

A Federated Learning Service Ecosystem
for Secure and Flexible Model Sharing in

Multi-Cloud Environments

MSc Research Project
Cloud Computing

Dhyanesh Naik
Student ID: X22206124

School of Computing
National College of Ireland

Supervisor: Rashid Mijumbi

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student
Name:

DHYANESH PRADIP NAIK

Student ID:

X22206124

Programme:

: Cloud Computing

Year:

2024

Module:

MSc Research Project

Supervisor:

 Rashid Mijumbi

Submission
Due Date:

12/08/2024

Project Title:

A Serverless Federated Learning Service Ecosystem for
Secure and Flexible Model Sharing in Multi-Cloud
Environments

Word Count:

8630 Page Count: 22

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

 Dhyanesh Pradip Naik

Date:

12th August 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project
(including multiple copies)

□

Attach a Moodle submission receipt of the online
project submission, to each project (including multiple
copies).

□

You must ensure that you retain a HARD COPY of the
project, both for your own reference and in case a project is
lost or mislaid. It is not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must
be placed into the assignment box located outside the office.

Office Use Only
Signature:
Date:
Penalty Applied (if
applicable):

1

A Serverless Federated Learning Service Ecosystem
for Secure and Flexible Model Sharing in Multi-Cloud

Environments

Dhyanesh Naik
X22206124

Abstract
This research work proposes a relatively new serverless federated learning (FL)

model-sharing mechanism for securing flexible multi-cloud environments. The research
presents solutions to important issues in decentralized machine learning such as securing
fine-grained access control and privacy-preserving aggregation. This proposed framework
scales across multiple AWS accounts for secure data and model sharing using a
decentralized architecture that resembles the federated learning process. It uses attribute-
based encryption (ABE) enabled by encapsulating the attributes into Advanced Encryption
Standard (AES) to allow peer-to-peer model sharing across different AWS accounts
without the need for central authorities. A masked-ring protocol is implemented for
decentralized model aggregation to protect user privacy during training. We have
implemented and evaluated our architecture on AWS Lambda to prove that it can be used
on real-world serverless platforms. The framework is highly effective and scalable as
demonstrated by experiments on multiple cloud accounts by training convolutional neural
networks (CNN) on a subset of the MNIST datasets for local training and local model
generation. The experimental framework is designed using AWS Lambda functions to
distribute the dataset across clouds, begin local model training, encrypt, and use local
masks before saving to S3 buckets. The host function can then be triggered to access these
local models to perform masked ring aggregation for unmasking and decrypting the
aggregated model. This research is part of the work that will advance privacy-encapsulated
collaboration learning in multi-cloud, keeping focused on the pragmatic balance between
security resourcing vs flexibility alongside performance.

1 Introduction
Federated learning is an emerging paradigm for collaborative machine learning using multiple
decentralized datasets without sharing raw data. Yet running secure and efficient federated
learning across multi-cloud serverless environments is not simple. In this work, we introduce
a new serverless federated learning framework capable of securely sharing knowledge from
models across multiple cloud environments to address the challenges attributed to decentralized
machine learning.

2

1.1 Research Problem and Background
The main research problem addressed by this work is: how to design and deploy a secure,
scalable, flexible multi-cloud serverless federated learning system with detailed model sharing
without central control points. Most of them work by allowing you to train models without ever
sharing your raw data, but they are not built in a way that perform well on the multi-cloud
where there is no central entity. However, this constraint prevents the broad applicability of
federated learning in a typical cloud-based organization seen throughout today's enterprises
(Chadha et al., 2021).
The challenges faced by decentralized servers are that they lack fine-grained access control for
access management of training data and models resulting from distributed ML learning on
clouds. This limits their capacity to share these deployments among other trusted parties in the
cloud, who are not involved in the training, but have the potential and requirement to do model
inference for more validation of the generated model (Li et al., 2022). The next issue with
decentralized environments is the process of aggregating the model without compromising on
privacy (Chen et al., 2024). This had to be considered with much importance before sharing
the model across clouds. This research will look to address those issues as well. Also, though
serverless architecture presents an attractive option for organizations because of their
scalability and low-cost offerings, their implementation is more complex with unique
challenges like the difficulty in maintaining a stateless execution environment and managing
resource policies (He et al., 2020). Also, it is quite intimidating and challenging to create a
framework that can operate well across various cloud platforms while also focusing on security,
scalability and cost efficiency (Zhang et al., 2023).

1.2 Motivation
This work targets a problem arising from business more and more using multi-cloud strategies,
driving the need for privacy-preserving machine learning approaches. Federated learning
promises a collaborative way of training these models without exchanging any information.
This is great, but when it comes to the real world – deploying this in multi-cloud serverless
environment, we have quite a few challenges to talk about. The purpose of this work is to
enable businesses to access a pool of data and trained ML models for informed decisions in an
ad hoc manner without running the risk that any individual organization’s privacy compliances
will be breached by developing a secure, efficient, and privacy-preserving federated learning
framework designed specifically for multi-cloud settings. Examples of such potential
applications are found in healthcare, finance, and smart cities requiring privacy-preserving
collaborative research (Su et al., 2021).

1.3 Research Question
How can we design and implement a secure, efficient, and flexible multi-cloud serverless
federated learning system that supports detailed model sharing without relying on centralized
servers, while addressing the challenges of decentralized key management, privacy-preserving
aggregation, and multi-cloud adaptability?

1.4 Research Objective
In this work, we present a serverless multi-cloud federated learning framework that enables
collaborative model training, supports enhanced access control using AES encryption wrapped
over user-defined attribute policies (ABE), offers privacy-preserving aggregated models
through masked ring aggregation, and is deployable across AWS cloud accounts and usable by
practitioners in real-world serverless environments.

3

1.5 Research Contributions
The research contributions are:

• The implementation of a novel multi-cloud secure model-sharing model that utilizes
federated learning architecture for decentralized computing.

• An enhanced attribute-based access control using AES by creating unique keys for each
or a group combination of attributes that can control access to data or models.

• Additional security is provided by random masking methods to secure the local model
updates to guarantee the participating client's privacy.

 With masked ring aggregation, the participating clients can create a ring structure for
the model to be aggregated by the host.

• Implementation and evaluation of the proposed framework on AWS Lambda across
multi-cloud accounts.

• This approach can be analysed in terms of security, scalability and efficiency

1.6 Thesis Organization
The rest of this thesis is organized into chapters as: Chapter 2 gives an exhaustive review on
the literature in federated learning in cloud environments and serverless computing, model
sharing and ingrained access controls, and decentralized aggregation techniques. This section
also covers the research gaps in previous approaches and how the proposed research overcomes
it. In chapter 3, research methodology includes the research methods involved in building a
secure model sharing techniques using federated learning in a serverless environment. The
design specification of the proposed system, including its architecture, components and
requirements is explained in Chapter 4. In Chapter 5, implementation phase of the federated
learning based secure model sharing is implemented in AWS with all its phases of development
is covered. Chapter 6 assesses the results in a way of practical deployment of the research in
AWS with multiple clouds. The thesis concludes with Chapter 7 which summarizes the main
contributions and highlights the future work for expanded research scope.

2 Related Work

2.1 Federated Learning in Multi-cloud Environments
(Merseedi and Zeebaree. 2024) presented a comprehensive review of cloud architectures for
distributed multi-cloud computing with an emphasis on hybrid and federated cloud
environments. It considers the technologies needed to integrate and manage diverse cloud
resources from different providers alike. These include private and public cloud architectures
together with the key factors to consider such as data residency, security, and workload
orchestration. It also focuses on federated clouds architectures that ease workload coordination
across multiple clouds by organisations. The authors evaluate current studies and industry
practices finding existing research gaps, areas of future exploration or innovation. The last
sections however mainly review the existing works without suggesting original approaches or
solutions in most cases and does not have performance evaluations or comparisons between
different type of multi-clouds strategies that exist today.
A federated learning model by (Singh et al., 2022) is proposed as a workable solution to this
problem, using privacy-preserving serverless cloud computing techniques. The authors’
method of introducing blockchain-enabled dew servers in each home area network (HAN)
eases data storage and training models locally, thus overcoming the shortcomings of current
centralized frameworks. Their approach helps to mitigate the effects on training results of
outliers with advanced perturbation and normalization procedures. Compared with existing

4

methods, the proposed model shows reduced computation and communication costs, lower
attack probability and better test accuracy results. Experimental results from benchmark
datasets attest to the effectiveness of the proposed model.
(Li et al., 2022) addresses the drawbacks of the earlier study in terms of its generalizability by
presenting a federated cloud/edge (FCE) framework for distributed cloud environments to
execute large-scale AI tasks. These authors use a weighted graph model that is a distributed
cloud system, and they apply software-defined networking (SDN) for monitoring and routing
purposes. They propose a hierarchical federated aggregation algorithm which is used to build
a global model across multiple cloud federations. The paper proves that the FCE framework
can lead to 41.3% reduction in total AI processing time and reaches 87% model accuracy in
telemedicine experiments. Moreover, the system is tolerant to faults, hence gracefully degrades
during node failures. The present research is unquestionably significant with respect to
advancing distributed AI processing but overlays an emphasis on performance improvements
but does not address privacy concerns pointed out in (Singh et al., 2022) work.
The main goal of the proposed model, Multi-FedLS (Brum et al., 2023) is the implementation
of cross-silo federated learning (FL) applications on multi-cloud environments. The authors
propose to use multiple cloud providers for reducing both execution time and financial costs
of FL applications. The framework is composed of four main components: Pre-Scheduling,
Initial Mapping, Fault Tolerance and Dynamic Scheduler. In Pre-Scheduling, they perform
experiments for better execution times and communication delays. The Initial Mapping module
provides an optimal scheduling map for server and client VMs. Checkpoint mechanisms are
implemented by fault tolerance module along with anomaly detection while the Dynamic
Scheduler selects new VMs if there are failures. This approach was assessed with a real-world
tumor classification application and two FL benchmark datasets. The results state that multi-
FedLS can save up to 56.92% costs compared to only using on-demand VMs with just 5.44%
increase in execution time.
Similar to (Brum et al., 2023), this paper too proposes a more detailed multi-FedLS framework,
primarily focusing on the pre-scheduling module (Brum et al., 2022). The researchers conduct
tests aimed at assessing communication delays between various cloud regions as well as
expected training and evaluation times for FL clients. The two main cloud providers considered
in this research namely, Amazon Web Services (AWS) and Google Cloud Platform (GCP) with
different VM types and regions were analyzed in terms of their performance. According to the
authors, there are considerable variations in communication times between cloud providers and
regions which underlines the importance of careful VM choice and placement across multi-
cloud environments. While this paper gives insights into what it takes to implement FL across
various cloud suppliers, it does not tackle the problem of data dissimilarity or propose any
specific methods for enhancing FL model accuracy under multi-cloud settings.
(Stefanidis et al., 2023) propose MulticloudFL, a FL system for multi-cloud environments that
can adapt itself. The authors have made two main contributions: a client selection mechanism
based on data size, local loss function values and the use of deep learning non-convex
optimization local loss functions. Their approach for selecting clients helps to find faulty data
and therefore increases the accuracy of models overall. This system also works with both IID
(Identically and Independent Distributed) data scenarios as well as non-IID ones, thus
reflecting more realistic multi-cloud deployments. The authors evaluate their ideas through
various kinds of experiments where they show that prediction accuracy can be enhanced with
respect to application and resource monitoring metrics. So, this work deals explicitly with
heterogeneity in handling data, anomaly detection, model improvement among other subjects
in the context of multi-cloud FL systems. However, it does not discuss very much about privacy
concerns that may arise from such client selection method or scalability issues if applied on
large scale multi-cloud setups.

5

In this section, different techniques of federated learning in multiple cloud environments are
discussed. Although research such as (Merseedi and Zeebaree. 2024) provide an extensive
literature review, the research tends to not present practical solutions or benchmark results.
(Singh et al., 2022) and (Li et al., 2022) propose blockchain and hierarchical aggregation
strategies, respectively, but neither of them considers the privacy issue. The works of (Brum et
al., 2023) are centered on cost and time factors in multi-cloud FL but do not consider the
heterogeneity of data or the enhancement in the model accuracy. (Stefanidis et al., 2023) have
proposed an adaptive system but the way they have selected their client can be problematic
from privacy point of view.

2.2 Secure Model Sharing and Access Control
Initial efforts to promote protection of data privacy in cloud computing revolved around the
use of encryption to ensure that the content remained confidential when shared among
untrusted cloud service providers. However, conventional methods of encryption did not have
capabilities for controlling access at granular level. In order to solve this problem, (Sahai and
Waters. 2005) suggested attribute-based encryption (ABE) which could make it possible for
data to be encrypted under different access policies depending on attributes. To improve the
expressiveness of access policies, (Bethencourt et al., 2007) and (Goyal et al., 2006) developed
key-policy and ciphertext-policy versions respectively while retaining the same functionality
as ABE. Even though it was possible to control access more precisely through the use of ABE
there were efficiency issues when revoking users’ rights especially over stored cloud data.
Xu et al., (2018) significantly enhanced revocable-storage attribute-based encryption (RS-
ABE) efficiency while maintaining ciphertext delegation essentiality in their constructive
works. They came up with a new time encoding mechanism that related to (Sahai and Waters.
2005) identity-based encryption scheme as part of their originality. This helped to reduce
computation costs and storage requirements by a logarithmic factor with respect to the overall
system lifetime, a big improvement in efficiency for systems that run for long period of times.
But still, the method still used pairing operations based on bilinear algebraic structures.
Although pairings have been known to provide powerful cryptographic primitives, their use
requires heavy computation which becomes problematic in environments limited by resources
such as IoT devices or sensors at the edge.
In order to better cope with the particular issues presented by edge computing environments in
IoT, (Zhou et al., 2021) have extended attribute-based encryption (ABE) access controls. This
study describes diversity and decentralization as the two main features where processing and
data sharing take place between different devices at network edges. Therefore, they suggested
a new scheme called ciphertext-policy attribute-based proxy re-encryption (CP-ABPRE) that
should allow for secure sharing and access of information in such complex networks. They
made it possible to detect any potentially harmful actions by any one given node situated at an
edge through their methods of embedding unique identifiers into each entity accountable in
certain scenarios. Even though it greatly improved safety levels associated with the system’s
trustworthiness through this feature, there were also drawbacks like additional computation
time needed during accountability check-ups. Such trade-offs between increased safety
precautions and more demanding computational needs pose typical challenges when designing
secure systems meant for limited-resource environments.
In order to tackle the issues of access control in decentralized cloud storage systems, (Gajmal
et al., 2024) have put forward a novel idea combining attribute-based encryption (ABE) with
blockchain technology. In their design they used the distributed nature and tamper-proof
properties of blockchain for key management with implementation on Inter-Planetary File
System (IPFS) in data storage across different locations. This integration was primarily
intended to bolster security across the board and enhance resilience against central authorities

6

which could serve as single points of failure or attack. According to initial assessments carried
out on their approach, it was found out that there were fewer cases of unauthorized entry than
before, thus indicating potential gains in terms of both safety measures and control at different
levels. But the incorporation of blockchain also posed new challenges with regard to scalability
as blockchains can only handle limited transactions per second and they might encounter higher
latency as more nodes join the network. Consequently, these problems around scalability may
affect performance as well as responsiveness of an access control system particularly when
implemented widely such as having large number users making frequent requests for file access
on cloud servers distributed across multiple sites.
Jiang et al., (2020) have done a great job in enhancing cross-domain object detection for self-
driving cars with the help of blockchain and distributed learning. They proposed a method
which used blockchains to share models between edge nodes while ensuring security. This was
a possible because the team built their own domain adaptive YOLO (You Only Look Once)
model for multiple edge nodes to be trained in distributed fashion. To enable distributed
training and model sharing, they used smart contracts on the blockchain to handle logistics in
a tamper-proof decentralized manner. The approach could improve object detection algorithms
on a range of domains or scenes. By distributing learning, they can harness computing power
from other edges which helps enhance generalization and model performance. The integration
with blockchains also brought about transparency as well as auditability into the model sharing
process. Nonetheless, while this approach enhanced cross-domain resilience while providing
secure frameworks for sharing models, there were still some privacy issues which were not
completely taken care of by this strategy with respect to underlying training data and
parameters of the model such as information leakage during exchange among others.
The work proposed in (Neyigapula et al., 2023) concentrated more directly towards privacy
and security concerns when it comes to AI model exchange over cloud platforms. For this
purpose, they presented an exclusive secure key exchange protocol that could enable encrypted
machine learning models’ sharing between different clouds systems. The proposed method
made use of already existing cryptographic techniques i.e., public key cryptography along with
Diffie-Hellman key exchange protocol to establish safe communication channels through
which encrypted models could be transmitted securely from one cloud system environment
onto another cloud system environment without any risk or threat being imposed upon those
shared resources throughout their transfer process. This technique guarantees high
confidentiality since all shared files are protected against unauthorized access throughout their
transmission period across multiple locations within clouds. However, the main drawback of
their architecture was that it relied heavily on centralized key management infrastructure,
which could compromise overall security and reliability associated with multi-cloud
environment used for sharing models.
This section discusses the progression of secure model sharing as well as access control
mechanisms. The first attempts at data protection were mainly on encryption, therefore there
was no fine control over the access of data. The expressivity was enhanced through ABE but
there was a problem of efficiency especially when it came to revoking users. In (Xu et al.,
2018) the efficiency was improved but the efficiency came at the cost of computationally
expensive pairing operations. (Zhou et al., 2021) enhanced ABE for edge computing to enhance
the security but at the same time, it increases the complexity of computation. (Gajmal et al.,
2024) proposed an ABE framework in 2024 and integrated it with blockchain to improve
security, though at the cost of scalability. (Jiang et al., 2020) implemented blockchain to self-
driving car model sharing while enhancing the transparency but not solving the privacy
problem completely.

7

2.3 Decentralized Aggregation and Key Management
Bonawitz et al., (2017) introduce a system for securely aggregating high-dimensional data
through communication-efficiency and failure-resilience, e.g., user-provided model updates in
federated learning. The aim is to allow the server to calculate the sum of data vectors held by
users without getting to know each individual contribution made by them. Security is
guaranteed under both honest but curious adversaries as well as active ones where also it
remains secure even though some users may drop out at any given point arbitrarily. A major
breakthrough employed herein involves double-masking technique that safeguards user’s
information even if masks can be reconstructed by servers. This protocol performs well with
large datasets and client pools in terms of runtime or communication overhead; for example, it
causes 1.73× expansion over sending clear text when dealing with input values of 16 bits long,
210 users and 220-dimensional vectors while in case of 214 users along with 224-dimensional
vectors there is a 1.98× expansion recorded over sending clear text. With this approach, the
authors propose a practical approach applicable to secure aggregation within real-world
federated learning scenarios.
To maintain privacy while ensuring that learning is federated, (Jeon et al., 2021) suggest a
decentralized aggregation protocol that uses the Alternating Direction Method of Multiplier
(ADMM) algorithm. They address the challenges to privacy in distributed aggregation by
creating a protocol that limits communication between participants during each round of
aggregation so as to reduce risks of divulging private information. This particular protocol
guarantees privacy against an honest-but-curious adversary. The secure aggregation protocol
makes it possible to perform efficient federated training with guaranteed privacy. In their work,
they conducted experiments on computer vision models and NLP models over benchmark
datasets consisting of 9 and 15 distributed sites respectively, achieving comparable learning
performance as traditional centralized federated learning methods would do in these cases
although having assumed synchronous network model requirements accompanied by
computation and communication overheads scaling up linearly with number-of-participants
growth rates.
In their study, (Fan et al., 2020) developed a decentralized privacy-preserving data aggregation
(DPPDA) method for smart grids based on the blockchain. A block is formed by each mining
node selected from among the smart meters in residential areas using a leader election
algorithm. In this scheme, the Boneh-Lynn-Shacham short signature and SHA-256 are
responsible for ensuring data confidentiality and integrity as far as billing and power regulation
are concerned while the Paillier cryptosystem is used by the mining node to aggregate users'
power consumption data. It can be seen that this scheme achieves decentralization without
relying on any trusted third party or certificate authority thereby safeguarding user privacy.
Experiments have shown its computation and communication overheads to be lower than those
of existing schemes in some cases while being limited only to one-dimensional power
consumption data aggregation methods.
Lin et al., (2017) propose a collaborative key management protocol in ciphertext policy
attribute-based encryption (CKM-CP-ABE) for cloud data sharing to overcome the limitations
of relying on a trusted third party. Without introducing additional infrastructure, this new
approach allows private keys to be generated, issued and stored in a distributed manner. In
order to achieve fine-grained and immediate attribute revocations, the authors introduce
attribute groups that can be used to build a private key update algorithm. The collaborative
mechanism also takes into consideration two aspects, the key escrow problem and key exposure
not fully addressed in previous research. It was found that this protocol is secure against semi-
trusted entities and efficiency evaluation shows that performed little better performance than
representative CP-ABE schemes for cloud-based data sharing on mobile devices, but only
applies when sharing data encrypted under CP-ABE policies.

8

Zhou et al., (2021) developed a system for managing keys in block-chain-based intelligent
transport systems (ITS) based on threshold. Shamir’s secret sharing and Chinese remainder
theorem (CRT) are used to suggest two different methods of attaining key sharing among
stakeholders. If, and only if at minimum ‘t’ number of participants take part, then ‘n’ number
of shareholders jointly recover their secret by this plan. This ensures safety as well as fault
tolerance in data sharing through ITSs. According to complexity analysis, recovery of secrets
can be done more efficiently with CRT than with Shamir’s method. The proposed scheme
allows for decentralized key management suitable for use in blockchain technology applied to
intelligent transport systems. In future works, one might consider investigating designs where
thresholds are computed for access structures that have greater complexity than those described
by (t, n)-thresholds.
This section focuses on Decentralized aggregation and Key Management in Federated
Learning. Some of the recent solutions that have been proposed include double-masking,
ADMM, blockchain for smart grids, collaborative key management for cloud data sharing and
threshold-based security for ITS. These methods represent an advancement of the decentralized
solutions, but the performance of these methods is a trade-off between the security, efficiency
and the flexibility to apply to various situations. However, these approaches have their potential
shortcomings including scalability problems, privacy issues, and restricted universality to
various situations. Collectively, these studies suggest that more research is still required in
decentralized architectures in federated learning.

2.4 Summary
The literature analysis exposes a few important research gaps in FL within multi-cloud
environments. First, while the training phase of FL in multi-cloud settings has been solved,
sharing secure models after training has not seen much exploration. The majority of current
methods just concentrate on the training process and ignore phases that follow it where trained
models are shared as services. Secondly, there is no fine-grained access control mechanisms
for sharing trained models among various clouds or accounts in decentralized manner. Most
solutions rely on centralized key management or trusted third parties which do not fit well with
decentralized multi-cloud architectures. In addition, sharing trained FL models lacks flexibility
and granular access controls, thus limiting their applicability across different domains.
To fill these gaps, several innovations has been proposed by this serverless FL service
ecosystem model. The system provides a complete framework for supporting FL starting from
customized model training to granular model sharing, while still preserving privacy and fitting
into multi-cloud collaboration environment. It uses mask-based ring aggregation scheme for
achieving privacy preserving aggregation without destroying distributed nature of training
process itself (Hu et al., 2023). Moreover, this approach introduces distributed secret key
generation and management scheme integrated with ABE which ensures full decentralization
during service. This overcomes limitations associated with existing solutions where keys are
managed centrally. Moreover, through attribute-based access control (ABAC), more flexible
secure sharing among both participants and non- participants can be allowed, enabling closer
integration between them at different levels during their lifecycle. The proposal addresses all
these issues thereby providing wider ranging safer alternative for carrying out federated
learning within multi-cloud environments.

3 Research Methodology

To address the gap described above and improve on this line of work, we propose a mixed-
methods approach in designing an effective serverless federated learning framework for secure
formative model sharing run over multi-account cloud environments. The methodology

9

consists of several main stages: architecture design, implementation, experimental setup, data
collection, and analysis as in figure 1.
The first phase concentrates on the architecture of a serverless federated learning framework
as a solution for decentralized model aggregation, fine-grained access control, and distributed
key management in multi-cloud scenarios. A key ingredient in this design is Attribute-Based
Access Control (ABAC) combined with AES encryption, allowing secure peer-to-peer model
sharing without any central authority. This method presents a higher degree of control and
flexibility in terms of access controls compared to its static role-based counterparts, which is
why it especially fits well with the dynamic nature that multi-cloud environments operate
within.
The MNIST dataset for handwritten digits classification is taken as our benchmark model to
be generated for distribution across the cloud. The dataset is preprocessed, normalized, and
divided into multiple subsets to simulate distributed data across different cloud environments.
This division allows us to realistically model the challenges of federated learning in a multi-
party setting.
The cloud infrastructure setup is multiple AWS accounts configuration to mimic a multi-cloud
environment. We use AWS S3 for storing our data and models, and as a serverless computing
platform with AWS Lambda. We chose this infrastructure to illustrate the viability and
scalability of our framework in a real-world cloud setting. Additionally, the setup covers setting
up Security Token Service (STS) access for secure cross-account interactions that is very
important to keep data privacy and accessibility in a multi-cloud environment.
We adopt to train local models within AWS SageMaker, with code used to create all necessary
components for training machine learning models like convolutional neural networks (CNN)
across distributed MNIST subsets. In this phase, we configure the training parameters to be
used for model generation, before commencing with the execution of the entire process on
individual data subsets across the multiple accounts in AWS cloud environments.
We have applied Attribute Based Access Control with AES encryption as the core component
for its fine-grained access policies based on attributes of the accessing entities and protected
resources. When combine with AES encryption, it guarantees only permitted parties can access
and decrypt the model parameters shared from one place to another, resulting in desirable
security on decentralized learning.
We also use random masking techniques in the research to further obscure model parameters
before they are shared. Authorized parties then unmask and decrypt the shared information,
guaranteeing that during federated learning its integrity is maintained while remaining
confidential. Task Publisher – the component responsible for distributing learning tasks and
orchestrating the federated model aggregation process across multi-accounts on AWS cloud.
This component is important for coordinating the decentralized learning workflow and
ensuring participants are in sync with other participants in the closed cloud environment.
Our approach heavily relies on the Masked Ring Aggregation protocol provided as a serverless
function in our host-node model. The protocol renders safe aggregation of model updates by
multiple parties in privacy preserving manner, enabling collaborative learning.
Ultimately, we form a final aggregated model that combines the individual learners to
collective knowledge learned in the process. This model is stored securely at the same time
made available to only authorized parties, showing our full-fledged serverless federated
learning framework.

10

Figure 1: Proposed Federated Learning based Secure Model Sharing

It entails a comprehensive methodology, through which we have attempted to tackle the
intricate issues surrounding secure and efficient federated learning within multi-cloud
environments. Our methodology has specific import for organizations wishing to balance
distributed data and computing resources with security grounds. The capability addresses a real
pain point and rising trend in enterprise AI development—agile, privacy-preserving
collaboration on sensitive data across organizational (and now geographical) boundaries that
may otherwise hinder progress, effectively democratizing collaborative innovation outside
traditionally siloed fields.

11

4 Design Specifications
We present a serverless federated learning framework that addresses the challenges of secure
and efficient model sharing when running multiple clouds. Fundamentally, the architecture
leans on AWS Lambda for efficient and economical execution of federated learning tasks at
scale, completing an adaptable architectural backbone to enable distributed machine learning
across a number of diverse cloud platforms.

4.1 Data Preparation
The Framework starts with the Dataset Preparation Module which serves to normalize the
distribution and processing of MNIST dataset across different simulated cloud environments.
The module performs data preprocessing operations (e.g. normalization and augmentation) so
that distributed subsets have been transformed in a consistent way. Data prepared in the
framework is sent to AWS S3 buckets of the participating clients as it moves along where
corresponding subsets are associated with different cloud accounts in AWS cloud environment.
This distributed designed closely relates to the real-world scenario of data silos across
organizations in a multi-party collaboration, forming foundations for running federated
learning.

4.2 Local Model Training Module
This forms the core of the proposed framework and is deployed on AWS Sagemaker for local
model training. This uses existing machine learning libraries (ex. TensorFlow or PyTorch)
optimized for producing finely tuned models with control over their hyperparameters. This
localized module takes a subset of the MNIST dataset as input and chooses some global model
parameters, which outputs an updated local model. To facilitate training several local models,
we use SageMaker capabilities to automatically search the hyperparameters, that will optimize
our successful model during any one-shot iteration. This guarantees that each participant in the
federated learning process can individually make large beneficial contributions to a model,
even for different local datasets. This module connects to other parts of the framework via
SageMaker integration with AWS services. Such as with the model parameters and input data
taken from S3 buckets, to saving the trained models back in s3 for use in future stages of
federated learning (FL) process.

4.3 Attribute-based Access Control (ABAC) with AES
The second most important component which is addressed by our framework is security and
access control using Attribute-Based Access Control (ABAC) with AES Module. This
component covers the most fine-grained and flexible access control in place of well-known
Attribute-Based Encryption (ABE). AES encryption is used to encrypt model parameters and
define access policies according to the attributes of requesting entities. It gives you the
flexibility to decide who can access, and decrypt shared models which is important in multi-
cloud and multi-account clouds.

4.4 Random Masking Layer
The Random Masking Module masks the data further to ensure even more privacy protection
in form of an additional layer. This module injects a random noise mask into the model
parameters before sharing updates of them. It is implemented taking the local update of the
model after encryption and returning it in masked form. The model update mask is designed to
preserve the statistical properties of the model update, but not allow recovering individual data
points from it. This module is used in conjunction with the Unmasking Module, which undoes

12

the masking after aggregation to provide good performance of final model that respects privacy
for all records.

4.5 Masked Ring Aggregation Module
The Masked Ring Aggregation Module is the very core of federated learning. This is a new
concept that would allow models to be aggregated across multiple assets without using as
central server. This module is implemented in a manner where each function corresponds to
one node on the virtual ring and together, they aggregate masked model updates from all clouds
involved. The ring also guarantees that an individual participant cannot directly read the plain
mirrored updates of other participants. To secure the intermediate result, they were saved in S3
temporarily and access control has been set for both individual buckets. It also handles the
unmasking and decryption process, before starting the local model aggregation

4.6 Task Publisher
The Task Publisher Module coordinates the entire federated learning workflow. It receives
global updates on models which it distributes, triggers local training processes and initiates the
aggregation protocol. The final aggregation and updating of the global model stored in S3 are
also done by this layer along with other layers. Task Publisher is failure-proof and reassuring,
using retrying mechanisms to handle errors or network disruptions occurred during the
outbound direction of federated learning.
All the modules are interconnected to build a powerful, secure and flexible Serverless
Federated Learning Framework. The applications communicate over the event bridge using a
mix of direct Lambda invocation, S3 object movement and SageMaker model training. Such
design makes having a high scalable and fault-tolerant system where every component should
be able to function autonomously while contributing towards the federated learning goal. The
loosely coupled, modular design of the framework allows flexibility in extending/customizing
its components. Individual components such as the machine learning algorithm (CNN) in Local
Model Training Module or aggregation protocols can be modified by researchers and
practitioners without impacting overall system architecture. This enables support to a
diversified range of federated learning applications more than the classical MNIST
classification.

4.7 ABAC-AES Encryption – Sequence Diagram
For this application to federated learning — local model encryption — the ABAC (Attribute-
Based Access Control) AES Encryption plays a secure way of safeguarding important
parameters. When a local client participant wants to share its model updates, it invokes
encryption with the model parameters as the message and an access control policy on who is
allowed to consume this encrypted data. This newly generated AES will now be able to encrypt
the model's parameters, followed by keys for each attribute in this policy. Then, this way only
participants matching these attributes will be able to decrypt and access the new model updates.
Encrypting features and not identities leave room for participants to swap out of the system in
an ever-changing federated learning standard. This approach improves fine-grained control
over what to share for a model, which is important for security and privacy in multi-party
machine learning collaborations on different clouds. Figure 2 presents the encryption process
as a sequence diagram for detailed understanding.

13

Figure 2: ABAC-AES Encryption Process

4.8 ABAC-AES Decryption – Sequence Diagram
When a client gets an encrypted model, it requests the decrypted value of a given tensor in its
scope, by giving both ciphertext and their user keys. So, this iterates through every plaintext
attribute key in the ciphertext and tries to decrypt it using corresponding user keys of a client.
If this is successful, it will derive the primary AES key for encrypting model parameters. This
key is then used to decrypt the real model data and unpad it, as well parse from JSON format.
As a result of this, encrypted model updates can only be decrypted by the intended owners who
have appropriate attribute keys (associated with role/clearance/organization unit). By doing so,
the system ensures security and privacy in the multi-party, federated learning environment with
different cloud providers by fine-grained access control to share model only among authorized
participants U while preventing adversaries from accessing sensitive information of a shared
global model. The sequence modeling diagram is presented in Figure 3 for the decryption
process.

14

Figure 3: ABAC-AES Decryption Process

5 Implementation
This stage of the research discusses on how the proposed research framework is implemented
on AWS covering the configuration, development, and calling of each module discussed in the
previous section.

5.1 AWS Services
This serverless federated learning framework will for the most part be implemented using an
array of AWS services as in Figure 4. We will use Amazon S3 (Simple Storage Service) as the
main storage service for this purpose such as datasets, model parameters, masks, and user keys.
AWS Lambda-based serverless approach is implemented for different modules of the
framework such as dataset preparation and masked ring aggregation module. For this demo,
we will use Amazon SageMaker to train the local model on the participating client nodes,
encrypt our models with ABAC-AES, and apply masks on them. The configuration of AWS
Security Token Services (STS) ensures temporary access to other client AWS accounts and
access its resources like S3. The AWS Identity and Access Management (IAM) will be heavily
utilized to configure permissions across the accounts.

15

5.2 S3 Bucket Setup
The first step in the implementation process is to create multiple S3 buckets across the client
AWS account to capture the essence of working in a multi-cloud environment. Every
participating client account will have its own bucket named cloud-2-bucket, cloud-3-bucket
and so on for storing the MNIST subset, local model parameters, user keys, and masks
associated with each local model. The bucket policies must be configured in such a way that
the host account has access write/read permissions to it. The task publisher that holds the
masked ring aggregation module must also have access permission to work with cross-account
S3 storages before it can read or write from them.

5.3 SageMaker Configuration
We'll set up SageMaker for each of the AWS accounts participating in Local Model Training
Module. In SageMaker, a Jupyter Notebook environment with proper preconfigured python
package libraries to run the model training on the fly can be selected along with the EC2
instances. This includes making SageMaker notebook instances for development and
experimentation, defining SageMaker training jobs for the real model training. We will need
to create IAM roles that give permission to SageMaker so it can access the specific S3 buckets,
read input data and write out the models. The generated local model of the client-node will be
saved back to S3 after applying ABAC-AES encryption and masking on it, post-model training.

5.4 Cross-Account Access Setup
To make this work securely, we will use AWS STS. We have to do this so we can create IAM
roles within each account trust with the other participating accounts allowing our service
entities access across the multi-account cloud structure. These roles will have policies added
that contain the necessary permissions for cross-account S3 access and Lambda invocations.
In particular — the Task Publisher module will need to play these roles to orchestrate the
federated learning process across accounts.

5.5 Monitoring and Logging
Since we want to persistently keep watch of the various services invoked and run in the
federated learning process, we'll provision AWS CloudWatch for logging and monitoring. Also
configuring CloudWatch Logs to start collecting logs from Lambda functions and SageMaker
training jobs for S3 bucket access. CloudWatch Alarms will be set up to notify of any
irregularities in the system or failure.

5.6 Error Handling
Finally, we want to have the safety net of performing smooth error handling in our Lambda
functions and SageMaker training jobs so that everything breaks gracefully enforce more and
everywhere. In the context of Masked Ring Aggregation, we will implement a failure recovery
mechanism that is able to detect, and bypass failed nodes in our ring so as to allow for partially
functional participants yet still have full completion.

16

Figure 4: AWS Infrastructure for Secure Serverless Federated Learning

5.7 Scalability and Cost Optimization
The serverless architecture of our solution using Lambda and SageMaker means it scales
without us needing to worry about the infrastructure. But restrictions from Lambda
concurrency limits and SageMaker instance types will have to be considered so that we can
handle the required scale of federated learning. Depending on how many accounts are
participating and the size of models being trained/aggregated, we will also likely need to
request limit increases for certain AWS services.
In this example multi-account scenario, we will use AWS Cost Explorer for checking and
managing spending in the given accounts. We will leverage managed spot training as much is
appropriate (for SageMaker) so that we can cut compute costs. We will further equip S3 buckets
to incorporate lifecycle policies which can then transition the objects between different storage
classes and expire as per data retention requirements.

5.8 CNN Local Model Training on SageMaker
• As shown in Figure 5, it starts with loading a subset of the MNIST dataset from an S3

bucket. A PyTorch Dataloader is created for better batching during training after the
raw data has already been preprocessed and normalized.

• This architecture consists of two Convolutional layers, 2 dropouts for regularization
and batch normalization followed by a fully connected layer with ReLU activation, and
a max pooling `block.

17

• train_model: This is a function to be used for training the model — optimizing
parameters using Adam and CrossEntropyLoss as the loss function while iterating
through a specified number of epochs.

• The actual code instantiates a CNN model, loads training data from S3, and calls the
train_model function to fit the network.

• After training, we encrypt the parameters of the models with a custom ABE scheme
encapsulated within AES and then mask it for two-level protection.

• The encrypted and masked model parameters are then saved back to S3 for later use or
redistribution in a secure, federated learning environment.

Figure 5: CNN Model Training for Local Model Creation

6 Evaluation
The complete evaluation of the results implementing the aforesaid framework on both the host
and the client AWS cloud accounts by setting up the configuration environment and executing
the lambda codes for MNIST dataset distribution and masked-ring aggregation. AWS
SageMaker implementation is done for local model training, encryption and masking. For
convenience’s sake, three cloud accounts will be considered, one acting as the host and two
others acting as client-1 and client-2 respectively.

18

6.1 Step-1: Lambda function to create MNIST subsets across the cloud
accounts

Figure 6: MNIST distribute lambda function with cloud account details

6.2 Step-2: Distribution of MNIST subsets

Figure 7: Code Snippets showing the process behind the MNIST subset distribution

6.3 Step-3: MNIST subset on Client-2 Account

Figure 7: mnist_subset_4 is saved in .npy format

19

6.4 Step-4: SageMaker Local Model Training
For model training on SageMaker, create a SageMaker studio domain and use a Jupyter
notebook to create the model training file. This implements the CNN model for training using
PyTorch package libraries, ABAC-AES model for encryption using pycryptodome, and
masking for further layer of security.

Figure 8: CNN model used for local model training on MNIST subset

Figure 9: AES Encryption Block

Figure 10: Model Training Process Output

Figure 11: On client-2 S3 storage, masked model, masks, and user keys are saved

20

6.5 Step-5: Masked-ring Aggregation Lambda on Host Cloud for model
aggregation

Figure 12: assume_role allows to access resources like S3 on other client accounts

Figure 13: Masked model unmasking and decryption followed by aggregation

Figure 14: Aggregated MNIST model with the whole MNIST dataset is saved to host
cloud in JSON format.

6.6 Discussions
These experimental processes presented clearly analyze the implementation of the secure
model sharing framework with a demonstration of what happens in the client cloud, and host
cloud. How the MNIST subsets distributed over client cloud accounts can be used to train the
local model, encrypt, and mask it before saving to S3 storage. Since we consider two clients
here, the masked ring aggregator must access the saved models with their masks and user keys,
before preforming unmasking, decryption, and masked ring aggregation of the host cloud. One
important thing to note here is that, before any form of communication, or model/sharing to
happen between the participating clients and host, AWS S3 access roles must be defined on the

21

client cloud for cross-account for host account access, and client S3 account storage must have
permissions/trust relationship to allow access to AWS lambda execution roles. The host cloud
must have STS policies installed to gain temporary access over the client clouds as well. These
configurations to the permissions, roles, and policies on the client and host help to strength the
security by preventing authorised access

7 Conclusion and Future Work
In this work, a serverless federated learning framework has been proposed that securely and
efficiently shares models among multiple cloud accounts. The framework tackles some of the
most fundamental challenges in decentralized machine learning: fine-grained access control
(solved using attribute-based encryption with AES), privacy-preserving aggregation (e.g., via
masked-ring protocols) and scalability across AWS accounts. The experimental results show
that the proposed approach is both effective and efficient in mining CNN models training and
sharing of MNIST datasets on a distributed cloud account. Future work may investigate the
usage of this framework on different machine learning models and datasets, as well as
incorporate further security features such as differential privacy. The performance and
scalability of the framework should be further studied using different network conditions and
larger scale deployments. Moreover, broadening the framework to include a wider range of
cloud platforms and serverless computing ecosystems will make it more robust (or practical)
in actual use case.

References

Bellavista, P., Della Penna, R., Foschini, L. and Scotece, D., 2020, June. Machine learning for
predictive diagnostics at the edge: An IIoT practical example. In ICC 2020-2020 IEEE
International Conference On Communications (ICC) (pp. 1-7). IEEE.

Benomar, Z., Longo, F., Merlino, G. and Puliafito, A., 2021, December. Deviceless: A
serverless approach for the Internet of Things. In 2021 ITU Kaleidoscope: Connecting Physical
and Virtual Worlds (ITU K) (pp. 1-8). IEEE.

Bhattacharjee, A., Chhokra, A.D., Kang, Z., Sun, H., Gokhale, A. and Karsai, G., 2019, June.
Barista: Efficient and scalable serverless serving system for deep learning prediction services.
In 2019 IEEE International Conference on Cloud Engineering (IC2E) (pp. 23-33). IEEE.

Calabrese, M., Cimmino, M., Fiume, F., Manfrin, M., Romeo, L., Ceccacci, S., Paolanti, M.,
Toscano, G., Ciandrini, G., Carrotta, A. and Mengoni, M., 2020. SOPHIA: An event-based IoT
and machine learning architecture for predictive maintenance in industry
4.0. Information, 11(4), p.202.

Chadha, M., Jindal, A. and Gerndt, M., 2020, December. Towards federated learning using
FaaS fabric. In Proceedings of the 2020 sixth international workshop on serverless computing
(pp. 49-54).

Chen, Y., Ning, Y., Slawski, M. and Rangwala, H., 2020, December. Asynchronous online
federated learning for edge devices with non-iid data. In 2020 IEEE International Conference
on Big Data (Big Data) (pp. 15-24). IEEE.

Christou, I.T., Kefalakis, N., Zalonis, A. and Soldatos, J., 2020, May. Predictive and
explainable machine learning for industrial internet of things applications. In 2020 16th

22

international conference on distributed computing in sensor systems (DCOSS) (pp. 213-218).
IEEE.

Golec, M., Gill, S.S., Wu, H., Can, T.C., Golec, M., Cetinkaya, O., Cuadrado, F., Parlikad,
A.K. and Uhlig, S., 2024. Master: Machine learning-based cold start latency prediction
framework in serverless edge computing environments for industry 4.0. IEEE Journal of
Selected Areas in Sensors.

He, C., Li, S., So, J., Zeng, X., Zhang, M., Wang, H., Wang, X., Vepakomma, P., Singh, A.,
Qiu, H. and Zhu, X., 2020. FedML: A research library and benchmark for federated machine
learning. arXiv preprint arXiv:2007.13518.

Lee, K.C., Villamera, C., Daroya, C.A., Samontanez, P. and Tan, W.M., 2021, November.
Improving an IoT-Based Motor Health Predictive Maintenance System Through Edge-Cloud
Computing. In 2021 IEEE International Conference on Internet of Things and Intelligence
Systems (IoTaIS) (pp. 142-148). IEEE.

Li, T., Sahu, A.K., Talwalkar, A. and Smith, V., 2020. Federated learning: Challenges,
methods, and future directions. IEEE signal processing magazine, 37(3), pp.50-60.

Liu, X., Wen, J., Chen, Z., Li, D., Chen, J., Liu, Y., Wang, H. and Jin, X., 2023. FaaSLight:
General application-level cold-start latency optimization for function-as-a-service in serverless
computing. ACM Transactions on Software Engineering and Methodology, 32(5), pp.1-29.

Magadán, L., Suárez, F.J., Granda, J.C. and García, D.F., 2020. Real-time monitoring of
electric motors for detection of operating anomalies and predictive maintenance. In Science
and Technologies for Smart Cities: 5th EAI International Summit, SmartCity360, Braga,
Portugal, December 4-6, 2019, Proceedings (pp. 301-311). Springer International Publishing.

Martinez, M.M. and Pandey, S.R., 2022, March. Predictive function placement for distributed
serverless environments. In 2022 25th Conference on Innovation in Clouds, Internet and
Networks (ICIN) (pp. 86-90). IEEE.

McGrath, G. and Brenner, P.R., 2017, June. Serverless computing: Design, implementation,
and performance. In 2017 IEEE 37th International Conference on Distributed Computing
Systems Workshops (ICDCSW) (pp. 405-410). IEEE.

Nastic, S., Rausch, T., Scekic, O., Dustdar, S., Gusev, M., Koteska, B., Kostoska, M.,
Jakimovski, B., Ristov, S. and Prodan, R., 2017. A serverless real-time data analytics platform
for edge computing. IEEE Internet Computing, 21(4), pp.64-71.

Nizam, H., Zafar, S., Lv, Z., Wang, F. and Hu, X., 2022. Real-time deep anomaly detection
framework for multivariate time-series data in industrial IoT. IEEE Sensors Journal, 22(23),
pp.22836-22849.

Pelle, I., Czentye, J., Dóka, J., Kern, A., Gerő, B.P. and Sonkoly, B., 2020. Operating latency
sensitive applications on public serverless edge cloud platforms. IEEE Internet of Things
Journal, 8(10), pp.7954-7972.

Poojara, S.R., Dehury, C.K., Jakovits, P. and Srirama, S.N., 2022. Serverless data pipeline
approaches for IoT data in fog and cloud computing. Future Generation Computer
Systems, 130, pp.91-105.

23

Sethunath, M. and Peng, Y., 2022. A joint function warm-up and request routing scheme for
performing confident serverless computing. High-Confidence Computing, 2(3), p.100071.

Shahrad, M., Fonseca, R., Goiri, I., Chaudhry, G., Batum, P., Cooke, J., Laureano, E., Tresness,
C., Russinovich, M. and Bianchini, R., 2020. Serverless in the wild: Characterizing and
optimizing the serverless workload at a large cloud provider. In 2020 USENIX annual technical
conference (USENIX ATC 20) (pp. 205-218).

Su, Z., Wang, Y., Luan, T.H., Zhang, N., Li, F., Chen, T. and Cao, H., 2021. Secure and
efficient federated learning for smart grid with edge-cloud collaboration. IEEE Transactions
on Industrial Informatics, 18(2), pp.1333-1344.Bagai, R., 2024. Comparative Analysis of AWS
Model Deployment Services. arXiv preprint arXiv:2405.08175.

Wang, B., Ali-Eldin, A. and Shenoy, P., 2021, June. Lass: Running latency sensitive serverless
computations at the edge. In Proceedings of the 30th international symposium on high-
performance parallel and distributed computing (pp. 239-251).

Wang, B., Ali-Eldin, A. and Shenoy, P., 2021, June. Lass: Running latency sensitive serverless
computations at the edge. In Proceedings of the 30th international symposium on high-
performance parallel and distributed computing (pp. 239-251).

Wang, I., Liri, E. and Ramakrishnan, K.K., 2020, November. Supporting IoT applications with
serverless edge clouds. In 2020 IEEE 9th International Conference on Cloud Networking
(CloudNet) (pp. 1-4). IEEE.

Wang, J., Zhang, L., Duan, L. and Gao, R.X., 2017. A new paradigm of cloud-based predictive
maintenance for intelligent manufacturing. Journal of Intelligent Manufacturing, 28, pp.1125-
1137.

Wu, S., Tao, Z., Fan, H., Huang, Z., Zhang, X., Jin, H., Yu, C. and Cao, C., 2022. Container
lifecycle‐aware scheduling for serverless computing. Software: Practice and
Experience, 52(2), pp.337-352.

Zhang, C., Li, S., Xia, J., Wang, W., Yan, F. and Liu, Y., 2020. {BatchCrypt}: Efficient
homomorphic encryption for {Cross-Silo} federated learning. In 2020 USENIX annual
technical conference (USENIX ATC 20) (pp. 493-506).

