

 Leveraging eBPF for Enhanced Kubernetes

Observability and Security

MSc Research Project

Cloud Computing

Pham Ngoc Thanh Hung

Student ID: 22232338

School of Computing

National College of Ireland

Supervisor: Sudarshan Deshmukh

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Pham Ngoc Thanh Hung

Student ID:

22232338

Programme:

Cloud Computing

Year:

2023

Module:

Research Project

Supervisor:

Sudarshan Deshmukh

Submission Due
Date:

16th September 2024

Project Title:

Leveraging eBPF for Enhanced Kubernetes Observability and

Security

Word Count:

5669 Page Count: 22

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.
ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Pham Ngoc Thanh Hung

Date:

16th September 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Leveraging eBPF for Enhanced Kubernetes Observability

and Security

Pham Ngoc Thanh Hung

22232338

Abstract

With the development of cloud computing, Kubernetes is an orchestration tool used in a

modern microservice application. However, the architectural complexities and the shared

nature of the kernel have caused serious security and observability challenges. This paper

explores how eBPF can help in harvesting detailed insights into system behavior, application

logs, and real-time security threats for greater observability and security in Kubernetes. In

this research, eBPF will be considered in its implementation for secuirty breach detection at

runtime with the least performance overheads. Moreover, the integration of tools such as

Falco, which are based on eBPF with already established monitoring systems like

Prometheus and Grafana, and AlertManager which triggers any important alerts to

administrators, giving high visibility and helping in the real-time mitigation of security

threats from within the kernel.

Keywords: Observability, Kubernetes, EKS, eBPF, Falco, Run-time Security Detection,

Prometheus,. Grafana, AlertManager

1 Introduction

Containerization has brought a revolution to application development, deployment, and

management. Leading the rank of revolutionary tools is Kubernetes, a container orchestration

platform and probably the most mature technology within the Cloud Native Computing

Foundation. Even though it is so popular in the market as the best tool, Kubernetes also

comes with the large number of security issues including multi-layer networking, shared

underlying hardware and clustering components. These vulnerabilities can be exploited

without the administrator's awareness due to many attack surfaces. Therefore, there is a

strong need for monitoring activities in Kubernetes clusters and gaining insight into the

system behavior and application interaction of the clusters toward potential security threat

identification.

Traditional monitoring tools, however, are not able to capture the required granularity of

operation for effective security analysis. The limitations of these tools are adding

unacceptable overheads or complexity for deeper observability. eBPF emerges as one of the

very promising solutions in this situation. This modern Linux kernel technology offers a way

for users to write and deploy custom programs directly into the kernel space. Running these

programs in kernel helps to achieve even more detailed data collection on various system

events and metrics. This technology extends to modifying system behavior for enhanced

security measures, such as policy enforcement and anomaly detection.

2

The research in this work uses eBPF technology to address both observability and security

challenges in Kubernetes environments. I try to answer the question: how can eBPF be

leveraged to enhance observability and security in Kubernetes, focusing on real-time

detection and security policy violation alerts? This paper makes an attempt at adopting eBPF

in Kubernetes and the integration of current security tools such as Falco and powerful

monitoring tools including Prometheus, AlertManager and Grafana. A quantitative

measurement of eBPF effectiveness is the metrics used to measure the number of detected

security incidents. This study will contribute to the understanding of Kubernetes security

through the integrated deployment of eBPF-based solutions for an organization relying on

containerized environments.

2 Related Work

Extended Berkeley Packet Filter (eBPF) has become an essential technology for observability

and security in the fast-changing landscapes of cloud-native environments. This section

critically reviews the contributions of some research in this area to fill a research gap, from

network observability to security enhancements, performance tuning, and network policies.

2.1 eBPF Design

In the eBPF design, it manages the Just-In-Time (JIT) compilation for efficient performance,

stateful processing through maps, and the use of kernel libraries to be able to perform

complex operations [5]. It should be noted here that the described feature enables user space

applications to inject the code related to the kernel at runtime, without a need to recompile it

or add additional modules. It is possible to write eBPF programs in C or eBPF assembly,

cross-compile to bytecode, and after making all possible verifications to ensure the safety of

the code and its proper execution, load the bytecode into the kernel by a bpf() system call.

The eBPF programs are event-driven, which means they are invoked by specific events. They

contain the ability to modify the context associated with that event. All of these make maps a

vital data structure in eBPF, used for sharing information between program runs, between

different programs, and also between programs and user space. This new development in

kernel technology is enabling the building of sophisticated networked applications. This

provides a flexible, powerful, and secure mechanism for running code at runtime within the

Linux Kernel. Therefore, it bridges the gap between practical eBPF implementations for

building complex network services and network policy evaluation, making it possible for

future research and development in eBPF-based network solutions. However, the steep

learning curve associated with eBPF can deter its adoption. However, the steep learning

curve associated with eBPF can deter its adoption.

2.2 Observability with eBPF and Kubernetes

The investigation was pioneered by Liu et al. [1] using a protocol-independent approach for

observability study of container networks that uses eBPF inside Kubernetes clusters. Three

important ideas result from the distributed system's observability: distributed tracing, metrics,

and logging. The use of eBPF tools is very instrumental in fine-grain monitoring of all the

container network metrics. Being non-intrusive, eBPF scales transparently with low overhead

from monitoring the kernel and user applications through dynamic updates to eBPF programs

3

of the respective targeted events being monitored without any modifications to the kernel or

application code. This is helpful in precise performance analysis through the correlation of

event-related contexts with some Pod instances based on detailed data obtained from kernel

operations. While eBPF does improve scalability and offer a solid framework for static and

dynamic tracing in the Linux kernel, its real power in cloud platforms like Kubernetes seems

to be hindered due to the actual lack of native support and comprehensive monitoring

solutions for the container network. Although they do not provide strong support for

Kubernetes setups and have limited programmability and extensibility, current tools like

Dtrace and Sysdig satisfy the granularity requirements for data at the kernel level. However,

in the container environment, fine-grained observability data would pose a significant barrier

to conventional monitoring tools, creating a gap that is being filled by eBPF-based solutions

and the likes of new MicroRCA tools. This study sheds light on how eBPF may be predicated

on future security research and deliver fine-grained observability in cloud-native contexts.

In hybrid systems, there is a high possibility that processes consume an extremely high

volume of system resources, enough to lead to a crash of the process. An anomaly detection

model in CPU, memory, and I/O resource consumption processes is proposed using eBPF

technology through the Isolation Forest algorithm. eBPF enables fine-grained and real-time

data extraction directly from the kernel than traditional tooling allows, thus leading to higher

accuracy. Afterwards, the collected data are processed and analyzed using the Isolation

Forest algorithm, which is very useful in the detection of anomalies in data spaces of very

high dimensions. For optimal precision and recall, some key parameters in the algorithm are

fine-tuned. Experimental results have shown this approach to be effective in detecting

anomalies of process resource usage with high accuracy and reliability in the obtained model

[6]. The eBPF monitoring solution enables fine-grained monitoring with granularity and

accurate anomaly detection, improving system reliability in the detection and mitigation of

resource-related anomalies.

2.3 Security Enhancements using eBPF

Instead of focusing on network services, Sadiq et al. [2] present a novel method for detecting

DoS attacks in Kubernetes-based cloud environments by utilizing eBPF. Before the Berkeley

Packet Filter (BPF) was introduced in the early 1990s, packet monitoring and analysis

depended on a traditional filtering method. There was a significant packet processing latency

since every packet was copied from kernel space to user space via the kernel. Using BPF,

Steven McCanne and Van Jacobson refined this technique by copying packets only when

necessary to reduce overhead. BPF was designed for 32-bit machines, so it had a fixed-length

instruction set. BPF was first used in the implementation within the Unix operating system. It

has grown with its application over time to different operating systems, including Linux and

Windows. Now it has become an Extended Berkeley Packet Filter (eBPF), which allows the

safe and efficient running of code within the Linux kernel. Initially, the memory utilization in

eBPF followed a different, conventional method that made extensive use of the memory. The

excellent outcome, from 15% to only 5%, indicates the eBPF performance impact

optimizations. Real-time DoS attack detection in containerization environments is greatly

advanced by this study.

4

The increasing number of IoT devices has brought significant security challenges recently,

especially many devices being hijacked for botnets to execute DDoS attacks. Feraudo et al.

[7] integrate the Manufacturer Usage Description (MUD) standard with eBPF-based traffic

filtering to mitigate such threats. The MUD standard enables manufacturers of devices to

clearly define which communication patterns are allowed for a device, enforced at the

gateway level. This research proposes extensions to MUD that incorporate fine-grained rate-

limiting capabilities and develops two enforcement backends, one with eBPF and one with

iptables. The experiments show that these methods efficiently protect against attacks with

minimal impact on legitimate traffic. Moreover, the use of eBPF allows efficient and low-

latency processing, so it is fit for a real-time threat-mitigation system. This approach makes

security even stronger by disallowing the interception of unauthorized traffic. It is a scalable

solution that can be easily deployed into standard home routers, making it applicable in

broader network environments.

The exploration of advanced runtime security mechanisms for Kubernetes through the use of

eBPF describes significant advancements over traditional Linux Security Modules (LSM)

such as AppArmor and SELinux [3]. By employing security policy enforcement, the proposal

of KRSIE will provide fine-grained control over the security of the Kubernetes workload

while allowing for dynamic adaptation. Unlike the current standard Linux Security Module

(LSM) implementation of SELinux and AppArmor, which requires container restarts in order

to allow complete policy enforcement during runtime. This suggests that there is an

operational problem in the cloud context, where the performance implications associated with

container restarts would make it impossible to deploy. Unlike path-based AppArmor and

label-based SELinux, KRSIE directly interfaces to LSM function parameters and offers a

more tangible method for kernel object management, hence enforcing fine-grained security.

In contrast, AppArmor and SELinux are static in nature despite helping more efficiently with

the system-wide policy application. They do not have the possibility of being dynamically set

and adapted to changes in policies without a restart of a container. Other solutions, such as

Cilium, are more concerned with the network security field and may not be as comprehensive

in protecting runtime workloads. On their part, Tetragon and KubeArmor are solutions that

offer a wider security capability but do not exactly leverage the power of LSM hooks or give

the user adequate policy control to enable their use cases without potentially falling short

such as protecting from TOCTOU attacks or in accessing kernel contexts like the bprm

structure. The proposed solution is designed by policies being authored as a CRD in YAML

files, with the policy implementation being done by a manager and enforcer mechanism that

results in actual eBPF-LSM programs. The limitations of KRSIE are mainly in the manner in

which duplicated LSM security functions are covered over all the potential vulnerabilities,

although the approach is innovative.

2.4 Performance with Kubernetes

Performance is a strong exhibit for eBPF within Kubernetes environments, as significant

improvements have been shown in networking overhead without reliance on iptables for

network configuration and routing. However, one of the main barriers for most practitioners

is the unavailability of accessible interfaces for eBPF tools. Additionally, eBPF integration

with existing network management tools can complicate deployment in legacy systems.

5

Figure 1: Iptable overhead removal by eBPF [8]

Budigiri et al. [4] further on the topic of Kubernetes network policies. This is a clear

indication that there is a need for proper integration of network policies in a Kubernetes

environment to enhance low-overhead security during inter-container communication using

eBPF instead of iptables. In fact, the different CNI plugins analyzed demonstrate network

policies. Moreover, those applied by Calico instead of Cilium hardly bring any performance

overhead. Since Calico works with pure BGP-based Layer 3 routing and innovates through

XDP for filtering packets effectively in order to reduce Denial of Service attacks. That the

differences are more apparent, although Calico leverages eBPF technology to increase its

scalability, it does so by using connection tracking for all other packets and inspecting

policies only for the first packet in each new flow. In addressing and resolving any threats

and vulnerabilities, it is proactive and responsive in line with the recognized attacker model.

Therefore, eBPF promotes cutting-edge, low-latency security solutions. The move from

network observability to network policy assessment is a significant advancement in

containerized environment security, allowing for even more system efficiency without

sacrificing security measures.

2.5 Summary of Findings

All of the evidence leads towards the transformational role of eBPF in Kubernetes

observability and security as follows:

Fine-Grained Observability: eBPF is great at providing detailed monitoring and recording of

container network metrics with a low overhead [1][6]. It provides non-intrusive scalable

solutions in this space for performance analysis where traditional tools, such as Dtrace and

Sysdig, fail to keep up inside Kubernetes environments [1].

Dynamic Security Enforcement: eBPF can detect DoS attacks in real-time while reducing

resource usage [2]. Moreover, eBPF has the capability to scale effectively with large clusters

of devices, such as IoT environments [7]. Unlike traditional Linux Security Modules (LSMs)

6

such as AppArmor and SELinux, eBPF allows for runtime policy adjustments without

restarting containers, hence providing more flexible and effective security management [3].

Performance in Kubernetes: eBPF has also been integrated into the Kubernetes environment

for performance. It shows an important improvement in accuracy and overhead reduction

compared to the traditional tools which have many limitations [4].

Despite these advancements, eBPF-based solutions are not easy to integrate with current

network management and monitoring tools, which may make the deployment in legacy

systems more complicated. Furthermore, the eBPF steep learning curve is one of the factors

that prevent it from broader usage.

My research attempts to bridge this gap by integrating traditional monitoring solutions with

eBPF-based tooling to provide an increased level of observability and security in a

Kubernetes environment. This integration will also bring together the detailed, low-overhead

monitoring capabilities of eBPF with its dynamic security capabilities into workflows of

traditional tools. Therefore, I will integrate Falco (eBPF) with well-known traditional

monitoring and alert stacks on Kubernetes, including Prometheus, Grafana, and

AlertManager. This demonstrates the compatibility and effectiveness of eBPF in monitoring

and alerting systems in cloud-native environments, avoiding the risks related to the

containerization of applications and deploying them at a cloud scale.

3 Research Methodology

3.1 Problem Definition

The complexity of modern cloud-native environments, specifically Kubernetes, brings

different observability and security challenges. As an organization adopts a microservices

architecture and containerized applications, monitoring and security become important.

Traditional tools applicable to this environment generally do not deliver the needed granular

insight that could be of great help to detect potential threats in real time without imposing

considerable overhead on performance.

This study addresses the problem: how eBPF (Extended Berkeley Packet Filter) technology

should be leveraged to add observability and security to Kubernetes environments. The

general objective of this research is, therefore, bridging the gap between high-level

observability, already available through such tools as Prometheus and Grafana, and more

insightful monitoring down at the kernel level, represented by eBPF. Fundamentally, at the

core of the problem is the efficiency in which security incidents can be detected. This

research will prove that adding eBPF to your existing observability and security tooling

introduces the efficiency of tracking and mitigating threats in real-time, making the entire

security posture of Kubernetes deployment more effective.

3.2 Proposed Solution

7

My proposed solution is the use of eBPF technology for better visibility and security in a

Kubernetes cluster. With the included eBPF system, events happening at the kernel level are

monitored in real-time such that security breaches could be alerted to and acted upon as they

happen. Falco is an open-source project that enables the capture and analysis of system calls

and other events in applications, in order to determine the security of runtimes within a

cloud-native environment. It is going to be integrated with Prometheus and visualized

through Grafana, which will help monitor and take actions against potential security threats

in distributed environments. This monitoring stack will watch over a Kubernetes cluster

running a production-like e-commerce application built on the microservices architecture [9].

This approach enhances the security postures of Kubernetes clusters by re-enforcing our

capacity to monitor, detect, and alert upon security issues.

Falco is used for the log collection and violation detection using eBPF. Falco is a cloud-

native runtime security tool, running on Linux operating systems. It looks to identify and

alert users of any strange behavior and potential security threats in real time. The Falco rule

engine is a kernel monitoring and detection agent that watches system calls. According to

customized rules, it can also enrich these events by incorporating metadata from container

runtimes and Kubernetes. In addition, off-host systems can further process collected events,

such as SIEM or data lakes.

Experiments to validate the proposed solution are carried out by simulated security incidents.

The effectiveness of the setup is tested by simulating various attacks using exploited

containers on the Kubernetes cluster. These attacks are a deliberate series of harmful actions

including log clearance, removal of bulk data from the disk, reading sensitive files, symlinks

creation over sensitive files, opening port connections, and crypto mining. The criteria for

evaluation include detection accuracy and log details Falco captures and how good it is in

compatibility with the stacks of Prometheus in a Kubernetes environment.

4 Design Specification and Implementation

This section describes the architecture, software configuration, hardware setup, and tools

used to implement the proposed solution for the extension of Kubernetes security and

observability using eBPF in the current work.

4.1 System Architecture

The system architecture is laid for having an integrated solution inside an Amazon EKS

cluster with three worker nodes of type t3a.xlarge. This type of instance will give a balanced

mix of compute, memory, and network resources necessary for the loads of observability and

security management without adding much overhead in performance.

• Kubernetes cluster: Managed by Amazon EKS to provide us with the container

orchestration environment.

• Falco: Deployed as a DaemonSet on all the worker nodes. Falco uses eBPF to make

real-time monitoring of the system calls, thus enabling the detection of any suspected

activity in compliance with its pre-defined rules.

8

• Prometheus: A monitoring tool used to scrape metrics from Falco, and store these

metrics for analysis.

• Grafana: Visualize the collected metrics from Prometheus into graphs with a

predefined dashboard.

• FalcoSidekick: A service that forwards Falco events to an endpoint Prometheus can

scrape.

• FalcoSidekickUI: A central GUI for specifying event details captured by Falco.

Figure 2: The architecture of the monitoring system

4.2 Software Configuration

Amazon EKS: The Kubernetes control plane is managed by AWS, while the worker nodes

are configured with t3a.xlarge instance types. The deployment installs all necessary addons

such as kube-proxy, coreDNS and Amazon VPC CNI into the EKS cluster. The cluster runs

Kubernetes the latest version 1.30.

Falco: Configured as a DaemonSet to make sure it runs on every worker node. Further

customization of the Falco rule engine is made using additional rules to be able to detect

certain specific threats. The rule are defined in YAML files and install via Helm

Prometheus: Configured to scrape Falco metrics by using the FalcoSidekick integration. It is

deployed using Helm to ensure consistency of deployment across the cluster.

Grafana: Configured to present the metrics being collected by Prometheus. Customized

dashboards are developed where the security events or system performance metrics and other

related data are displayed in GUI.

4.3 Hardware Configuration

Computation resources: The cluster has three t3a.xlarge instances with 4 vCPUs and 16GB of

memory. The balance was right-sized to the needs of processing eBPF operations and

Kubernetes workloads.

9

Storage: Each worker node has a 20 GB gp2 EBS volume which is sufficient for storing

system logs and application data.

Networking: The EKS cluster uses public and private subnets. The Amazon VPC CNI, a

networking addon, is deployed to enable networking functionality operate properly across

pods in the cluster.

4.4 Tools and Technologies

eBPF (Extended Berkeley Packet Filter): eBPF (Extended Berkeley Packet Filter): A core

technology that enables effective monitoring of system calls and kernel-level events. eBPF

programs are deployed inside the Linux kernel of worker nodes to collect fine-grained

metrics without much performance overhead.

Falco: An open-source security tool for runtime security monitoring and detecting abnormal

actions at the kernel level, using eBPF. It is set up to alert system administrators about

potential security threats in real time.

Prometheus: A time-series database and alerting solution that scrapes metrics from Falco and

other sources in order to store them for analysis and alerting.

Grafana: A visualization tool useful for creating dashboards from metrics queried from

Prometheus to provide a central GUI. It allows real-time monitoring of the security and

performance of the entire system.

Helm: A package manager for Kubernetes, which used to deploy Prometheus, Grafana,

Falco, and FalcoSidekick

FalcoSidekick: A service that forwards Falco events to different endpoints in a fan-out way

4.5 Implementation

This section describes detailed implementation process in setting up a Kubernetes cluster on

AWS, deploying a microservices applicatio, and integrating Falco with Prometheus and

Grafana for a full monitoring stack.

4.5.1 Deploy an EKS cluster

Create an EKS cluster with version 1.30. This cluster allows administrator access with EKS

API and ConfigMap.

10

Figure 3: EKS cluster configuration

All other steps leave as default. Once the cluster is created, a nodegroup is created with three

t3a.xlarge nodes to join the cluster as worker nodes.

Figure 4: EKS cluster with three worker nodes

Install k9s to access the cluster through simple terminal UI:

curl -sS https://webinstall.dev/k9s | bash

Then, we download the kubeconfig file of the EKS cluster :

aws eks --region eu-west-1 update-kubeconfig --name x22232338

Now, we can access the cluster through k9s tool

11

4.5.2 Install the microservices application

To simulate a production environment, a demo microservices application is installed on the

cluster. For this project, the Google Cloud Platform's Microservices Demo is used:

git clone https://github.com/GoogleCloudPlatform/microservices-demo.git

Apply all the Kubernetes manifest to deploy the entire microservices application:

kubectl apply -f ./release/kubernetes-manifests.yaml

This application includes

Figure 5: E-commerce application

4.5.3 Install and Configure Falco

Falco is deployed as a run-time security tool for the Kubernetes cluster, utilizing eBPF

technology. A custom rule is also configured to detect crypto mining behaviors. New rules

can be added to /etc/falco/falco_rules.local.yaml in Falco pods. FalcoSidekick is deployed for

exporting log events for Prometheus and UI for more details.

helm install falco -f custom-rules.yaml ./ -n falco

Figure 6: FalcoSidekick and UI deployment

12

Figure 7: Falco custom rules

4.5.4 Install and configure Prometheus, Grafana and AlertManager

Prometheus and Grafana are deployed using Helm for capturing and visualizaing metrics

from Falco. Prometheus must be configured to collect Falco metrics. This is done by

modifying the Prometheus scrape_configs in the Helm chart file.

Figure 8: Prometheus configuration to scrape metrics from the FalcoSidekick endpoint

Next, Prometheus rules are added to trigger alerts to AlertManager. Alerts are triggered only

warning log level or higher.

kubectl apply -f prometheus-alert-rule.yaml -n monitoring

13

Figure 9: Alert rule in Prometheus

Then, AlertManager is configured to send notification to a Telegarm channel. The alerts will

be sent within 1 minute to reach administrators.

Figure 10: AlertManager configuration to send alerts to the Telegram channel

4.5.5 Custom Grafana UI

Once Grafana is up and running, a custom dashboard is created to show all security breaches

captured by Falco in the EKS cluster including total number of security events detected, types

of events and a graph in a period of time.

14

Figure 11: Grafana custom dashboard for captured Falco security events

4.5.6 Access FalcoSidekick, Grafana and Prometheus UIs:

To access the UI of monitoring tools, I created a script using port-forward to access UI

endpoint within the cluster without using NodePort service type.

Figure 12: port-forward script for accessing UIs

By integrating these tools toghther, we have a comprehensive monitoring stack with

capability of capturing real-time breaches using eBPF during runtime in the Kubernetes

cluster. There is also the alert system to notify any warning and critical security events to

administrators through the Telegram channel.

15

Figure 13: All EKS cluster pods

4.6 Workflow

In terms of workflow and data flow in this cluster, I will describe them from monitoring,

capturing to alerting. Originally, Falco itself collects Linux system calls by an eBPF probe. It

can then be analyzed using the Falco rule engine to detect any violations of predefined rules.

Secondly, Prometheus scrapes the metrics through Falco using FalcoSidekick and stores the

data for a later analysis. In addition, AlertManager is configured by predefined thresholds and

rules via Prometheus, promptly triggering only security issues with a warning priority or

higher to a Telegram channel. This detailed workflow ensures a clear understanding of data

movement of the monitoring stacks using eBPF and the Prometheus stack within the EKS

cluster.

5 Evaluation

This section provides a comprehensive analysis of the results and main research findings of

my work, giving the implications from both academic and practitioner viewpoints. In most

experiments, the attack surface is a Docker container and not a Pod or a Deployment in

Kubernetes because it offers a similar behavior but makes it easier to test. The evaluation

focuses on three experimental scenarios that support the research question and objectives.

16

5.1 Experiment 1: Intrusion Detection and Response

In the first experiment, attackers exploited the system by deploying containers. They did a

series of harmful actions from accessing to sensitive files, creating symlinks on sensitive files

for privilege escalation, sending data to external servers, and clearing up logs to clear their

traces. The attackers's purpose is to harvest useful data on the system and send it to their

servers.

Initially, the attacker tried to read sensitive files by executing the command `docker run -d

ubuntu:latest cat /etc/shadow`. Falco detected that the shadow file was accessed by an Ubuntu

container and issued a warning priority alert.

Figure 14: The attack tried to view the shadow file

Figure 15: Reading sensitive file activities detected by Falco

Following this, the attacker created a symlink over a sensitive file using the command

`docker run -d ubuntu:latest ln -s /etc/shadow /tmp/shadow_link`. This was detected by Falco

as a potential privilege escalation attempt.

Figure 16: The attack tried to create a symlink over the shadow file

17

Figure 17: Creating symlink over sensitive files detected by Falco

Next, the attackers exported data to their servers by executing a sequence of commands that

opened an SSH connection. Falco detected the SSH outbound connection to unauthorized

servers and raised an alert for data exfiltration activity.

Figure 18: The attack tried to establish the SSH connection to the external server

Figure 19: SSH connection detected by Falco

Finally, the attackers finally attempted to clear the log activities by issuing the command

`docker run -d -v /var/log:/var/log ubuntu:latest bash -c \"echo 'test' > /var/log/syslog\"`. This

activity was detected due to the modification of log files. An alert was raised due to

tampering with log files.

In summary, all detections were accurate, capturing the container ID and the command

executed accurately. All the detections were sent to a Telegram channel, and logs and metrics

18

are traceable in a Falcosidekick UI and visualized on Grafana, providing a complete

monitoring and alerting system. The detections by Falco are quite accurate and very fast in

catching many kinds of harmful activities, while Prometheus captured all the metrics within

30 seconds.

Figure 20: Clear log activities detected by Falco

5.2 Experiment 2: System Destruction Attempt

In the second experiment, attackers tried to destroy system data by running a container that

removes bulk data from the disk using the command `docker run -d ubuntu:latest shred -n 1

/path/to/data`. The detection was captured with the detailed logs of command execution and

target data path. This test indicates that Falco can detect destructive activities with details but

it cannot block this action from occurring so the data will be lost permanently if no backup

measures are in place.

Figure 21: Removing bulk data activities detected by Falco

5.3 Experiment 3: Crypto Mining Deployment

In this third experiment, a custom rule was configured to detect crypto mining into Falco's

rulesets. Attackers installed a crypto mining application in the Kubernetes cluster through the

use of a predefined deployment YAML file. A mining process was detected by Falco due to

the connection to mining pools. The detection is correct, including details of deployment and

associated containers. This experiment shows that Falco can detect any bad behaviors based

on customs which can be defined to fit the organization's policy. This threat was alerted with

the delay of about 2 minutes so that cluster operators may intervene in this behavior before

incurring financial losses.

19

Figure 22: The YAML file of crypto mining pods

Figure 23: Crypto mining application deployed in the EKS cluster

Figure 24: Outbound connection to mining pools detected by Falco

20

Figure 25: Alerts sent to the Telegram channel

Figure 26: Grafana dashboard showing all occurred attacks

21

5.4 Discussion

From an academic perspective, this work represents the efficiency of eBPF-based monitoring

and security tools for Kubernetes environments. It contributes to the academic understanding

of how eBPF can be integrated with traditional monitoring systems to enhance security and

observability. This detailed analysis of detection accuracy and system integration is an

important reference for future research in the area of cloud-native security and monitoring.

From a practical point of view, the integration of Falco with Prometheus and Grafana is a

realistic approach to heightening security within Kubernetes clusters. This work highlights

that eBPF-based tooling is very effective in the early detection of a wide range of security

threats originating from kernel events, providing a robust framework for security posture

enhancement in containerized environments.

In conclusion, evaluating the experimental scenarios proves that the use of eBPF-based tools

is very precise and effective at improving Kubernetes security and observability. Thanks to

integration with traditional monitoring systems, it guarantees an end-to-end system-related

threat detection and alerting process.

6 Conclusion and Future Work

In this work, we discuss the applicability of Extended Berkeley Packet Filter (eBPF) in

enhancing observability and security in Kubernetes environments. We solve complex security

challenges in the containerization world by integrating eBPF with mature monitoring tools

such as Falco, Prometheus, and Grafana. This integration has paved a way for more detailed

research into eBPF within Kubernetes for a revolution in cloud-native security frameworks

and operational monitoring. My research demonstrates that Falco could be used for fine-

grained observability with the help of eBPF, and custom rules could be implemented

according to organizational purposes. Through a series of experiments, I have shown the

ability of eBPF to capture real-time security incidents by assessing the log levels at the

kernel, considerably increasing the granularity of monitoring. This affords detailed insights

into Kubernetes operations that are critical for proactive security measures.

eBPF is a promising technology that can address the dual problems in Kubernetes regarding

observability and security. The complexity of eBPF programming and its integration

challenges with existing tools, alongside a steep learning curve, are headaches for operator

engineers. Furthermore, legacy system integration issues can complicate the deployment of

an eBPF-based solution.

Looking ahead, eBPF has the potential for extending applicability and simplifying the

deployment process. Future research could focus on using eBPF to proactively block threats

from occurring by considering the impact on the system performance and its feasibility.

Another promising research area is the development of machine learning models that would

analyze historical data and recommend optimal security policies which could be deployed

using eBPF-based tools. These approaches expand the functionality of eBPF, increase its ease

of use, and make it more effective in cloud-native environments.

22

Addressing these challenges and looking toward future research, eBPF could become an even

more important foundation for securing Kubernetes environments and a more resilient and

resilient security and observability platform.

References

[1] C. Liu, Z. Cai, B. Wang, Z. Tang and J. Liu, "A protocol-independent container network

observability analysis system based on eBPF," 2020 IEEE 26th International Conference on

Parallel and Distributed Systems (ICPADS), Hong Kong, 2020, pp. 697-702, doi:

10.1109/ICPADS51040.2020.00099.

[2] A. Sadiq, H. J. Syed, A. A. Ansari, A. O. Ibrahim, M. Alohaly, and M. Elsadig,

"Detection of Denial of Service Attack in Cloud Based Kubernetes Using eBPF," Applied

Sciences, vol. 13, no. 8, p. 4700, 2023. doi: 10.3390/app13084700.

[3] S. Gwak, T.-P. Doan, and S. Jung, "Container Instrumentation and Enforcement System

for Runtime Security of Kubernetes Platform with eBPF," Intelligent Automation & Soft

Computing, vol. 37, no. 2, pp. 1773-1786, 2023. doi: 10.32604/iasc.2023.039565.

[4] G. Budigiri, C. Baumann, J. T. Mühlberg, E. Truyen and W. Joosen, "Network Policies in

Kubernetes: Performance Evaluation and Security Analysis," 2021 Joint European

Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), Porto,

Portugal, 2021, pp. 407-412, doi: 10.1109/EuCNC/6GSummit51104.2021.9482526.

[5] S. Miano, M. Bertrone, F. Risso, M. Tumolo and M. V. Bernal, "Creating Complex

Network Services with eBPF: Experience and Lessons Learned," 2018 IEEE 19th

International Conference on High Performance Switching and Routing (HPSR), Bucharest,

Romania, 2018, pp. 1-8, doi: 10.1109/HPSR.2018.8850758.

[6] Ziheng Zhang and Lijun Chen. 2024. Anomaly Detection Model for Process Resource

Usage in Hybrid System based on eBPF and Isolation Forest. In Proceedings of the 2023 6th

International Conference on Artificial Intelligence and Pattern Recognition (AIPR '23).

Association for Computing Machinery, New York, NY, USA, 1511–1517.

https://doi.org/10.1145/3641584.3641812

[7] Angelo Feraudo, Diana Andreea Popescu, Poonam Yadav, Richard Mortier, and Paolo

Bellavista. 2024. Mitigating IoT Botnet DDoS Attacks through MUD and eBPF based Traffic

Filtering. In Proceedings of the 25th International Conference on Distributed Computing and

Networking (ICDCN '24). Association for Computing Machinery, New York, NY, USA,

164–173. https://doi.org/10.1145/3631461.3631549

[8] Cilium, "CNI Benchmark," 2021. [Online]. Available:

https://cilium.io/blog/2021/05/11/cni-benchmark/

[9] GoogleCloudPlatform, "Microservices Demo,". [Online]. Available:

https://github.com/GoogleCloudPlatform/microservices-demo

https://doi.org/10.1145/3631461.3631549
https://cilium.io/blog/2021/05/11/cni-benchmark/
https://github.com/GoogleCloudPlatform/microservices-demo

