are surging
with the rise of cloud computing and containerized applications. For that reason, robust
solutions for transparent treatment of code execution on many different distributed ma-
chines have been asked for ever more urgently Kafhali et al. (2020). The present thesis

1



primarily deals with the design and implementation of a Node.js framework to cope with
the above-mentioned difficulties and, particularly, automatic scaling and running code.
In that respect, this study considers gRPC and HTTP servers implemented on AWS
EC2 instances across different regions for evaluating the performance and efficiency of
the proposed framework.

1.1 Motivation

The motivation behind this research work has come from the increasing complexity and
demands of modern distributed systems Rahman and Lama (2019). Traditional ap-
proaches to the management of distributed applications normally turn out to be ineffi-
cient and poorly scaled, particularly in heterogeneous environments. AWS and similar
cloud computing platforms opened access to new, unparalleled opportunities for applica-
tion deployment at scale 1. However, there is a huge gap between tools and frameworks
that developers can harness in pursuit of these capabilities efficiently. The present re-
search aims to fill this void by proposing a Node.js framework that abstracts scaling and
running code transparently across distributed environments to enhance performance and
lower overhead Kafhali et al. (2020).

1.2 Research Question

One of the central research questions this thesis addresses is:
How to improve a microservice framework in Node.js for efficient auto-

mation of scaling and execution over some distributed machines using better
communication protocols namely gRPC and HTTP protocols on AWS EC2
instances.

1.3 Research Niche

This research works closly in the areas of intersection of distributed computing, cloud
infrastructure, and software engineering. Building on previous work Chaplia and Klym
(2023), the current research is focused on practical implementation and benchmarking
a Node.js framework using gRPC and HTTP protocols in this area. This solves a very
important niche for the developer and organization aimed at making their distributed
applications efficient in performance and scalability.

1.4 Research Objectives

The objectives of this research are as follows:

• Improve the Node.js framework that supports automated code scaling and
execution across distributed machines effieciently.

• Implement gRPC and HTTP servers within the framework and deploy them
on AWS EC2 instances across different regions.

1https://aws.amazon.com/isv/scalability/

2

https://aws.amazon.com/isv/scalability/


• Evaluate the performance of the gRPC and HTTP servers using CLI bench-
marking tools such as wrk and ghz.

• Analyze the AWS metrics to assess the scalability and efficiency of the proposed
framework.

• Provide recommendations for optimizing distributed application performance
based on the evaluation results.

1.5 Hypothesis

One of the assumptions in the study is that the Node.js framework, through gRPC
communication, will have better performance and scaling in distributed environments
compared to HTTP Hamo and Saberian (2023) and Gong (2019); more specifically, de-
ployment will be on AWS EC2 instances spread across different regions Bettini et al.
(2018).

1.6 Document Structure

This thesis is organized in the following manner:

• Related Work: A review of existing literature and frameworks in the areas of
Distributed Computing and Cloud Infrastructure.

• Methodology: A description of the methods and processes adapted to design and
develop the Node.js framework.

• Design Specification: Details of the architectural design and specifications of the
proposed framework. In the implementation subsection, describe the process of the
implementation and underline the tools and technologies used in the course of this
process.

• Evaluation: An in-depth review of performance and scalability results from ex-
periments

• Conclusion: This is where you bring together all the findings, pointing out their
implications for your approach and suggesting future lines of research.

2 Related Work

The present work reviews existing literature through a critical investigation of what has
been done so far by other researchers and works using similar methodologies. It would
review each of the studies, showing their strong and weak points, to form the context for
our research and justify our research question.

2.1 Microservices Architecture and Node.js

The microservices architecture has recently received maximum attention from software
developers due to the following reasons: complex applications can be broken down into
smaller independently deployable services. Salah et al. (2016) provided an overview of

3



the evolution of distributed systems into microservices architecture. The authors have
been looking at advantages brought about by decoupled services in terms of scalability
and maintainability but have also remarked on problems associated with communication
and orchestration between services.

With a non-blocking I/O model, Node.js has obviously become very big in the frame-
work for microservices. Juell (2020) explained, in 2020, the integration of Node.js with
container orchestration tools like Kubernetes and focused on some benefits that exist in
using Node.js for handling the concurrent connections efficiently. Though it has such
advantages, the single-threaded nature of Node.js acts as a bottleneck to CPU-intensive
tasks, making the need to use other tools and techniques in keeping performance quite
necessary. NodeJS have been proven to be a good choice for non-blocking I/O one of
its great feature, light-weight processes, event driven architecture and high performance
solution on complex architextures Basumatary and Agnihotri (2022) Chaplia and Klym
(2023).

2.2 Communication Protocols in Microservices

This in itself means that one of the most critical factors impacting performance in a
distributed system is the communication between microservices. Traditional HTTP-
based communication, being big in overhead, proves to be very expensive when it comes to
latency, therefore responding slow in large deployments. Abdelfattah and Cerny (2023),
were able to point out the limitations of RESTful APIs in microservices, therefore showing
the need for more efficient protocols in communication.

gRPC has been suggested as one of the new communication protocols that can be
used to answer such challenges. Hamo and Saberian (2023) evaluated the performance
of HTTP and gRPC and showed that gRPC uses Protocol Buffers for serialization, de-
creasing latency and bandwidth usage dramatically. Similarly Rahman and Lama, 2019
also discussed the importance of the optimization of the communication protocol on the
end-to-end latency of containerized microservices. This stresses that the optimization of
these protocols is essential for better system performance Blinowski et al. (2022).

2.3 Challenges in Developing and Deploying Node.js Microservices

The development and deployment of Node.js microservices present several challenges.
Blinowski et al. (2022) and Rahman and Lama (2019) noted the complexity of managing
multiple services and the need for robust infrastructure to support deployment. The du-
plication of core libraries across microservices can lead to code redundancy and increased
maintenance efforts.

It was this set of challenges that then drove huge adoption of Docker and Kubernetes
for containerization and orchestration of Node.js applications. Doglio (2018) illustrated
the use of such tools for automating the deployment and scaling of Node.js microservices,
stating their contribution to manageability and performance. All these solutions add more
layers of complexity that should be managed carefully not to degrade performance. Zhu
et al. (2018) noted that the complexity of these distributed systems includes monitoring,
logging and maintainance of these systems as well.

4



2.4 Latency and Performance Optimization

Among the most critical factors of microservices performance is latency. Rahman and
Lama (2019) discussed challenges in maintaining low-end-to-end latency in cloud envir-
onments, especially in microservices architectures, and said that advanced strategies on
communication are necessary to reduce the impact of latency in user experience.

Chaplia and Klym (2023) proposed a Node.js framework for automated code scaling
and execution across multiple distributed machines, addressing the need for efficient
communication protocols and architectural management. Their work demonstrated the
potential of using gRPC to reduce latency and improve scalability in globally dispersed
systems. However, the framework’s reliance on gRPC and the complexities associated
with managing Protocol Buffers schemas remain significant challenges.

2.5 Research Gaps and Opportunities

It is observed that the literature exposes many holes in the development and deployment
of Node.js microservices. All meaningful work done in optimizing communication proto-
cols and harnessing containerization technologies still leaves much to be desired on the
fronts of comprehensive frameworks that will put these advances together.

The framework suggested by Chaplia and Klym (2023) provides automation for the
scaling of code and its execution within distributed environments. Further research in
this framework is required for performance testing in different cloud environments and
more architectural improvements to make it more scalable and efficient.

2.6 Summary of Findings

Previous studies have mostly focused on the individual aspects of these technologies,
which has generally resulted in a lack of holistic approach that integrates all those parts
and assesses their consolidated performance. We try to fill this gap with research aimed
at developing and assessing a Node.js framework for automated scaling and execution
of code on multiple distributed machines, efficient communication through gRPC, and
deployment on AWS EC2 instances.

3 Methodology

3.1 Research Procedure

In order to validate the proposed framework, a systematic methodology for research is
adopted. This section clearly explains all the steps taken for this purpose: experimental
setup, equipment used, techniques applied, data collection, and analysis. This research is
centered around improving the communication protocol within the proposed microservices
architecture Chaplia and Klym (2023) using gRPC which comes with default and powerful
features called Protocol Buffers. And later we will benchmark this with HTTP server.

3.2 Equipment and Tools

This hypotheis was tested using the following tools and technologies:

5



• AWS EC2 Instances: I created two AWS EC2 instances to deploy my application
in two different globally large distanced regions.

• Node.js: NodeJS is used for proposed architecture but using gRPC protocol Chap-
lia and Klym (2023) Zhu et al. (2018)

• Docker: Docker to containerize all four applications and them them seperatly

• GitHub: Source code repository

• Benchmarking Tools: Tools like ‘wrk‘ and ‘ghz‘ were used for HTTP and gRPC
server benchmarking respectively

-

3.3 Experimental Setup

The testing setup has two types of application deployed one with HTTP protocol and
other with gRPC. Both protocols have one primary and one replica service each. All the
services are ran using docker which ensure consistency across all environment.

1. Server Setup:
- HTTP Server: Server created with HTTP protocol and is primary server used for
handling all user requests.
- gRPC Server: Server created with gRPC protocol and is primary server used for
handling all user requests. This server employes Protocol Buffers for efficient data
transmission.

2. Deployment:
- The servers were deployed on AWS EC2 instances located in two different regions
to simulate a distributed environment (Mustafa, 2023).
- Docker images for both servers were pushed to a public GitHub repository and
pulled onto the EC2 instances for deployment.

3.4 Data Collection and Analysis

During the testing, there had to be extensive benchmarking of both the HTTP and gRPC
servers to collect data. These benchmarks basically measured performance in terms of
latency, throughput, and Resource utilization.

3.5 Evaluation Methodology

The evaluation of the proposed framework was based on the performance improvements
observed through the benchmarks. The key aspects of the evaluation included:

• Performance Comparision

• Scalability Testing

• Statistical validation

6



3.6 Case study done for validating the hypothesis

The case studie was conducted with real-life use applications to make it practical towards
strengths and weaknesses. The case studies brought a way to show how this proposed
framework with Node.js and gRPC/Protobuf useful in practice and encountered chal-
lenges as well.
1. Word and Charater Count: - A simple application which takes a string and
count the words and characters(including whitespaces) is developed using the proposed
framework and deployed across multiple AWS geographical regions. - The application’s
performance was monitored

4 Design Specification

4.1 Introduction

The techniques, architecture, and associated requirements that drive the implementation
of the proposed Node.js framework in this research are based on advanced communication
protocols, efficient architectural design, and robust features of the framework to assure
high performance in a distributed environment. This section describes the techniques,
architecture, and associated requirements that underpin the implementation.

4.2 Framework and Architecture

The paper focuses on research work in the design for scalable and efficient microservice
framework using Node.js. The framework employs gRPC for communication between
microservices, which attains enhanced performance and reduced latency over the con-
ventional HTTP-based communication approach. It contains primary and replica mi-
croservices which are deployed across different regions so as to attain high availability
and fault tolerance.

4.2.1 Primary Microservice

The primary microservice acts as the central coordinator that manages client requests
and distributes tasks to replica microservices. It is responsible for:

1. Initialization: The primary microservice initializes the system by distributing the
business logic to all replica microservices. This ensures that all replicas have the
necessary code to execute tasks.

2. Task Execution: It receives client requests and delegates them to the appropriate
replica microservice for execution. The results are then aggregated and returned to
the client.

4.2.2 Replica Microservices

Replica microservices are deployed in different regions to ensure redundancy and load
balancing. Each replica is responsible for executing tasks assigned by the primary mi-
croservice. They operate independently and can be scaled horizontally to handle increased
load.

7



Figure 1: gRPC architecture

4.2.3 Communication Protocols

Communication across microservices is handled by gRPC 1. gRPC refers to a remote
procedure call system that is open source and uses HTTP/2 for transport with Protocol
Buffers as the interface description language, among many other features that offer several
features, including authentication and load balancing 2 .

• Efficiency : gRPC uses Protocol Buffers, a binary serialization format, which is
more efficient than JSON used in HTTP communication.

• Performance: gRPC supports HTTP/2, enabling multiplexing and reducing latency.

• Scalability : gRPC’s performance benefits and efficient communication make it suit-
able for large-scale microservice architectures.

4.2.4 Deployment

The primary and replica microservices are containerized using Docker, ensuring consistent
environments across different deployment regions. Docker images are managed through
a public GitHub repository, allowing for seamless integration and deployment on AWS
EC2 instances.

4.3 Techniques Used

Several techniques were employed to enhance the framework’s performance, scalability,
and reliability.

4.3.1 Containerization with Docker

Containerization ensures that the application runs consistently across different environ-
ments. Docker containers package the application along with its dependencies, ensuring
that it behaves the same irrespective of where it is deployed.

2https://grpc.io/docs/what-is-grpc/introduction/

8

https://grpc.io/docs/what-is-grpc/introduction/


• Isolation: Each microservice runs in its container, ensuring that dependencies do
not conflict.

• Portability : Each container can run on any architecture/system that supports
docker.

• Scalability : All the containers used in the application/architecture are capable of
scaling horizontally on demand.

4.3.2 Continuous Integration and Continuous Deployment (CI/CD)

As CI/Cd has became a integral part of the moden DevOps practices. A CI/CD pipeline
in this case will make sure that hat any changes in codebase or multiple contributions
are well tested and deployed automatically. This will involve:

1. Version Control : This is done by tool called ‘git‘ and the source code is managed
by GitHub.

2. Automated Testing : if unit tests are provided it will run automatically upon each
code change.

3. Deployment : Once the above steps are successfully done, the final code/artifect is
then deployed to their desired envinroment.

4.4 Requirements and Constraints

The framework proposed by Chaplia and Klym (2023) was designed to meet specific
requirement of Microservices as no business logic should be part of replica service and
everything is updated and handled through primary service. This was to help reduce
complexity for large application which are distributed globally.

4.4.1 Performance Requirements

• Low Latency : The communication protocol which I’m proposing(gRPC) should
introduce minimal latency to make sure the response time is reduced of overall
communication which eventually lead to better developer and user experience.

• High Throughput : Also this architecture should be able to handle large number of
request per second without affecting in performance.

4.4.2 Scalability Requirements

• Horizontal Scalability : The system should be able to scale out by adding more
instances to handle increased load.

• Elasticity : The framework should automatically scale in and out based on real-time
traffic and workload.

9



4.4.3 Reliability Requirements

• Fault Tolerance: The system should continue to operate even if some microservices
fail.

• High Availability : Deploying microservices across different regions ensures that the
system remains available even during regional failures.

4.5 System Design

The design specification for the Node.js framework follows a primary-replica model 2.
This model ensures that the microservices have access to the latest business logic without
manual intervention. The key components of the design are as follows:

4.5.1 Primary Microservice

The primary microservice holds the code with business logic and a framework for scaling
and executing the code. It is the main point of contact for all client requests. The primary
microservice performs the following functions:

1. Service Initialization: The primary microservice initializes all deployed replicas by
distributing the business logic.

2. Request Handling : It receives client requests, processes them, and delegates tasks
to the replicas.

3. Result Aggregation: It collects the results from the replicas and sends the final
response back to the client.

4.5.2 Replica Microservices

These are deployed instance replica microservices, running a copy of the framework with
no business-logic code itself. The microservice can be deployed on any cloud provider in
this case AWS—or on an on-premise network of IoT devices. Key functionalities include:

1. Task Execution: Each replica microservice executes the tasks assigned by the
primary microservice using the distributed business logic.

2. Response Handling : Replicas send the execution results back to the primary mi-
croservice.

4.5.3 Communication Setup

Communication between primary and replica microservices is handled using gRPC, which
ensures efficient and reliable data transfer. The communication setup involves:

1. Protocol Buffers : Defines the data structures and communication protocols.

2. gRPC Server : Implements gRPC server for both primary and replica servers.

10



Figure 2: proposed Framework with gRPC communication (inspired by Chaplia and Klym
(2023))

Figure 3: CD/CD process of testing, building, initializeation and distribution of code to mi-
croservices (inspired by Chaplia and Klym (2023))

4.5.4 Deployment Process

The deployment process consists of two main actions:

1. Deploying Replicas : All replicas are deployed first. Their IP/DNS addresses should
be known at this step.

2. Deploying Primary Microservice: The primary microservice code is then deployed.
The initialization step involves validating all replicas through ping events, followed
by starting the main server to process user requests.

4.5.5 CI/CD Pipeline

The CI/CD pipeline is essential for maintaining the integrity and consistency of the
codebase 3. The process is as follows:

11



1. Code Changes : Any changes in the development branch trigger a pull/merge re-
quest.

2. Code Review : The developer reviews and merges the request.

3. CI/CD Execution: An event hook from the merged request triggers the CI/CD
process, which loads the source code from the GitHub repository, builds the code,
and initializes the deployment.

5 Implementation

The process of implementation of the proposed framework for code autoscaling and dis-
tributed globally it involves various tools and technologies to reach to the desired and
expected performance. This includes transferable data over internet, a codebase written
in Node.js, compute instances in different regions in this case AWS regions. And once all
this is done then proper tools to benchmark both the protocols.

5.1 Data Collection and Transformation

Firstly we’ll have code that needed to be transformed appropriately and is ready to
transfered to replica services using initialization. The codebase is written in Node.js
and is stored in github repository for collaborations and proper CI/CD deployments.
The business logic(written in same Node.js) will be read by primary service and then
distributed to desired replica microservices as per business requirements in this case just
a word and character counter and only one microservice.

5.2 Development of HTTP and gRPC Servers

The development of the proposed framework starts by creating two web servers (HTTP
and gRPC) using Node.js:

• HTTP Server: This web server is created using popular web framework of NodeJS
called Express.js. the HTTP server was designed to handle client requests as well
distribute tasks to replica microservices. This server code included endpoints for
distributing business logic to replicas services and executing the tasks.

• gRPC Server: This server is created using gRPC library of NodeJS. The gRPC
server utilized Protocol Buffers(Protobuff) for efficient data serialization and com-
munication. The server code has all methods for initializing replicas with business
logic and executing user request through primary microservice.

I have tried to design both the servers to use NodeJS’s asynchronous non-blocking
I/O ability to make sure all the tasks run effectively.

5.3 Deployment on AWS EC2 Instances

When it comes to deployment of the services I have chosen one of the most popular cloud
provider which is AWS. For this project I have create 4 Ec2 instances 2 primary and 2
replicas one for each HTTP and gRPC servers respectively. All these instancse are in
different goegraphical location. The process of deployment is as folllows:

12



1. Containerization: Docker, which is a popular choice for containerization is used
to containerize all the servers. Then all the images were pushed to my public
dockerhub repository.

2. EC2 Setup: For this project I had used two large distanced global AWS region
and each of the instances have docker installed in them.

3. Deployment: Once tested and build successfully a docker image aws pushed to
my public dockhub repository and later pulled by respective created servers. The
primary microservice was deployed in one region and replica microservices were
deployed in another 3 4.

5.4 Benchmarking and Performance Evaluation

To prove the hypothesis we need to test and eveluate the performance of our both the
servers. Therefore stress testing and benchmarking the server is crucial. I used two
popular benchmarking tools for this project one for HTTP and one for gRPC.

• wrk: wrk is a popular tool for benchmarking http protocol. This was used to
benchmark the performance metrics such as latency, throughput, and requests per
second for the HTTP server.

• ghz: ghz is a popular tool for benchmarking gRPC servers. It provided similar
performance metrics for the gRPC server and enable a direct comparison between
the two communication protocols (wrk and ghz in this case).

The process of benchmarking is to stress/load the server with large amount of test data
with concurrency simulating real-world situation and collect metrics like latency, through-
put and resource utilization. These results obtained are then analyzes to form a conclusion
from the research.

5.5 Results Analysis

Once the metrics collection is done and results are generated, collected we then analyze
them. The key finding from the metrics are:

• Lower Latency: The gRPC server showed comparatively lower latency compared
to HTTP server. This expected result is because of the use Protocol Buffers and
use of HTTP/2 protocol.

• Higher Throughput: According to the result, throughput is good in gRPC server
as it handled a large number of requests per second which shows a better perform-
ance under high load scenerios.

• Efficient Resource Utilization: CPU and memory utilizationThe was better in
gRPC server which again is because of Protobuff and its architecture and serializ-
ation which eventually leading to cost savings in cloud environment.

3AWS: https://aws.amazon.com/ec2/
4Docker: https://docs.docker.com/manuals/

13

https://aws.amazon.com/ec2/
https://docs.docker.com/manuals/


The results from benchmarking the servers validated the choice of gRPC protocol for
communication between microservices which are in inter-commincation and highlighting
its advantages over traditional HTTP communication protocol in terms of efficiency and
scalability.

5.6 Tools and Languages Used

During the project various tools and technologies were used:

• Node.js: Used to develop both HTTP and gRPC servers.

• Express.js: Popular web framework for NodeJS.

• gRPC: A advance RPC framework by google. Used as primary communication
protocol for the research

• Protocol Buffers: A language-neutral, platform-neutral, extensible mechanism
for serializing structured data, used with gRPC 5.

• Docker: Used for containerizing the applications to ensure consistent deployment
environments.

• AWS EC2: Cloud service used to deploy the microservices across different regions.

• GitHub: Version control and CI/CD tool used to manage the source code and
deployment process 6.

• wrk and ghz: Benchmarking tools used to evaluate the performance of HTTP and
gRPC servers, respectively 7 8.

It provided better performance, scalability, and reliability by implementing a Node.js
framework with an HTTP server and a gRPC server. This also gained in strength and
efficiency by being deployed on different regions’ AWS EC2 instances and containerized
with Docker. Benchmarks underline very well the supremacy of gRPC in latency and
throughput, very important for modern microservice architecture. It shows, therefore,
the overall assessment and the use of advanced tools and languages underline the efficiency
of the implemented framework in tackling large-scale, distributed applications.

6 Evaluation

The results should be critically discussed with the main findings that this study has
turned up and their implications from both the academic and practical point of view.
The results must refer only to the most relevant outcomes that support the research
question and objectives. This section thoroughly and rigorously presents the results of the
experimental research outputs along with their levels of significance by using statistical
tools to critically evaluate and assess them. This section consists of plots, graphs, and
charts showing the results.

5https://protobuf.dev/
6https://docs.github.com/en/actions/automating-builds-and-tests/

building-and-testing-nodejs
7https://github.com/wg/wrk
8https://ghz.sh/

14

https://protobuf.dev/
https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-nodejs
https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-nodejs
https://github.com/wg/wrk
https://ghz.sh/


6.1 Experiment 1: Local setup

The first experiment I run both http and gRPC server locally and measured performance
metrics for latency, throughput, and error rate using CLI benchmarking tools like ‘wrk‘
against the HTTP server, and ‘ghz‘ against the gRPC server. It specifically counts the
number of words and characters in the input string passed to the application under test.

In the local setting both the server performed good with http server’s average response
time was under 200ms and gRPC’s average response time was less them 150ms.

This results showed that gRPC performs good in local settings and gave more confid-
ence that it will perform similar in distributed environment.

There is not such significant difference in both the server in local settings as the
latency is low which seems to be not effecting anything for a user. The real case is when
the user base is spread globally and see our application is distributed globally as well.
So below is the experiment to perform the same experiment and see the benchmarking
results

6.2 Experiment 2: Distributed Microservices in cloud

This experiment unlike the first one is performed on globally distributed services and
is measured on performance metrics for latency, throughput, and error rate using CLI
benchmarking tools like ‘wrk‘ against the HTTP server, and ‘ghz‘ against the gRPC
server. It specifically counts the number of words and characters in the input string
passed to the application under test.

6.2.1 HTTP Server (‘wrk‘ Results)

The benchmarking of the HTTP server was done using ‘wrk‘ and it returned all details
of its performance metrics during this 30-second test period.

• Latency: The average latency was 811.52ms, while the standard deviation was
124.51ms. This high average latency explains that there was considerable delay on
the part of the HTTP server in processing requests. Specifically, this maximum
latency value of 1.41 seconds is pretty large, and it could result in poor user exper-
iences in real-time applications 4.

• Requests per Second: The server supported 436.89 requests per second. That is
a very good throughput but it has to be taken within the context of high latencies
and error rates 5.

• Transfer Rate: Measured transfer rate was 116.90KB per second so it indicated
how much data was processed.

• Total Requests: 13,125 requests in 30.04 seconds were processed 7.

• Socket Errors: There were 534 read errors and 276 write errors on the server
6. This large number of socket errors proves that there are reliability issues under
load.

15



Figure 4: Latency Comparision of two pro-
tocols

Figure 5: Throughput Comparision of two
protocols

Figure 6: Error rates of two protocols Figure 7: Resource Usage of two protocols

6.2.2 gRPC Server (‘ghz‘ Results)

The gRPC server was benchmarked using ‘ghz‘ for comparison against the HTTP server
performance.

• Latency: The average latency was way more ignorable at 183.16ms, with a max-
imum of 566.08ms and a minimum of 131.88ms. All these low latency values show
the gRPC server worked pretty well in response to requests. Distribution of re-
sponse time showed 90% of all requests finished within 271.90ms, making it truly
efficient 4.

• Requests per Second: The Server processed 272.65 requests per second. Al-
though lower than HTTP server performance, the combination of low latency and
high throughput makes gRPC a very strong performer 5.

• Total Requests: The total processed requests in 30 seconds is 8,179.

• Response Time Distribution: 50% of requests completed within 153.61ms and
99% within 516.01ms. This indicates consistent performance.

• Status Code Distribution: Out of the 8,179 requests, 8,129 were successful,
while only 50 were marked unavailable, well below the error rates for this HTTP
server 6.

Now we look at AWS metrics—like CPU utilization, memory usage, and network
bandwidth—of HTTP and gRPC servers while being deployed on AWS EC2 instances.
This experiment showed much clearer characteristics of resource efficiency and perform-
ance in a real-world cloud environment.

16



6.2.3 CPU Utilization

It gives the processing power used by the server. Efficient usage of CPU will help in
maintaining performance under load.

• HTTP Server: Peak loads brought high CPU utilization to the HTTP server.
That is, it was really consuming a lot of processing power while processing requests.
High resource usage may predict higher costs and possibly some bottlenecks in
performance 8.

• gRPC Server: The gRPC server exhibited less CPU usage than that of the HTTP
server. That is, gRPC has a better performance in request processing, leading to
cost reduction and performance scalability 9.

Figure 8: HTTP server metrics from AWS

Figure 9: gRPC server metrics from AWS

6.2.4 Memory Usage

Memory usage refers to the quantity of RAM that a server consumes. Efficient memory
usage has huge ramifications for performance and scalability.

• HTTP Server: High memory usage for the HTTP server can lead to scalability
issues at higher loads. Large memory consumption can be translated into higher
operational cost.

• gRPC Server: It can be seen that the gRPC server has lower memory consump-
tion, thereby being more memory-efficient. This would allow the server to handle
a larger load with less burered increases in memory usage.

17



6.2.5 Network Bandwidth

Network bandwidth usage is the measure of the amount of data transferred across the
network. This is, again, a parameter of prime interest that ought to be as efficient as
possible in any distributed application, more so in those deployed across multiple regions.

• HTTP Server: The HTTP server revealed increased network bandwidth consump-
tion in view of HTTP communication and JSON serialization, which may further
degrade the performance of applications with limited bandwidth.

• gRPC Server: The gRPC server consumed less network bandwidth, caused by
the good efficiency of Protocol Buffers and HTTP/2. This decrease in bandwidth
is useful when applications have to reach across regions or transmit a large volume
of data.

6.3 Discussion

Results benchmarking tools and AWS metrics put forward a fair comparison between the
HTTP and gRPC servers. The results report strong and weak points of each alternative,
with very important consequences in terms of implications for research into the topic in
academia and practical work.

6.3.1 Performance Comparison

Compared to the HTTP one, this gRPC server performs much better in latency, with
fewer error rates and fewer resources consumed. This makes it a good choice for real-time
applications that needs fast response times and low latency. The HTTP server has a high
throughput of 436.89 requests per second but high latency and huge error rates making
it less reliable under heavy loads.

6.3.2 Resource Efficiency

As per the metrics and results gRPC server showed a good resource efficiency with lower
hardware resource usage as compared to HTTP server. This efficiency being better then
HTTP server can be concluded that this will reduce the cloud cost because of the lower
resource usage. Due to the low network bandwidth by gRPC server, we can say that
gRPC is good choice for applications that are inter-connected(talk to each other) across
different region.

6.3.3 Reliability and Error Rates

While all other metrics were high for gRPC server the error rate is lower, but that is
a good sign that all the request coming to the server were processed successfully. With
only 50 unavailable responses to approximately 8,179 requests. The HTTP server showed
534 read errors and 276 write errors which shows reliability of gRPC server problems
under load. The high error rates of an HTTP server might lead to a bad user/developer
experience and even systemic failures if not handled properly with either architecture or
more hardware which might bring additional cost to the business.

18



6.3.4 Practical Implications

From a practical point of view, the results obtained illustrate that gRPC is preferred for
inter-microservice communication in distributed applications. The lower latency and error
rates, coupled with effective resource usage, give gRPC an edge in real-time applications
such as financial trading systems, online gaming, and IoT applications. Other realized
benefits are related to cost savings from reduced resource usage, thereby making gRPC
more economic for large-scale deployments.

6.3.5 Improvement Recommendations

While this implementation and the corresponding evaluation delivered valuable insights,
there exists scope for improvement. The following recommendations are hereby given to
better the design and its results:

• Extended Benchmarking: Running benchmarking tests of longer and variable
length might contribute towards making the performance characteristics under dif-
ferent load conditions more comprehensive.

• Error Handling Improvements: Checking and improving the causes of reading
and writing errors in the HTTP server may help enhance its reliability.

• Scalability Testing: In-house scalability testing itself with an increased number
of replicas and different instance types would have shed more light on the scalability
limits of each of the communication protocols.

• Deep Resource Analysis: Deep analysis in resources such as I/O ops on a disk,
network latency, etc., may turn out to be very useful in explaining the performance
bottlenecks.

The benchmarking of the Node.js framework, running an HTTP server and a gRPC
server, returned very huge differences in performance, reliability, and resource efficiency.
The gRPC server showed much better latency, error rates, and resource usage compared to
that of the HTTP server, hence becoming a much better choice for real-time applications
and distributed microservice architectures. These findings provide valuable guidelines for
both researchers and practitioners within academia by specifying exactly where benefits
can be derived from the use of gRPC.

7 Conclusion and Future Work

This research is aimed to evaluate the performances of HTTP and gRPC communica-
tion protocols within a Node.js framework deployed globally. By benchmarking the two
servers using wrk and ghz tools and analyzing AWS metrics, we gathered comprehensive
data on latency, throughput, error rates, and resource utilization. The findings clearly
highlight the advantages of using gRPC over HTTP for inter-microservice communication
in distributed applications.

The gRPC server demonstrated significantly lower latency (183.16ms) compared to
the HTTP server (811.52ms), crucial for real-time applications requiring quick response
times. This improvement, facilitated by Protocol Buffers and HTTP/2, enhanced user
experience by minimizing request delays. Despite the HTTP server’s higher throughput

19



(436.89 requests per second versus 272.65 for gRPC), its high latency and substantial er-
ror rates (534 read errors and 276 write errors) posed reliability issues. Additionally, the
gRPC server’s efficient resource utilization, with lower CPU and memory usage, and re-
duced network bandwidth consumption, made it more suitable for handling more requests
with fewer resources, resulting in cost savings and better performance in distributed ap-
plications across multiple regions.

Future work:
This research has provided valuable insight into the performance of HTTP and gRPC

within a Node.js framework; however, several areas are left that will be targeted by
future work with respect to the improvement in architecture of the framework itself and
integration of advanced configuration management and version control tools.

While this research focused on HTTP and gRPC, there could be other protocols with
advantages. A comparative analysis of these protocols would therefore follow as future
work in order to determine their appropriateness for various use cases in microservice
architecture.

Probably, development of hybrid solutions that bring together all the good sides from
both worlds of HTTP and gRPC would provide a balanced solution for some applications.
For example, using HTTP for certain types of requests and gRPC for other kinds of
requests may give grounds for making the best of both protocols.

Since this architecture is a Master-slave architecture we can explore more standards to
work with a Master-slave architecture for better handling disastrous conditions. Master-
slave architectures can be suitable for this kind of proposed framework Kimberly et al.
(2020).

Since exploration can be done in improving and standardizing Master-slave architec-
ture, Discussions can be made in the usage of a key-value store like etcd, as in Kubernetes,
for keeping system-wide configurations and managing versions of microservices to enable
features such as rollbacks. That guarantees that system configurations will be homogen-
eously managed across different environments. Etcd can help raise the reliability and
maintainability of the framework by providing a central repository of configuration data
and allowing smooth transitions between different versions of microservices.

In the future, there should be research into the architecture of the Node.js framework,
so that it is more modular and extendable in design. This may be done using components
and services that are re-usable and easily plugged into applications. Performance, scalab-
ility, and reliability could further be increased using advanced architectural patterns like
event-driven and service mesh architectures.

References

Abdelfattah, A. S. and Cerny, T. (2023). Roadmap to reasoning in microservice systems:
A rapid review, Applied Sciences 13(2): 1838.

Basumatary, B. and Agnihotri, N. (2022). Benefits and challenges of using nodejs,
International Journal of Innovative Research in Computer Science and Technology
(IJIRCST) 10(3): 67–70.

Bettini, L., Garg, S. and Mirandola, R. (2018). Performance comparison of grpc and rest
apis in microservices architecture, Proceedings of the 11th ACM International Confer-
ence on Systems and Storage, pp. 45–56.

20



Blinowski, G., Ojdowska, A. and Przyby lek, A. (2022). Monolithic vs. microservice ar-
chitecture: A performance and scalability evaluation, IEEE Access 10: 20357–20374.

Chaplia, O. and Klym, H. (2023). Node.js framework for automated code sharing and
execution on multiple distributed machines, IEEE 18th International Conference on
Computer Science and Information Technologies (CSIT), IEEE, pp. 18–24.

Doglio, F. (2018). Scaling Your Node.js Apps, Apress, Berkeley, CA.

Gong, X. (2019). Advancements in grpc tooling and community support, Software En-
gineering Notes 44(5): 18–22.

Hamo, N. and Saberian, S. (2023). Evaluating the performance and usability of HTTP
vs gRPC in communication between microservices. Dissertation.

Juell, K. (2020). From containers to Kubernetes with Node.js.

Kafhali, S. E., Mir, I. E. and Salah, K. (2020). Dynamic scalability model for containerized
cloud services, Arab J Sci Eng 45: 10693–10708.

Kimberly, L., Chandra, B. V. R., Samuel, B. J., Avinash, K. A. and Philip, S. (2020).
Architecture for scalable metadata microservices orchestration.

Rahman, J. and Lama, P. (2019). Predicting the end-to-end tail latency of containerized
microservices in the cloud, 2019 IEEE International Conference on Cloud Engineering
(IC2E), IEEE, pp. 200–210.

Salah, T., Zemerly, M. J., Yeun, C. Y., Al-Qutayri, M. and Al-Hammadi, Y. (2016). The
evolution of distributed systems towards microservices architecture, IEEE Xplore.

Zhu, J., Patros, P., Kent, K. B. and Dawson, M. (2018). Node.js scalability investigation
in the cloud, Proceedings of the 28th Annual International Conference on Computer
Science and Software Engineering (CASCON 2018), ACM, New York, NY, USA.

21


	Introduction
	Motivation
	Research Question
	Research Niche 
	Research Objectives
	Hypothesis
	Document Structure

	Related Work
	Microservices Architecture and Node.js
	Communication Protocols in Microservices
	Challenges in Developing and Deploying Node.js Microservices
	Latency and Performance Optimization
	Research Gaps and Opportunities
	Summary of Findings

	Methodology
	Research Procedure
	Equipment and Tools
	Experimental Setup
	Data Collection and Analysis
	Evaluation Methodology
	Case study done for validating the hypothesis

	Design Specification
	Introduction
	Framework and Architecture
	Primary Microservice
	Replica Microservices
	Communication Protocols
	Deployment

	Techniques Used
	Containerization with Docker
	Continuous Integration and Continuous Deployment (CI/CD)

	Requirements and Constraints
	Performance Requirements
	Scalability Requirements
	Reliability Requirements

	System Design
	Primary Microservice
	Replica Microservices
	Communication Setup
	Deployment Process
	CI/CD Pipeline


	Implementation
	Data Collection and Transformation
	Development of HTTP and gRPC Servers
	Deployment on AWS EC2 Instances
	Benchmarking and Performance Evaluation
	Results Analysis
	Tools and Languages Used

	Evaluation
	Experiment 1: Local setup
	Experiment 2: Distributed Microservices in cloud
	HTTP Server (`wrk` Results)
	gRPC Server (`ghz` Results)
	CPU Utilization
	Memory Usage
	Network Bandwidth

	Discussion
	Performance Comparison
	Resource Efficiency
	Reliability and Error Rates
	Practical Implications
	Improvement Recommendations


	Conclusion and Future Work

