
 
 

 
 
 
 
 
 
 
 
 
 

 

Optimizing Data Storage through Neural 

Network Based Adaptive Compression 
 
 
 
 

 

MSc Research Project 
 

MSc in Cloud Computing 
 
 

 

Carlos Alberto Noyola Sanchez  

Student ID: X22232991 
 
 
 

School of Computing 
 

National College of Ireland 
 
 
 
 
 
 
 
 
 
 
 

Supervisor: Vikas Sahni 



 

 
National College of Ireland 

 

MSc Project Submission Sheet 

 

School of Computing 

 

Student Name: 

 

……. Carlos Alberto Noyola Sanchez ……………………………………… 

 

Student ID: 

 

……… X22232991 ………………………………………………………………………..…… 

 

Programme: 

 

……… MSc in Cloud Computing …… 

 

Year: 

 

2024.. 

 

Module: 

 

………… MSc Research Project ………………………………………………….……… 

 

Supervisor: 

 

……… Vikas Sahni …………………………………………………………………….……… 

Submission Due 

Date: 

 

…………………… 12th Aug 2024 …………………………………………….……… 

 

Project Title: 

 

Optimizing Data Storage through Neural Network Based Adaptive 

Compression 

Word Count: 

 

……6889…… Page Count…………22…………….…….. 

 

I hereby certify that the information contained in this (my submission) is information 

pertaining to research I conducted for this project.  All information other than my own 

contribution will be fully referenced and listed in the relevant bibliography section at the 

rear of the project. 

ALL internet material must be referenced in the bibliography section.  Students are 

required to use the Referencing Standard specified in the report template. To use other 

author's written or electronic work is illegal (plagiarism) and may result in disciplinary 

action. 

 

Signature: 

 

………… Carlos Alberto Noyola Sanchez …………………… 

 

Date: 

 

……………… 10th Aug 2024 …………………………………………………… 

 

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST 

 

Attach a completed copy of this sheet to each project (including multiple 

copies) 

□ 

Attach a Moodle submission receipt of the online project 

submission, to each project (including multiple copies). 

□ 

You must ensure that you retain a HARD COPY of the project, 

both for your own reference and in case a project is lost or mislaid.  It is 

not sufficient to keep a copy on computer.   

□ 

 

Assignments that are submitted to the Programme Coordinator Office must be placed 

into the assignment box located outside the office. 

 

Office Use Only 

Signature:  

Date:  

Penalty Applied (if applicable):  



1 
 

 

 
 

Optimizing Data Storage through Neural Network 

Based Adaptive Compression 
 

Carlos Alberto Noyola Sanchez  

X22232991  
 

 

Abstract 

Nowadays digital information is growing exponentially, with large amounts of 

information being generated and stored every second. This exponential growth presents 

significant challenges for data storage infrastructure. This is increasing the cost for storing 

data which impacts negatively on all kinds of businesses. Traditional compression 

algorithms are effective for specific data types but often fail when they are applied to 

mixed data types. Each file type—audio, video, text, or executable—presents unique byte-

level patterns, which can be helpful in finding the best compression method.  

 

This research addressed the problem of inefficient compression methods when an 

individual method is applied to mixed data types. This can lead to inefficient data storage 

and increase the costs. While data is growing, businesses need to find an efficient way to 

store data without sacrificing performance and quality. 

 

To tackle this problem, a CNN based solution is proposed to identify and analyse 

patterns to byte level in files. By converting file data into grayscale images, a CNN can be 

trained to detect patterns that helps to identify the right compression method that offers 

the highest compression ratio from a predefined list of categories.  

 

Results show that the CNN was able to infer the compression mechanism for different 

files by analysing patterns in the grayscale images, generated from the mixed data files. 

The experiments run showed no noticeable differences when the dimensions of the images 

were changed or when more layers were used. A 96% of accuracy was obtained in overall 

for the experiments performed. 

 

1 Introduction 
 

The amount of stored data has been increasing rapidly around the world. It is projected that in 

2025, the global datasphere will expand to 163 zettabytes and will have increased again by a 

further ten times by 2026 (Reinsel, Gantz and Rydning, 2017).  However, data storage cannot 

keep up with the growing pace of the evolution of technology due to Moore’s Law (Chien and 

Karamcheti, 2013). Despite the advances in technology, the actual storage solutions are not 

enough for the large volume of information that is generated daily. This is why a better way to 

store the information is needed. 

 

A promising solution for this challenge of efficient data storage is the lossless data 

compression, a field that has been evolving since David Huffman presented his lossless 
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compression algorithm (Moffat, 2020). Unlike lossy compression methods that sacrifice some 

data in order to reduce storage space, lossless compression maintains the integrity of the 

original data. This ensures that no information is lost during the compression process. This 

characteristic is highly important in scenarios where data precision is important, such as 

medical imaging, archival storage and scientific research. 

 

Throughout the years, many lossless compression techniques have been developed, and each 

one uses different strategies to achieve efficient data storage. Algorithms like Run-Length 

Encoding (RLE) (Emon et al., 2023), Lempel-Ziv (LZ78) (Welch, 1984), DEFLATE (Deutsch, 

1996) and so on, use different approaches to identify and utilize patterns in the files in order to 

reduce the storage requirements. The efficiency of those algorithms will depend on the patterns 

of each individual file. In this matter, the RLE compression method can sometimes outperform 

Huffman encoding, even when the files share same format. 

 

Due to the nature of patterns in the files, machine learning (ML) models present a good 

alternative to improve data compression methods. ML models have shown the capability to 

identify complex patterns and do predictions based on that information. By using those 

capabilities ML models can be the key to develop new algorithms of adaptative compression 

that identify dynamically patterns in the files, maximizing the compression ratio and reducing 

the storage needed for the file. 

1.1 Time and cost 
 

One of the main issues in managing this amount of data is the inefficiency of traditional storage 

expansion methods, which have not kept pace with the data growth. This is because each type 

of data file—whether audio, video, text, or executable— presents unique patterns at the byte 

level that make some compression methods more effective than others. Identifying and using 

these patterns can lead to more efficient storage solutions. Those patterns can be used to predict 

the best way to compress files. Convolutional Neural Networks (CNNs), known for their good 

pattern recognition capabilities, have demonstrated potential in multiple domains, one being 

malware detection files which are converted into images for analysis  (Akash et al., 2023). This 

capability suggests a novel approach: using CNNs to determine the optimal compression 

method for multiple files based on their byte-level patterns using grayscale image 

representation. 

 

Traditional compression algorithms can be good for certain types of data but can be inefficient 

for many other types of data, giving different results, even when it is the same data type 

(Hidayat et al., 2023). As a result, a compression technique that performs well for audio files 

may not be good for text documents, and even when it is the same file type, some algorithms 

can achieve better compression ratios than generic methods. The most common compression 

algorithms such as Run-Length Encoding (RLE), Huffman coding, and the Lempel-Ziv family 

(LZ77, LZ78, and LZMA) have many limitations in their way to adapt to various data types. 

Because of this, there is a need for a solution that can dynamically analyse a file's byte sequence 

and determine the most effective compression technique. 
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In terms of data storage infrastructure, the financial cost of inefficient data storage is 

significant. As the data volumes and file sizes increase, the data storage costs will increase as 

well. An efficient compression method could reduce these costs significantly, which would 

help the economy of businesses and organizations in terms of storage solutions. Furthermore, 

the Quality of Service (QoS) would improve with an efficient data storage, which in turn would 

reduce the time needed to retrieve the data and network latency. This improvement can help 

organizations to get faster to the data and get a better application performance. On the other 

hand, inefficient storage can lead to much higher costs, slow down the data retrieval, and 

increase latency. This can negatively impact the user experience and the overall performance 

of to the final users. 

 

The efficient storage management also has benefits for the environment. By reducing the 

energy required to transfer large files and optimizing disk space usage, the carbon footprint 

would be minimized, and this will lead us to more sustainable data management practices. The 

traditional compression methods have been well-studied, but they often rely on heuristic or 

manual selection processes that may not always be the best way to compress all file types. With 

the introduction of modern hardware, especially the high-end GPUs and ASICs like Tensor 

Processing Units (TPUs), it is easier to train and deploy neural networks for complex tasks like 

image recognition, text generation and big data analysis. In this research, it is believed that 

CNN could also be useful to infer data compression algorithms. 

1.2 Research question 
 

Can a convolutional neural network (CNN) infer the compression method that offers the best 

compression ratio by analysing patterns in files from graphical representation in binary of 

mixed data types. 

 

This research presents an innovative approach to cloud data storage optimization that uses 

Convolutional Neural Networks. By analysing the grayscale representation of files at the byte 

level and identifying patterns on those images, CNNs can infer the most suitable compression 

technique for each file. The proposed solution includes training a CNN with a grayscale image 

with tags to classify. The CNN will select the best compression method more effectively than 

the  traditional heuristic approaches. This approach not only focuses on compression efficiency 

but also will adapt to the specific characteristics of each file, providing a good solution that 

would increase the storage efficiency and reduce costs. 

 

The use of traditional lossless compression techniques and Machine Learning capabilities 

could offer a solution for the efficient data storage challenge. This research will explore how 

machine learning models can be used to improve the way data is stored, by identifying  complex 

patterns in files, and finding the compression method that offers the best compression ratio in 

a world where data information is growing exponentially.  
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2 Related Work 
 

File compression is a critical requirement to save storage space as the size of the files are 

growing exponentially every day, but the storage grows at Moore’s Law pace. Although the 

field of data compression is making great advances every day due to the need to efficiently 

transmit and store the vast amounts of digital information that is produced worldwide, there 

are still some areas that can be improved. This research will review the contributions and the 

most up-to-date advances in file compression mechanisms. This section will review the 

heuristic compression mechanisms, the use of neural networks for pattern recognition as 

compression mechanisms based on machine learning. Moreover, this section will explore the 

uses cases of adaptative compression mechanisms that optimize the storage dynamically based 

on features and characteristics of the file to be compressed. 

2.1  Heuristic file compression mechanisms for files. 

 

Sarkar, Sarkar and Banerjee (2016) present a novel Huffman approach to reduce the size of 

large files, which is needed for multiple applications. The method proposed aims to solve 

challenges like limited storage size and the data transfer by compressing the data in a lossless 

way. Implemented using MATLAB, the algorithm compresses the files by taking the numeric 

groups and converting their ASCII values, which gives a new level of security. The outcomes 

suggest that the algorithm can achieve a higher level of compression ratio which makes it a 

viable solution for compression and decompression for both offline and online data. Similarly, 

a comparison of methods are studied in Aich et al. (2019) with Huffman encoding which look 

for a way to store text data efficiently. The compression algorithms are Huffman encoding, 

Binary encoding and One-Hot encoding, in which Huffman encoding shows that reducing the 

storage needed requires just 0.1% of memory when it is compared with On-Hot encoding for a 

sample of 8000 words. The reduction is achieved by coding a variable based on the word 

occurrence, assigning short codes to the most frequent words. However, the study showed that 

the Huffman encoding requires a high computational power along with a large volume of 

RAM, especially with large datasets. Those kinds of challenges have to be taken into account 

when a solution that is computationally efficient and has a good storage optimization is 

provided 

 

Mukherjee et al. (2023) show SCOPe a framework designed to optimize the cost of storing 

files in the cloud and at the same time ensures that performance and latency requirements are 

met. The framework includes a module called OPTASSIGN that optimizes the compression 

based on patterns and COMPREDICT that predicts what the compression performance would 

be. When the historical data is analysed, SCOPe can come up with strategies for the different 

types of data and files, this way SCOPe can achieve high compression ratios. It concludes that 

50% to 83% of cost savings could be achieved on large datasets. This approach shares 

similarities with the Ares framework proposed by Devarajan, Kougkas and Sun (2019) which 

is another modular and adaptative framework. Ares can handle the massive amounts of data 

produced by modern applications, which require different compression techniques that vary 
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from the format and file type. The framework classifies the files and selects the most 

appropriate compression method. The results show that Ares outperforms heuristic 

compression methods which means that Ares can achieve 2-6x better performance with little 

overhead and provide an infrastructure that can change according to the application needs.  

 

Another framework is proposed by Dong et al. (2021), who addressed the challenges of 

compress large volumes of data in real time to reduce the storage overhead and avoid the 

network saturation. This compression algorithm called NOCAQF is based in quadratic 

functions and provides a high rate of compression and a low computational complexity, making 

it suitable for dynamic industrial environments. The results shows that NOCAQF achieves a 

compression rate of 87% while using 32% of CPU processing power. NOCAQF outperforms 

most of the linear and non-linear algorithms, but the algorithm dependency of quadratic 

functions can lead to unpredictable results with patterns that are really complex or 

unpredictable. Those shortcomings along with the delay when it is compared with linear 

algorithms can be a limitation in real-time applications that require a low latency of processing. 

This method is parallel to the methods proposed by Kato, Yamagiwa and Wada (2023), a way 

to compress the data by dividing the data stream and assigning a different task in a multicore 

processor. The technique has three strategies to handle the different fragments: fully in-order, 

hybrid, and fully out-out-order. The out-of-order method shows better results in terms of 

performance, speed and throughput. Despites those improvements, this method introduced 

many complex tasks such as management of the chunks during the compression, bigger sizes 

due to metadata that is included in the chunks and a possible overhead with thread management. 

Additionally, the efficiency of the method depends on the hardware capabilities and the 

characteristics of the data stream.  

 

Lastly, Bhardwaj and Garg (2023) explores lossless ZIP compression which shows that more 

data can be stored in QR codes without losing information. This is achieved by using 

DEFLATE and INFLATE methods from the ZXing library1. The study showed an increase of 

data stored in the QR code, that goes from 7% up to 73% of compression. In contrast, the 

compression and decompression of the data comes with an increase of computational load, that 

could be a limitation for real-time applications. Moreover, the ZIP compression can be 

considered effective, but it may not be the best for all types of QR codes and also, would not 

be the most effective when the data varies, taking into account Audio, Video, Images and 

Document files.  

2.2 Detection of patterns in CNN 

 

The use of CNN to detect malware is well studied, those methods transform the binary data 

into visual representations as images and heatmaps. Mavric and Yeo (2018) developed a tool 

to visualize binary data of the PDF as 2D heatmaps that help to identify embedded JavaScript 

or shellcode. However, it may not work against sophisticated obfuscation techniques. 

 
 
1 https://zxing.github.io/zxing/index.html 
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Similarly, Xiao and Yang (2019) proposed a method to detect malware in android by 

converting the bytecode into RGB images, this way the CNN will be able to extract features 

and characteristics and detect malware patterns. While effective, it faces challenges in 

processing efficiency as the bytecode files include benign segments that do not contribute in 

the malware detection. Cui et al. (2018) and Kalash et al. (2018) took the concept of  convert 

the malware code into grayscale images. Those images were used by the CNN to classify and 

detect malicious patterns. Both research papers achieved high accuracy rates, but also noticed 

challenges like the fixed size of the image and the limitations of the model’s performance due 

to data imbalance and quality. 

 

Other research has focused to improve malware detection my using more complex scenarios 

and different file types. Vinayakumar et al. (2019) presented ScaleMalNet, a framework that 

combine CNN and LSTM to detect and classify malware, using binary image representations. 

This method is effective to detect obfuscated malware, but it requires large datasets and 

significant computational resources, which may not be feasible in all environments.  Also 

imbalanced datasets may lead to bias in the model and affect the precision of the model. Wang 

et al. (2017) applied CNNs to detect malware by converting the network traffic into images. 

However, this method focused on spatial features rather than temporal features. The future 

work highlighted the use of balanced data and integrate features like temporal data to increase 

the detection accuracy. 

 

A way to detect malware in files by converting the binary files into grayscale images was 

proposed in Jonnala et al. (2023), and then those images were used to train a CNN and detect 

if the file presented malware or not. When the neural network is fed with the grayscale images, 

it was able to identify complex patterns which improved the malware detection compared to 

signature-based methods. This method can classify the malware into 25 categories with high 

precision, which provides an effective way to detect malware in real-time. However, the model 

presents a high computational requirement to process the images and train the neural network. 

Also, the performance depends on the quality and diversity of the training data which can be 

difficult to generalize to the new and unseen malwares without updates and retraining. 

Similarly, in  Kalyan et al. (2022) with malware detection, transforming the binary executables 

into grayscale images and classify them if the files contains malware or not. Both researchers 

reported high accuracy in malware detection, which indicates the effectiveness of CNNs to find 

malware in images. The difference lays in the way the images are pre-processed; the first of 

them converts the binary data into hexadecimal and then into images, while the second one 

uses PIL library in python to do the conversion binary-to-image directly into 64x64 pixel 

images. While both methods show the potential of CNN to detect malware based on grayscale 

images, they also need high computational requirements and a large dataset to train the models. 

 

Some research explored new methods to detect malware other than binary-to-image 

representations. Jeong, Mswahili and Kang (2023) proposed a method to detect malware 

focusing on non-executable files like Microsoft Office documents. This method adds stream-

level results to improve file-level predictions, increasing the detection performance of malware. 

But it relies on aggregation functions that may not capture complex patterns across byte 
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streams. Hwang et al. (2020) introduced a model called D-PACK to detect anomalies in the 

network traffics by using binary representations. By transforming the packet bytes into binary 

representations and the train the CNN, D-PACK achieved a high precision but limitations in 

the model flexibility and obfuscation techniques. Future work suggests that D-PACK could 

benefit from more sophisticated aggregation techniques, dynamic parameters adjustments and 

additional models to improve the malware detection. 

2.3 Compression methods using machine learning 

 

Berezkin et al. (2022) explored the autoencoders with feed-forward neural networks. This 

method transforms the binary vectors into BCH codewords that are later utilized to train the 

autoencoder; this way the bits transmitted are reduced. The study shows that a feed-forward 

neural autoencoder can efficiently compress the data and at the same time maintain high 

accuracy when it is reconstructed, making it ideal for communication systems that require a 

real-time data stream. But one of the biggest limitations is due to the complexity of the error-

correcting algorithm and the need for extensive data training. Even when the algorithm 

improves the data compression mechanism, the algorithm can also incorporate computational 

overhead and increase the latency, and this, over time, can evolve into a problem.  

 

Goyal et al. (2018) used RNN with combined arithmetic codification to compress sequential 

data, and this included text and a genomic dataset. In the research, DeepZip is used to estimate 

the probability to predict the next symbol in the data stream, then uses the arithmetic coding to 

compress the information. This approach outperforms heuristic compression methods like Gzip 

and achieves a great compression for synthetic datasets. However, the framework presents a 

computational overhead and the training process for large datasets becomes complex. Also, 

there is an additional difficulty for the decoding process because of the dependency on the 

previous decoded symbols.  

 

Then, Song et al. (2019) used a CNN model to classify 16 types of compression algorithms for 

data bitstream. The proposed CNN uses a 5-layer model with a Spatial Pyramid Pooling SPP 

layer to handle the variable inputs (He et al., 2015). This way, the data can be transformed into 

a fixed-length vector for further classification. The study showed that the CNN model 

outperforms the heuristics compression methods like Support Vector Machines SVM in terms 

of precision classification, achieving 98.54% against the 63.84% of the SVM model. 

Nevertheless, a drawback of the solution is a limited model to treat different text files, which 

requires further refinement. Another is that the complexity of the model presents a 

computational overhead which can lead to low performance in real-time applications. A third 

is that extensive training data is needed to ensure accuracy across the different compression 

methods. 

 

3 Research Methodology 
 

Adaptative compression classifiers analyses the patterns found in grayscale images and then 

determine what is the best compression method for a specific file. This technique can be used 



8 
 

 

to reduce the space needed to store files by finding the compression mechanism that offers the 

highest compression ratio. In this study, a CNN-based algorithm is used to recognize patterns 

in grayscale images created from files in order to predict the best compression algorithm.  

3.1 Process workflow 

 

Figure 1 presents the workflow to process the data gathered. Different files have been collected 

from different projects on Kaggle. Those files are free audio files2, PDFs3 and images4 that have 

been uploaded for multiple varied uses. In this case, as real information is needed, this 

information is used as a dataset. Then the more than 72k files will be compressed in different 

compression algorithms manually. This way, the best compression algorithm will be 

determined, and each file will be labelled according to the compression algorithm that offers 

the best compression ratio. Once the original files and the compression algorithm offering the 

best compression ratio for each file are identified, each file will be transformed into a grayscale 

image representation. 

 

Once the grayscale image representation of the file and the label for each file are obtained, the 

CNN will be trained with the grayscale images. The convolutional layers will extract features 

and patterns from the input images that highlight different aspects of the file. Finally, when the 

model is fully trained, the accuracy of the model will be evaluated, testing the model's capacity 

to find the compression algorithm that offers the best compression ratio.  

 

 

Figure 1: CNN compression methodology workflow 

 

 
 
2 https://www.kaggle.com/datasets/ttahara/birdsong-resampled-train-audio-00 
   https://www.kaggle.com/datasets/ttahara/birdsong-resampled-train-audio-01 
   https://www.kaggle.com/datasets/ttahara/birdsong-resampled-train-audio-02 
   https://www.kaggle.com/datasets/ttahara/birdsong-resampled-train-audio-03 
   https://www.kaggle.com/datasets/ttahara/birdsong-resampled-train-audio-04 
3 https://www.kaggle.com/datasets/paultimothymooney/cvpr-2019-papers 
4 https://www.kaggle.com/datasets/miljan/stanford-dogs-dataset-traintest/data 
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4 Design Specification 
 

Google Colab: Colab is a convenient choice for scalability that offers access to GPU and TPU 

that can handle demanding computational tasks when there are not more options (AWS Sage 

maker or physical PC with GPU). This cloud-based environment allows to train and run large 

models without the need of expensive hardware. Despite the limitations like session time limits, 

shared resources and the need for optimization, Colab allows users to scale tests without the 

need to acquire expensive hardware.  

 

Convolutional neural network: This is a deep learning model that works well for tasks that need 

to recognize patterns in images. This kind of deep learning architecture is very effective in 

multiple domains like object detection, image classification, and natural language processing 

when the data is previously pre-processed. In this case, the model will be used to find patterns 

in the images and predict the compression technique that offers the best compression ratio. 

 

Also, a dataset of grayscale images generated from different files downloaded from Kaggle 

will be used. The output will be a trained model that will be stored for future inferences. The 

data will be split into training and validation datasets. In the convolutional neural network, 

various layers will be set up, combining Conv2D, MaxPooling2D, Flatten, and Dense layers. 

 

 

Figure 2: Training CNN model 

 

The model is compiled using the Adam optimizer and the categorical cross entropy using 

TensorFlow. After the model is trained and stored, the results will be tested with the training 

dataset, and the accuracy of the results will be checked. 

 

5 Implementation 
 

The research project uses the python language in Google Colab. This is an online platform that 

helps us to write and run Python code using the browser, by using virtual machines in the 
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background. This configuration offers multiple advantages in an interactive interface. Those 

are some of the advantages.  

 

1. Free access to GPU depending on the load. 

2. Collaborative environment 

3. Support of ASIC to run Machine learning model faster. 

4. There is no need for previous configuration 

 

The environment helps us to implement Convolutional neural models efficiently by using the 

Nvidia accelerators to train models faster. Some python libraries have been used to train the 

models as they provide the functions to perform the data pre-processing, splitting and 

compilation of the model before the training. 3 different datasets have been used that gather 

documents, audio files and images from public datasets. 

 

The dataset that is used in CNN compression classification is a combination of multiple open-

source datasets, converted into grayscale images to feed the ML model. The files were loaded 

into Google drive for persistency, then the folders were iterated in order to get all the files 

names and then converted into images. The conversion process is detailed in the following 

algorithm.  

 

 

Figure 3: Conversion of files into grayscale images 

 

Those files were compressed using different compression algorithms to get the best 

compression algorithm for each file. Then later a CSV file was created which contained the 

name of the original file and the compression algorithm that offered the highest compression 

ratio. Once the CSV file containing the filenames and compression ratios was prepared, the 

original files were converted into grayscale binary images. The data was then split into training 

and testing datasets, with 80% of the dataset used for training and 20% for testing. 

 

The process was done in Python using the Python Imaging Library (PIL); a system that can 

create an image by using a binary data stream from the file. The width and height of the image 

is calculated based on the size of the data stream. The image that results from this process is 

stored in PNG format. Now that the labels for the images have been created in the CSV file 

and the images have been prepared to feed the CNN, the model can be trained. As part of the 
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preparation for training, the categories—specifically the compression algorithm from the CSV 

file—must be converted into numerical values and then into one-hot vectors that represent the 

corresponding value of each category. 

 

The next step is to load and pre-process the images before using them in the CNN model. The 

TensorFlow library was used for this purpose. The image is selected from the CSV file, as it 

contains the full name of the image, and is loaded in Python, converted into a NumPy array, 

and finally normalized. To make the values suitable for the CNN, the values must first be 

normalized. Before the model is compiled, the array must be reshaped into four dimensions, as 

neural networks (especially convolutional neural networks) expect a 4D input consisting of 

batch size, height, width, and channels. In this case, since grayscale images are being used, the 

number of channels is 1. To make the array compatible with the CNN, the addition of the extra 

dimension is necessary. Then the compilation of the CNN model is shown in the Figure 4 

where the model is compiled using 3 Conv2D layers, 3 MaxPooling layers, a flattened layer 

that transforms the 3D output into a 1D vector. Finally, two dense layers, the last having the 

same number of neurons as the number of classes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 Evaluation 
 

In this section, the different experiments conducted in this paper are discussed. Two models 

were trained with different grayscale image resolutions. The images were rescaled to 48x48 

pixels and 120x120 pixels, and they were used in 3-layer and 4-layer CNNs.  

6.1 Experiment / 3-layered CNN & Image resolution 48 pixels 
 
In the first experiment, the 3-layered model was evaluated using 48px grayscale images and 30 

epoch. This first approach was to have a balance between complexity and computational 

efficiency. A small image size was selected in order to reduce the computational load and get 

faster training times. This model was suitable for simple image recognition, where the objective 

was to capture essential features to avoid overfitting. The training accuracy for this model is 

Figure 4: CNN compression prediction model 
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96.6%, meaning that the model performed well. A detailed analysis of the model is provided 

in the confusion matrix. 

 

  
Precision Recall F1-Score Support 

Deflate (0) 0.97 0.95 0.96 296 

LZ78 (1) 0.15 0.01 0.03 279 

LZMA (2) 0.93 0.99 0.96 4192 

Snappy (3) 0.99 0.99 0.99 1788 

Zstandard (4) 0.99 0.99 0.99 6318 

Accuracy 
  

0.97 12873 

Macro avg. 0.81 0.79 0.79 12873 

Weighted avg. 0.95 0.97 0.96 12873 

Table 1: Classification report 3L-CNN 48px 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Model accuracy & lost 3L-CNN 48px 

Figure 5: Confusion matrix 3L-CNN 48px 
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6.2 Experiment / 4-layered CNN & Image resolution 48 pixels 

 

The second experiment was done with a 4-layered CNN with 48x48 grayscale images and 30 

epoch. The objective of adding an extra layer was to capture more complex patterns and 

characteristics from the images that a simple model could have not captured. The increase of 

the layer’s model can provide a deeper feature extraction, resulting in an improvement of the 

model’s ability to differentiate between subtle variation in the dataset. But the difference 

between the 3-layered and 4-layered CNN was almost negligible. 

  
Precision Recall F1-Score Support 

Deflate (0) 0.98 0.94 0.96 296 

LZ78 (1) 0.21 0.08 0.11 279 

LZMA (2) 0.93 0.98 0.96 4192 

Snappy (3) 1.00 0.99 0.99 1788 

Zstandard (4) 0.99 0.99 0.99 6318 

Accuracy 
  

0.97 12873 

Macro avg. 0.82 0.80 0.80 12873 

Weighted avg. 0.96 0.97 0.96 12873 

Table 2: Classification report 4L-CNN 48px 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Confusion matrix 4L-CNN 48px 
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6.3 Experiment / 3-layered CNN & Image resolution 120 pixels 
 

The third experiment, the model was repeated, but with images in higher resolution. Images in 

higher resolution were chosen - 120 pixels – to provide more detailed information that allowed 

the model to learn from characteristics and patterns that are not evident in low resolution 

images. The 3-layered architecture maintained the balance between complexity and training 

time considering the computational requirements for bigger images. The results showed that a 

higher resolution has a higher loss in the validation dataset with 34.81%. The confusion matrix 

shows that there is not a noticeable difference between 48px and 120px using the same CNN 

model. 

  
Precision Recall F1-Score Support 

Deflate (0) 0.97 0.94 0.95 296 

LZ78 (1) 0.09 0.02 0.03 279 

LZMA (2) 0.93 0.99 0.96 4192 

Snappy (3) 0.99 1.00 1.00 1788 

Zstandard (4) 1.00 0.99 1.00 6318 

Accuracy 
  

0.97 12873 

Macro avg. 0.79 0.79 0.79 12873 

Weighted avg. 0.95 0.97 0.96 12873 

Table 3: Classification report 3L-CNN 120px 

 
 
 
 

Figure 8: Model accuracy & lost 4L-CNN 48px 
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6.4 Experiment / 4-layered CNN & Image resolution 120 pixels 
 

The fourth experiment involved 4-layered CNN with 120px images. This configuration aimed 

to combine the advantages of higher resolution images and a more complex CNN model. 

This configuration performed better than 3-layered 120px images with 34% test lost, but not 

as good as 3-layered 48px with 15.33% test lost and 4-layered 48px 13.68% test lost. 

 

 

 

 

Figure 9: Confusion matrix 3L-CNN 120px 

Figure 10: Model accuracy & lost 3L-CNN 120px 
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Precision Recall F1-Score Support 

Deflate (0) 0.98 0.95 0.96 296 

LZ78 (1) 0.14 0.04 0.06 279 

LZMA (2) 0.93 0.98 0.95 4192 

Snappy (3) 0.99 1.00 1.00 1788 

Zstandard (4) 1.00 0.99 0.99 6318 

Accuracy 
  

0.97 12873 

Macro avg. 0.81 0.79 0.79 12873 

Weighted avg. 0.96 0.97 0.96 12873 

Table 4: Classification report 4L-CNN 120px 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Confusion matrix 4L-CNN 120px 

Figure 12: Model accuracy & lost 4L-CNN 120px 
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6.5 Discussion 
 

To predict the compression method that offers the best compression ratio, a CNN model was 

implemented. Using 3-layered and 4-layered CNN models and different image sizes - 48px and 

120px respectively- with 5 categories – DEFLATE, LZMA, LZ78, Snappy and Zstandard- it 

was proven that inferring the compression method was possible. Despite using higher image 

resolutions, the increase in accuracy was insignificant. Furthermore, the increase of layers in 

the model showed a negligible reduction in the accuracy as well.  

 

A 3 and 4 layered CNN model was implemented to predict the best compression method for 

each file, from .txt, .pdf, .wav to .jpg.  The prediction of DEFLATE, LZMA, LZ78, Snappy 

and Zstandard compression methods was assessed using CNN models. The accuracy when 

using 48x48 pixel images was 96.83% for the 3-layered CNN model and 96.67% for the 4-

layered CNN model. When using 120x120 pixel images, the accuracy was 96.89% for the 3-

layered CNN model and 96.79% for the 4-layered CNN model. The categorization of different 

compression methods helps to save time and storage space by choosing the right compression 

method based on the patterns found in the file.  

 

7 Conclusion and Future Work 
 

Ways to optimize the data storage have been widely studied, as the data that is generated 

everyday can surpass the data storage that most organizations have. This research aimed to 

explore the different ways to optimize storage by finding the compression method that offers 

the best compression ratio based on the characteristics of individual files. The experiments 

conducted proved that the CNN model is able to predict compression methods based on 

graphical representations of a file as grayscale binary images but are also able to infer the 

compression mechanisms that offer the best compression ratio. The CNN model was able to 

infer compression methods for a file from different categories - DEFLATE, LZMA, LZ78, 

Snappy and Zstandard - showing that CNN models are capable of identifying patterns in the 

graphical representation of images. Researchers have been using multiple machine learning 

algorithms to improve the accuracy of predictions for the efficient storage of files.  

 

This study used open-source datasets that do not vary too much. One of them is a collection of 

pictures of dogs that may have similar features, and as such could bias the model. Another of 

the datasets is a compilation of audios of bird songs that could also bias the model. Future work 

may employ more variety in the dataset to prevent bias in the model when it comes to learning 

from patterns in the files.  

 

References 
 

Aich, A., Krishna, A., Akhilesh, V. and Hegde, C. (2019) ‘Encoding web-based data for 

efficient storage in machine learning applications’, in 2019 Fifteenth International 

Conference on Information Processing (ICINPRO). Bengaluru, India, 20-22 December 2019, 

pp. 1–6. doi: 10.1109/ICInPro47689.2019.9092264 
 



18 
 

 

Akash, A. R., Ahn, B., Jenkins, A., Khot, A., Silva, L., Tavares-Vengas, H. and Kim, T. 

(2023) ‘Quantum convolutional neural network-based online malware file detection for smart 

grid devices’, in 2023 IEEE Design Methodologies Conference (DMC). Miami, FL, USA, 24-

26 September 2023, pp. 1–5. doi: 10.1109/DMC58182.2023.10412597 
 

Berezkin, A., Slepnev, A., Kirichek, R., Kukunin, D.  and Matveev, D. (2022) ‘Data 

compression methods based on neural networks’, in 5th International Conference on Future 

Networks & Distributed Systems, ICFNDS 2021. Dubai, United Arab Emirates, 15-16 

December 2021, pp. 511–515. doi: 10.1145/3508072.3508177 
 

Bhardwaj, C. and Garg, H. (2023) ‘An approach for enhancing data storage capacity in quick 

response code using zip compression technique’, in 2023 International Conference on 

Artificial Intelligence and Smart Communication (AISC). Greater Noida, India, 27-29 January 

2023, pp. 520–524. doi: 10.1109/AISC56616.2023.10085559 

 

Chien, A. A. and Karamcheti, V. (2013) ‘Moore’s Law: The first ending and a new 

beginning’, Computer, pp. 48–53. doi: 10.1109/MC.2013.431 

 

Cui, Z., Xue, F., Cai, X., Cao, Y., Wang, G. and Chen, J. (2018) ‘Detection of malicious code 

variants based on deep learning’, IEEE Transactions on Industrial Informatics, 14(7), pp. 

3187–3196. doi: 10.1109/TII.2018.2822680 

 

Deutsch, P. (1996) RFC1951: DEFLATE compressed data format specification version 1.3. 

Available at: https://doi.org/10.17487/RFC1951 [Accessed 7 August 2024]. 

 

Devarajan, H., Kougkas, A. and Sun, X.-H. (2019) ‘An intelligent, adaptive, and flexible data 

compression framework’, in 19th IEEE/ACM International Symposium on Cluster, Cloud 

and Grid Computing (CCGRID). Larnaca, Cyprus, 14-17 May 2019, pp. 82–91. doi: 

10.1109/CCGRID.2019.00019 

 

Dong, W., Guan, J., Yang, L., Yu, B. and Li, W. (2021) ‘NOCAQF: An efficient nonlinear 

online data compression algorithm’, in 2021 International Conference on Intelligent 

Computing, Automation and Systems (ICICAS). Chongqing, China, 29-31 December 2021, 

pp. 20–24. doi: 10.1109/ICICAS53977.2021.00012 

 

Emon, A. D., Roy, P. C., Singh, L. D. and Saha, A. K. (2023) ‘Combining Haar transform 

and row-column directional RLE in image compression’, in 2023 Eighth International 

Conference on Informatics and Computing (ICIC). Manado, Indonesia, 8-9 December 2023, 

pp. 1–6. doi: 10.1109/ICIC60109.2023.10382031 

 

Goyal, M., Tatwawadi, K., Chandak, S. and Ochoa, I. (2018) DeepZip: Lossless data 

compression using recurrent neural networks. Available at: 

https://doi.org/10.48550/arXiv.1811.08162 [Accessed 7 August 2024]. 

 

He, K., Zhang, X., Ren, S. and Sun, J. (2015) ‘Spatial pyramid pooling in deep convolutional 

networks for visual recognition’, IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 37(9), pp. 1904–1916. doi: 10.1109/TPAMI.2015.2389824 

 

Hidayat, T., Nurcholis, M. T., Nugroho, A. and Santoso, J. D. (2023) ‘Critical understanding 

performance of Huffman and Lempel-Zip to pattern audio data 16-bit’, in 2023 6th 

https://doi.org/10.17487/RFC1951
https://doi.org/10.48550/arXiv.1811.08162


19 
 

 

International Conference of Computer and Informatics Engineering (IC2IE). Lombok, 

Indonesia, 14-15 September 2013, pp. 7–12. doi: 10.1109/IC2IE60547.2023.10331457 

 

Hwang, R.-H., Peng, M.-C., Huang, C.-W., Lin, P.-C. and Nguyen, V.-L. (2020) ‘An 

unsupervised deep learning model for early network traffic anomaly detection’, IEEE Access, 

8, pp. 30387–30399. doi: 10.1109/ACCESS.2020.2973023 

 

Jeong, Y.-S., Mswahili, M. E. and Kang, A. R. (2023) ‘File-level malware detection using 

byte streams’, Scientific Reports, 13, 8925. doi: 10.1038/s41598-023-36088-2 

 

Jonnala, Y. D., Mahajan, V. S., Menon, D., Kothakapu, S. R. and Chandamollu, S. R. (2023) 

‘Malware detection using binary visualization and neural networks’, E3S Web of 

Conferences, 391, 01107. doi: 10.1051/e3sconf/202339101107 

 

Kalash, M., Rochan, M., Mohammed, N., Bruce, N. D. B., Wang, Y. and Iqbal, F. (2018) 

‘Malware classification with deep convolutional neural networks’, in 2018 9th IFIP 

International Conference on New Technologies, Mobility and Security (NTMS). Paris, 

France, 26-28 February 2018, pp. 1–5. doi: 10.1109/NTMS.2018.8328749 

 

Kalyan, E. V. P., Adarsh, A. P., Reddy, S. S. L. and Renjith, P. (2022) ‘Detection of malware 

using CNN’, in 2022 Second International Conference on Computer Science, Engineering 

and Applications (ICCSEA). Gunupur, India, 8 September 2022, pp. 1–6. doi: 

10.1109/ICCSEA54677.2022.9936225 

 

Kato, T., Yamagiwa, S. and Wada, K. (2023) ‘Toward parallelization technique for stream-

based lossless data compression’, in 2023 IEEE International Conference on Big Data 

(BigData). Sorrento, Italy, 15-18 December 2023, pp. 2667–2672. doi: 

10.1109/BigData59044.2023.10386184 

 

Mavric, S. H. T. and Yeo, C. K. (2018) ‘Online binary visualization for PDF documents’, in 

2018 International Symposium on Consumer Technologies (ISCT). St Petersburg, Russia, 11-

12 May 2018 pp. 18–21. doi: 10.1109/ISCE.2018.8408906 

 

Moffat, A. (2020) ‘Huffman coding’, ACM Computing Surveys, 52(4), pp. 1–35. doi:  

10.1145/3342555 

 

Mukherjee, K., Shah, R., Saini, S., Singh, K., Kesarwani, H., Barnwal, K. and Chauhan, A. 

(2023) ‘Towards optimizing storage costs on the cloud’, in 2023 IEEE 39th International 

Conference on Data Engineering (ICDE). Anaheim, CA, USA, 3-7 April 2023, pp. 2919–

2932. doi: 10.1109/ICDE55515.2023.00223 

 

Reinsel, D., Gantz, J. and Rydning, J. (2017) Data age 2025: The evolution of data to life-

critical. Available at: https://www.seagate.com/files/www-content/our-

story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf [Accessed 7 August 2024]. 

 

Sarkar, S. J., Sarkar, N. K. and Banerjee, A. (2016) ‘A novel Huffman coding based approach 

to reduce the size of large data array’, in 2016 International Conference on Circuit, Power 

and Computing Technologies (ICCPCT). Nagercoil, India, 18-19 March 2016, pp. 1–5. doi: 

10.1109/ICCPCT.2016.7530355 

 



20 
 

 

Song, H., Kwon, B., Lee, S. and Lee, S. (2019) ‘Dictionary based compression type 

classification using a CNN architecture’, in 2019 Asia-Pacific Signal and Information 

Processing Association Annual Summit and Conference (APSIPA ASC). Lanzhou, China, 18-

21 November 2019, pp. 245–248. doi: 10.1109/APSIPAASC47483.2019.9023258 

 

Vinayakumar, R., Alazab, M., Soman, K. P., Poornachandran, P. and Venkatraman, S. (2019) 

‘Robust intelligent malware detection using deep learning’, IEEE Access, 7, pp. 46717–

46738. doi: 10.1109/ACCESS.2019.2906934 

 

Wang, W., Zhu, M., Zeng, X., Ye, X. and Sheng, Y. (2017) ‘Malware traffic classification 

using convolutional neural network for representation learning’ in 2017 International 

Conference on Information Networking (ICOIN). Da Nang, Vietnam, 11-13 January 2017, 

pp. 712–717. doi: 10.1109/ICOIN.2017.7899588 

 

Welch, T. A. (1984) ‘A technique for high-performance data compression’, Computer, 17, 

pp. 8–19. doi: 10.1109/MC.1984.1659158 

 

Xiao, X. and Yang, S. (2019) ‘An image-inspired and CNN-based Android malware 

detection approach’, in 2019 34th IEEE/ACM International Conference on Automated 

Software Engineering (ASE). San Diego, CA, USA, 11-15 November 2019, pp. 1259–1261. 

doi: 10.1109/ASE.2019.00155 

 

 

 

 


