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Leveraging eBPF for Enhanced Kubernetes Observability 

and Security 

 

Pham Ngoc Thanh Hung 

22232338 

 

Abstract 

With the development of cloud computing, Kubernetes is an orchestration tool used in a 

modern microservice application. However, the architectural complexities and the shared 

nature of the kernel have caused serious security and observability challenges. This paper 

explores how eBPF can help in harvesting detailed insights into system behavior, application 

logs, and real-time security threats for greater observability and security in Kubernetes. In 

this research, eBPF will be considered in its implementation for secuirty breach detection at 

runtime with the least performance overheads. Moreover, the integration of tools such as 

Falco, which are based on eBPF with already established monitoring systems like 

Prometheus and Grafana, and AlertManager which triggers any important alerts to 

administrators, giving high visibility and helping in the real-time mitigation of security 

threats from within the kernel. 

Keywords: Observability, Kubernetes, EKS, eBPF, Falco, Run-time Security Detection, 

Prometheus,. Grafana, AlertManager 

1 Introduction 

Containerization has brought a revolution to application development, deployment, and 

management. Leading the rank of revolutionary tools is Kubernetes, a container orchestration 

platform and probably the most mature technology within the Cloud Native Computing 

Foundation. Even though it is so popular in the market as the best tool, Kubernetes also 

comes with the large number of security issues including multi-layer networking, shared 

underlying hardware and clustering components. These vulnerabilities can be exploited 

without the administrator's awareness due to many attack surfaces. Therefore, there is a 

strong need for monitoring activities in Kubernetes clusters and gaining insight into the 

system behavior and application interaction of the clusters toward potential security threat 

identification. 

Traditional monitoring tools, however, are not able to capture the required granularity of 

operation for effective security analysis. The limitations of these tools are adding 

unacceptable overheads or complexity for deeper observability. eBPF emerges as one of the 

very promising solutions in this situation. This modern Linux kernel technology offers a way 

for users to write and deploy custom programs directly into the kernel space. Running these 

programs in kernel helps to achieve even more detailed data collection on various system 

events and metrics. This technology extends to modifying system behavior for enhanced 

security measures, such as policy enforcement and anomaly detection. 
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The research in this work uses eBPF technology to address both observability and security 

challenges in Kubernetes environments. I try to answer the question: how can eBPF be 

leveraged to enhance observability and security in Kubernetes, focusing on real-time 

detection and security policy violation alerts? This paper makes an attempt at adopting eBPF 

in Kubernetes and the integration of current security tools such as Falco and powerful 

monitoring tools including Prometheus, AlertManager and Grafana. A quantitative 

measurement of eBPF effectiveness is the metrics used to measure the number of detected 

security incidents. This study will contribute to the understanding of Kubernetes security 

through the integrated deployment of eBPF-based solutions for an organization relying on 

containerized environments. 

2 Related Work 

Extended Berkeley Packet Filter (eBPF) has become an essential technology for observability 

and security in the fast-changing landscapes of cloud-native environments. This section 

critically reviews the contributions of some research in this area to fill a research gap, from 

network observability to security enhancements, performance tuning, and network policies. 

2.1 eBPF Design 

In the eBPF design, it manages the Just-In-Time (JIT) compilation for efficient performance, 

stateful processing through maps, and the use of kernel libraries to be able to perform 

complex operations [5]. It should be noted here that the described feature enables user space 

applications to inject the code related to the kernel at runtime, without a need to recompile it 

or add additional modules. It is possible to write eBPF programs in C or eBPF assembly, 

cross-compile to bytecode, and after making all possible verifications to ensure the safety of 

the code and its proper execution, load the bytecode into the kernel by a bpf() system call. 

The eBPF programs are event-driven, which means they are invoked by specific events. They 

contain the ability to modify the context associated with that event. All of these make maps a 

vital data structure in eBPF, used for sharing information between program runs, between 

different programs, and also between programs and user space. This new development in 

kernel technology is enabling the building of sophisticated networked applications. This 

provides a flexible, powerful, and secure mechanism for running code at runtime within the 

Linux Kernel. Therefore, it bridges the gap between practical eBPF implementations for 

building complex network services and network policy evaluation, making it possible for 

future research and development in eBPF-based network solutions. However, the steep 

learning curve associated with eBPF can deter its adoption. However, the steep learning 

curve associated with eBPF can deter its adoption. 

2.2 Observability with eBPF and Kubernetes 

The investigation was pioneered by Liu et al. [1] using a protocol-independent approach for 

observability study of container networks that uses eBPF inside Kubernetes clusters. Three 

important ideas result from the distributed system's observability: distributed tracing, metrics, 

and logging. The use of eBPF tools is very instrumental in fine-grain monitoring of all the 

container network metrics. Being non-intrusive, eBPF scales transparently with low overhead 

from monitoring the kernel and user applications through dynamic updates to eBPF programs 
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of the respective targeted events being monitored without any modifications to the kernel or 

application code. This is helpful in precise performance analysis through the correlation of 

event-related contexts with some Pod instances based on detailed data obtained from kernel 

operations. While eBPF does improve scalability and offer a solid framework for static and 

dynamic tracing in the Linux kernel, its real power in cloud platforms like Kubernetes seems 

to be hindered due to the actual lack of native support and comprehensive monitoring 

solutions for the container network. Although they do not provide strong support for 

Kubernetes setups and have limited programmability and extensibility, current tools like 

Dtrace and Sysdig satisfy the granularity requirements for data at the kernel level. However, 

in the container environment, fine-grained observability data would pose a significant barrier 

to conventional monitoring tools, creating a gap that is being filled by eBPF-based solutions 

and the likes of new MicroRCA tools. This study sheds light on how eBPF may be predicated 

on future security research and deliver fine-grained observability in cloud-native contexts. 

In hybrid systems, there is a high possibility that processes consume an extremely high 

volume of system resources, enough to lead to a crash of the process. An anomaly detection 

model in CPU, memory, and I/O resource consumption processes is proposed using eBPF 

technology through the Isolation Forest algorithm. eBPF enables fine-grained and real-time 

data extraction directly from the kernel than traditional tooling allows, thus leading to higher 

accuracy. Afterwards, the collected data are processed and analyzed using the Isolation 

Forest algorithm, which is very useful in the detection of anomalies in data spaces of very 

high dimensions. For optimal precision and recall, some key parameters in the algorithm are 

fine-tuned. Experimental results have shown this approach to be effective in detecting 

anomalies of process resource usage with high accuracy and reliability in the obtained model 

[6]. The eBPF monitoring solution enables fine-grained monitoring with granularity and 

accurate anomaly detection, improving system reliability in the detection and mitigation of 

resource-related anomalies. 

2.3 Security Enhancements using eBPF 

Instead of focusing on network services, Sadiq et al. [2] present a novel method for detecting 

DoS attacks in Kubernetes-based cloud environments by utilizing eBPF. Before the Berkeley 

Packet Filter (BPF) was introduced in the early 1990s, packet monitoring and analysis 

depended on a traditional filtering method. There was a significant packet processing latency 

since every packet was copied from kernel space to user space via the kernel. Using BPF, 

Steven McCanne and Van Jacobson refined this technique by copying packets only when 

necessary to reduce overhead. BPF was designed for 32-bit machines, so it had a fixed-length 

instruction set. BPF was first used in the implementation within the Unix operating system. It 

has grown with its application over time to different operating systems, including Linux and 

Windows. Now it has become an Extended Berkeley Packet Filter (eBPF), which allows the 

safe and efficient running of code within the Linux kernel. Initially, the memory utilization in 

eBPF followed a different, conventional method that made extensive use of the memory. The 

excellent outcome, from 15% to only 5%, indicates the eBPF performance impact 

optimizations. Real-time DoS attack detection in containerization environments is greatly 

advanced by this study. 
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The increasing number of IoT devices has brought significant security challenges recently, 

especially many devices being hijacked for botnets to execute DDoS attacks. Feraudo et al. 

[7] integrate the Manufacturer Usage Description (MUD) standard with eBPF-based traffic 

filtering to mitigate such threats. The MUD standard enables manufacturers of devices to 

clearly define which communication patterns are allowed for a device, enforced at the 

gateway level. This research proposes extensions to MUD that incorporate fine-grained rate-

limiting capabilities and develops two enforcement backends, one with eBPF and one with 

iptables. The experiments show that these methods efficiently protect against attacks with 

minimal impact on legitimate traffic. Moreover, the use of eBPF allows efficient and low-

latency processing, so it is fit for a real-time threat-mitigation system. This approach makes 

security even stronger by disallowing the interception of unauthorized traffic. It is a scalable 

solution that can be easily deployed into standard home routers, making it applicable in 

broader network environments. 

The exploration of advanced runtime security mechanisms for Kubernetes through the use of 

eBPF describes significant advancements over traditional Linux Security Modules (LSM) 

such as AppArmor and SELinux [3]. By employing security policy enforcement, the proposal 

of KRSIE will provide fine-grained control over the security of the Kubernetes workload 

while allowing for dynamic adaptation. Unlike the current standard Linux Security Module 

(LSM) implementation of SELinux and AppArmor, which requires container restarts in order 

to allow complete policy enforcement during runtime. This suggests that there is an 

operational problem in the cloud context, where the performance implications associated with 

container restarts would make it impossible to deploy. Unlike path-based AppArmor and 

label-based SELinux, KRSIE directly interfaces to LSM function parameters and offers a 

more tangible method for kernel object management, hence enforcing fine-grained security. 

In contrast, AppArmor and SELinux are static in nature despite helping more efficiently with 

the system-wide policy application. They do not have the possibility of being dynamically set 

and adapted to changes in policies without a restart of a container. Other solutions, such as 

Cilium, are more concerned with the network security field and may not be as comprehensive 

in protecting runtime workloads. On their part, Tetragon and KubeArmor are solutions that 

offer a wider security capability but do not exactly leverage the power of LSM hooks or give 

the user adequate policy control to enable their use cases without potentially falling short 

such as protecting from TOCTOU attacks or in accessing kernel contexts like the bprm 

structure. The proposed solution is designed by policies being authored as a CRD in YAML 

files, with the policy implementation being done by a manager and enforcer mechanism that 

results in actual eBPF-LSM programs. The limitations of KRSIE are mainly in the manner in 

which duplicated LSM security functions are covered over all the potential vulnerabilities, 

although the approach is innovative. 

2.4 Performance with Kubernetes 

Performance is a strong exhibit for eBPF within Kubernetes environments, as significant 

improvements have been shown in networking overhead without reliance on iptables for 

network configuration and routing. However, one of the main barriers for most practitioners 

is the unavailability of accessible interfaces for eBPF tools. Additionally, eBPF integration 

with existing network management tools can complicate deployment in legacy systems. 
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Figure 1: Iptable overhead removal by eBPF [8] 

Budigiri et al. [4] further on the topic of Kubernetes network policies. This is a clear 

indication that there is a need for proper integration of network policies in a Kubernetes 

environment to enhance low-overhead security during inter-container communication using 

eBPF instead of iptables. In fact, the different CNI plugins analyzed demonstrate network 

policies. Moreover, those applied by Calico instead of Cilium hardly bring any performance 

overhead. Since Calico works with pure BGP-based Layer 3 routing and innovates through 

XDP for filtering packets effectively in order to reduce Denial of Service attacks. That the 

differences are more apparent, although Calico leverages eBPF technology to increase its 

scalability, it does so by using connection tracking for all other packets and inspecting 

policies only for the first packet in each new flow. In addressing and resolving any threats 

and vulnerabilities, it is proactive and responsive in line with the recognized attacker model. 

Therefore, eBPF promotes cutting-edge, low-latency security solutions. The move from 

network observability to network policy assessment is a significant advancement in 

containerized environment security, allowing for even more system efficiency without 

sacrificing security measures. 

2.5 Summary of Findings 

All of the evidence leads towards the transformational role of eBPF in Kubernetes 

observability and security as follows: 

Fine-Grained Observability: eBPF is great at providing detailed monitoring and recording of 

container network metrics with a low overhead [1][6]. It provides non-intrusive scalable 

solutions in this space for performance analysis where traditional tools, such as Dtrace and 

Sysdig, fail to keep up inside Kubernetes environments [1]. 

Dynamic Security Enforcement: eBPF can detect DoS attacks in real-time while reducing 

resource usage [2]. Moreover, eBPF has the capability to scale effectively with large clusters 

of devices, such as IoT environments [7]. Unlike traditional Linux Security Modules (LSMs) 
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such as AppArmor and SELinux, eBPF allows for runtime policy adjustments without 

restarting containers, hence providing more flexible and effective security management [3]. 

Performance in Kubernetes: eBPF has also been integrated into the Kubernetes environment 

for performance. It shows an important improvement in accuracy and overhead reduction 

compared to the traditional tools which have many limitations [4]. 

Despite these advancements, eBPF-based solutions are not easy to integrate with current 

network management and monitoring tools, which may make the deployment in legacy 

systems more complicated. Furthermore, the eBPF steep learning curve is one of the factors 

that prevent it from broader usage. 

My research attempts to bridge this gap by integrating traditional monitoring solutions with 

eBPF-based tooling to provide an increased level of observability and security in a 

Kubernetes environment. This integration will also bring together the detailed, low-overhead 

monitoring capabilities of eBPF with its dynamic security capabilities into workflows of 

traditional tools. Therefore, I will integrate Falco (eBPF) with well-known traditional 

monitoring and alert stacks on Kubernetes, including Prometheus, Grafana, and 

AlertManager. This demonstrates the compatibility and effectiveness of eBPF in monitoring 

and alerting systems in cloud-native environments, avoiding the risks related to the 

containerization of applications and deploying them at a cloud scale. 

3 Research Methodology 

3.1 Problem Definition 

The complexity of modern cloud-native environments, specifically Kubernetes, brings 

different observability and security challenges. As an organization adopts a microservices 

architecture and containerized applications, monitoring and security become important. 

Traditional tools applicable to this environment generally do not deliver the needed granular 

insight that could be of great help to detect potential threats in real time without imposing 

considerable overhead on performance. 

This study addresses the problem: how eBPF (Extended Berkeley Packet Filter) technology 

should be leveraged to add observability and security to Kubernetes environments. The 

general objective of this research is, therefore, bridging the gap between high-level 

observability, already available through such tools as Prometheus and Grafana, and more 

insightful monitoring down at the kernel level, represented by eBPF. Fundamentally, at the 

core of the problem is the efficiency in which security incidents can be detected. This 

research will prove that adding eBPF to your existing observability and security tooling 

introduces the efficiency of tracking and mitigating threats in real-time, making the entire 

security posture of Kubernetes deployment more effective. 

3.2 Proposed Solution 
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My proposed solution is the use of eBPF technology for better visibility and security in a 

Kubernetes cluster. With the included eBPF system, events happening at the kernel level are 

monitored in real-time such that security breaches could be alerted to and acted upon as they 

happen. Falco is an open-source project that enables the capture and analysis of system calls 

and other events in applications, in order to determine the security of runtimes within a 

cloud-native environment. It is going to be integrated with Prometheus and visualized 

through Grafana, which will help monitor and take actions against potential security threats 

in distributed environments. This monitoring stack will watch over a Kubernetes cluster 

running a production-like e-commerce application built on the microservices architecture [9]. 

This approach enhances the security postures of Kubernetes clusters by re-enforcing our 

capacity to monitor, detect, and alert upon security issues. 

Falco is used for the log collection and violation detection using eBPF. Falco is a cloud-

native runtime security tool, running on Linux operating systems. It looks to identify and 

alert users of any strange behavior and potential security threats in real time. The Falco rule 

engine is a kernel monitoring and detection agent that watches system calls. According to 

customized rules, it can also enrich these events by incorporating metadata from container 

runtimes and Kubernetes. In addition, off-host systems can further process collected events, 

such as SIEM or data lakes. 

Experiments to validate the proposed solution are carried out by simulated security incidents. 

The effectiveness of the setup is tested by simulating various attacks using exploited 

containers on the Kubernetes cluster. These attacks are a deliberate series of harmful actions 

including log clearance, removal of bulk data from the disk, reading sensitive files, symlinks 

creation over sensitive files, opening port connections, and crypto mining. The criteria for 

evaluation include detection accuracy and log details Falco captures and how good it is in 

compatibility with the stacks of Prometheus in a Kubernetes environment. 

4 Design Specification and Implementation 

This section describes the architecture, software configuration, hardware setup, and tools 

used to implement the proposed solution for the extension of Kubernetes security and 

observability using eBPF in the current work. 

4.1 System Architecture 

The system architecture is laid for having an integrated solution inside an Amazon EKS 

cluster with three worker nodes of type t3a.xlarge. This type of instance will give a balanced 

mix of compute, memory, and network resources necessary for the loads of observability and 

security management without adding much overhead in performance. 

• Kubernetes cluster: Managed by Amazon EKS to provide us with the container 

orchestration environment. 

• Falco: Deployed as a DaemonSet on all the worker nodes. Falco uses eBPF to make 

real-time monitoring of the system calls, thus enabling the detection of any suspected 

activity in compliance with its pre-defined rules. 
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• Prometheus: A monitoring tool used to scrape metrics from Falco, and store these 

metrics for analysis. 

• Grafana: Visualize the collected metrics from Prometheus into graphs with a 

predefined dashboard. 

• FalcoSidekick: A service that forwards Falco events to an endpoint Prometheus can 

scrape. 

• FalcoSidekickUI: A central GUI for specifying event details captured by Falco. 

 

 

Figure 2: The architecture of the monitoring system 

4.2 Software Configuration 

Amazon EKS: The Kubernetes control plane is managed by AWS, while the worker nodes 

are configured with t3a.xlarge instance types. The deployment installs all necessary addons 

such as kube-proxy, coreDNS and Amazon VPC CNI into the EKS cluster. The cluster runs 

Kubernetes the latest version 1.30. 

Falco: Configured as a DaemonSet to make sure it runs on every worker node. Further 

customization of the Falco rule engine is made using additional rules to be able to detect 

certain specific threats. The rule are defined in YAML files and install via Helm 

Prometheus: Configured to scrape Falco metrics by using the FalcoSidekick integration. It is 

deployed using Helm to ensure consistency of deployment across the cluster. 

Grafana: Configured to present the metrics being collected by Prometheus. Customized 

dashboards are developed where the security events or system performance metrics and other 

related data are displayed in GUI. 

4.3 Hardware Configuration 

Computation resources: The cluster has three t3a.xlarge instances with 4 vCPUs and 16GB of 

memory. The balance was right-sized to the needs of processing eBPF operations and 

Kubernetes workloads. 
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Storage: Each worker node has a 20 GB gp2 EBS volume which is sufficient for storing 

system logs and application data. 

Networking: The EKS cluster uses public and private subnets. The Amazon VPC CNI, a 

networking addon, is deployed to enable networking functionality operate properly across 

pods in the cluster. 

4.4 Tools and Technologies 

eBPF (Extended Berkeley Packet Filter): eBPF (Extended Berkeley Packet Filter): A core 

technology that enables effective monitoring of system calls and kernel-level events. eBPF 

programs are deployed inside the Linux kernel of worker nodes to collect fine-grained 

metrics without much performance overhead. 

Falco: An open-source security tool for runtime security monitoring and detecting abnormal 

actions at the kernel level, using eBPF. It is set up to alert system administrators about 

potential security threats in real time. 

Prometheus: A time-series database and alerting solution that scrapes metrics from Falco and 

other sources in order to store them for analysis and alerting. 

Grafana: A visualization tool useful for creating dashboards from metrics queried from 

Prometheus to provide a central GUI. It allows real-time monitoring of the security and 

performance of the entire system. 

Helm: A package manager for Kubernetes, which used to deploy Prometheus, Grafana, 

Falco, and FalcoSidekick 

FalcoSidekick: A service that forwards Falco events to different endpoints in a fan-out way 

4.5 Implementation 

This section describes detailed implementation process in setting up a Kubernetes cluster on 

AWS, deploying a microservices applicatio, and integrating Falco with Prometheus and 

Grafana for a full monitoring stack. 

4.5.1 Deploy an EKS cluster 

Create an EKS cluster with version 1.30. This cluster allows administrator access with EKS 

API and ConfigMap. 
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Figure 3: EKS cluster configuration 

All other steps leave as default. Once the cluster is created, a nodegroup is created with three 

t3a.xlarge nodes to join the cluster as worker nodes. 

 

Figure 4: EKS cluster with three worker nodes 

Install k9s to access the cluster through simple terminal UI: 

curl -sS https://webinstall.dev/k9s | bash 

Then, we download the kubeconfig file of the EKS cluster : 

aws eks --region eu-west-1 update-kubeconfig --name x22232338 

Now, we can access the cluster through k9s tool 
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4.5.2 Install the microservices application 

To simulate a production environment, a demo microservices application is installed on the 

cluster. For this project, the Google Cloud Platform's Microservices Demo is used: 

git clone https://github.com/GoogleCloudPlatform/microservices-demo.git 

Apply all the Kubernetes manifest to deploy the entire microservices application: 

kubectl apply -f ./release/kubernetes-manifests.yaml 

This application includes 

 

Figure 5: E-commerce application 

4.5.3 Install and Configure Falco 

Falco is deployed as a run-time security tool for the Kubernetes cluster, utilizing eBPF 

technology. A custom rule is also configured to detect crypto mining behaviors. New rules 

can be added to /etc/falco/falco_rules.local.yaml in Falco pods. FalcoSidekick is deployed for 

exporting log events for Prometheus and UI for more details. 

helm install falco -f custom-rules.yaml ./ -n falco 

Figure 6: FalcoSidekick and UI deployment 
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Figure 7: Falco custom rules 

4.5.4 Install and configure Prometheus, Grafana and AlertManager 

Prometheus and Grafana are deployed using Helm for capturing and visualizaing metrics 

from Falco. Prometheus must be configured to collect Falco metrics. This is done by 

modifying the Prometheus scrape_configs in the Helm chart file. 

 

Figure 8: Prometheus configuration to scrape metrics from the FalcoSidekick endpoint 

Next, Prometheus rules are added to trigger alerts to AlertManager. Alerts are triggered only 

warning log level or higher. 

kubectl apply -f prometheus-alert-rule.yaml -n monitoring 
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Figure 9: Alert rule in Prometheus 

Then, AlertManager is configured to send notification to a Telegarm channel. The alerts will 

be sent within 1 minute to reach administrators. 

 

Figure 10: AlertManager configuration to send alerts to the Telegram channel 

4.5.5 Custom Grafana UI 

Once Grafana is up and running, a custom dashboard is created to show all security breaches 

captured by Falco in the EKS cluster including total number of security events detected, types 

of events and a graph in a period of time. 
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Figure 11: Grafana custom dashboard for captured Falco security events 

4.5.6 Access FalcoSidekick, Grafana and Prometheus UIs: 

To access the UI of monitoring tools, I created a script using port-forward to access UI 

endpoint within the cluster without using NodePort service type. 

 

Figure 12: port-forward script for accessing UIs 

By integrating these tools toghther, we have a comprehensive monitoring stack with 

capability of capturing real-time breaches using eBPF during runtime in the Kubernetes 

cluster. There is also the alert system to notify any warning and critical security events to 

administrators through the Telegram channel. 
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Figure 13: All EKS cluster pods 

4.6 Workflow 

In terms of workflow and data flow in this cluster, I will describe them from monitoring, 

capturing to alerting. Originally, Falco itself collects Linux system calls by an eBPF probe. It 

can then be analyzed using the Falco rule engine to detect any violations of predefined rules. 

Secondly, Prometheus scrapes the metrics through Falco using FalcoSidekick and stores the 

data for a later analysis. In addition, AlertManager is configured by predefined thresholds and 

rules via Prometheus, promptly triggering only security issues with a warning priority or 

higher to a Telegram channel. This detailed workflow ensures a clear understanding of data 

movement of the monitoring stacks using eBPF and the Prometheus stack within the EKS 

cluster. 

5 Evaluation 

This section provides a comprehensive analysis of the results and main research findings of 

my work, giving the implications from both academic and practitioner viewpoints. In most 

experiments, the attack surface is a Docker container and not a Pod or a Deployment in 

Kubernetes because it offers a similar behavior but makes it easier to test. The evaluation 

focuses on three experimental scenarios that support the research question and objectives. 
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5.1 Experiment 1: Intrusion Detection and Response 

In the first experiment, attackers exploited the system by deploying containers. They did a 

series of harmful actions from accessing to sensitive files, creating symlinks on sensitive files 

for privilege escalation, sending data to external servers, and clearing up logs to clear their 

traces. The attackers's purpose is to harvest useful data on the system and send it to their 

servers. 

Initially, the attacker tried to read sensitive files by executing the command `docker run -d 

ubuntu:latest cat /etc/shadow`. Falco detected that the shadow file was accessed by an Ubuntu 

container and issued a warning priority alert. 

 

Figure 14: The attack tried to view the shadow file 

 

 

Figure 15: Reading sensitive file activities detected by Falco 

Following this, the attacker created a symlink over a sensitive file using the command 

`docker run -d ubuntu:latest ln -s /etc/shadow /tmp/shadow_link`. This was detected by Falco 

as a potential privilege escalation attempt. 

 

Figure 16: The attack tried to create a symlink over the shadow file 
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Figure 17: Creating symlink over sensitive files detected by Falco 

Next, the attackers exported data to their servers by executing a sequence of commands that 

opened an SSH connection. Falco detected the SSH outbound connection to unauthorized 

servers and raised an alert for data exfiltration activity. 

 

Figure 18: The attack tried to establish the SSH connection to the external server 

 

 

Figure 19: SSH connection detected by Falco 

Finally, the attackers finally attempted to clear the log activities by issuing the command 

`docker run -d -v /var/log:/var/log ubuntu:latest bash -c \"echo 'test' > /var/log/syslog\"`. This 

activity was detected due to the modification of log files. An alert was raised due to 

tampering with log files. 

In summary, all detections were accurate, capturing the container ID and the command 

executed accurately. All the detections were sent to a Telegram channel, and logs and metrics 
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are traceable in a Falcosidekick UI and visualized on Grafana, providing a complete 

monitoring and alerting system. The detections by Falco are quite accurate and very fast in 

catching many kinds of harmful activities, while Prometheus captured all the metrics within 

30 seconds. 

 

Figure 20: Clear log activities detected by Falco 

5.2 Experiment 2: System Destruction Attempt 

In the second experiment, attackers tried to destroy system data by running a container that 

removes bulk data from the disk using the command `docker run -d ubuntu:latest shred -n 1 

/path/to/data`. The detection was captured with the detailed logs of command execution and 

target data path. This test indicates that Falco can detect destructive activities with details but 

it cannot block this action from occurring so the data will be lost permanently if no backup 

measures are in place. 

 

Figure 21: Removing bulk data activities detected by Falco 

5.3 Experiment 3: Crypto Mining Deployment 

In this third experiment, a custom rule was configured to detect crypto mining into Falco's 

rulesets. Attackers installed a crypto mining application in the Kubernetes cluster through the 

use of a predefined deployment YAML file. A mining process was detected by Falco due to 

the connection to mining pools. The detection is correct, including details of deployment and 

associated containers. This experiment shows that Falco can detect any bad behaviors based 

on customs which can be defined to fit the organization's policy. This threat was alerted with 

the delay of about 2 minutes so that cluster operators may intervene in this behavior before 

incurring financial losses. 
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Figure 22: The YAML file of crypto mining pods 

 

 

Figure 23: Crypto mining application deployed in the EKS cluster 

 

 

Figure 24: Outbound connection to mining pools detected by Falco 
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Figure 25: Alerts sent to the Telegram channel 

 

 

Figure 26: Grafana dashboard showing all occurred attacks 
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5.4 Discussion 

From an academic perspective, this work represents the efficiency of eBPF-based monitoring 

and security tools for Kubernetes environments. It contributes to the academic understanding 

of how eBPF can be integrated with traditional monitoring systems to enhance security and 

observability. This detailed analysis of detection accuracy and system integration is an 

important reference for future research in the area of cloud-native security and monitoring. 

From a practical point of view, the integration of Falco with Prometheus and Grafana is a 

realistic approach to heightening security within Kubernetes clusters. This work highlights 

that eBPF-based tooling is very effective in the early detection of a wide range of security 

threats originating from kernel events, providing a robust framework for security posture 

enhancement in containerized environments. 

In conclusion, evaluating the experimental scenarios proves that the use of eBPF-based tools 

is very precise and effective at improving Kubernetes security and observability. Thanks to 

integration with traditional monitoring systems, it guarantees an end-to-end system-related 

threat detection and alerting process. 

6 Conclusion and Future Work 

In this work, we discuss the applicability of Extended Berkeley Packet Filter (eBPF) in 

enhancing observability and security in Kubernetes environments. We solve complex security 

challenges in the containerization world by integrating eBPF with mature monitoring tools 

such as Falco, Prometheus, and Grafana. This integration has paved a way for more detailed 

research into eBPF within Kubernetes for a revolution in cloud-native security frameworks 

and operational monitoring. My research demonstrates that Falco could be used for fine-

grained observability with the help of eBPF, and custom rules could be implemented 

according to organizational purposes. Through a series of experiments, I have shown the 

ability of eBPF to capture real-time security incidents by assessing the log levels at the 

kernel, considerably increasing the granularity of monitoring. This affords detailed insights 

into Kubernetes operations that are critical for proactive security measures. 

eBPF is a promising technology that can address the dual problems in Kubernetes regarding 

observability and security. The complexity of eBPF programming and its integration 

challenges with existing tools, alongside a steep learning curve, are headaches for operator 

engineers. Furthermore, legacy system integration issues can complicate the deployment of 

an eBPF-based solution. 

Looking ahead, eBPF has the potential for extending applicability and simplifying the 

deployment process. Future research could focus on using eBPF to proactively block threats 

from occurring by considering the impact on the system performance and its feasibility. 

Another promising research area is the development of machine learning models that would 

analyze historical data and recommend optimal security policies which could be deployed 

using eBPF-based tools. These approaches expand the functionality of eBPF, increase its ease 

of use, and make it more effective in cloud-native environments. 
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Addressing these challenges and looking toward future research, eBPF could become an even 

more important foundation for securing Kubernetes environments and a more resilient and 

resilient security and observability platform. 
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