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Configuration Manual

Siranjeevi Muthusamy

Student ID: x22241647

1 Introduction

To help the researchers and other academic purposes, this manual provides step by step 

approach to setup the project. This includes system requirements, environment setup, 

programming languages, libraries and other dependencies that are essential for the 

project to run. 

2 System Specifications

AWS Studio Notebook Instance:

• vCPUs: 4

• Memory: 16 GiB

• Networking: 25Gbps

• Storage: EBS

• GPUs: 1 NVIDIA T4 Tensor Core GPU

o GPU Memory: 16 GiB GDDR6

o CUDA Cores: 2,560

o Tensor Cores: 320

3 Essential Software Packages and Libraries

Initialize a new studio notebook instance and proceed with the installation of following 

packages and libraries

1. Programming Language

a. Python 

b. Version: 3.10

2. TensorFlow Federated (TFF)
a. Installation: !pip install --quiet --upgrade tensorflow_federated
b. Version: >= 2.13 < 2.18

3. Nest Asyncio
a. Installation: !pip install --quiet --upgrade nest_asyncio

4. TensorBoard Extensions
a. Command: %reload_ext tensorboard
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3.1 Import Libraries for Data Processing, Models and Visualization

a. Numpy, Pandas, Matplotlib, Seaborn

a. Commands:
i. import numpy as np

ii. import pandas as pd
iii. import seaborn as sns
iv. import matplotlib.pyplot as plt

b. Scikit-learn (sklearn)
a. Import: from sklearn.metrics import accuracy_score

c. TensorFlow
a. Import: import tensorflow as tf

d. TensorFlow Federated (TFF)
a. Import: import tensorflow_federated as tff

4. Dataset
o MNIST

o Import: (x_train,y_train),(x_test,y_test) = tf.keras.datasets.mnist.load_data()

5. AWS SageMaker Setup
• Create a new SageMaker domain if not available already

• Create a new SageMaker notebook with the following configuration,

 Choose the "Python 3 (TensorFlow 2.13 Python 3.10 CPU Optimized)" 

kernel.

 Select the "ml.c5.xlarge" instance type.

• Run the notebook instance.

6. Data Preparation

import tensorflow as tf

# Load MNIST dataset

(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()

# Normalize pixel values

x_train, x_test = x_train / 255.0, x_test / 255.0

# Reshape data for CNN

x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)

x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)

7. Model Implementation
def create_keras_model():

return tf.keras.models.Sequential([

tf.keras.layers.Conv2D(32, kernel_size=(3, 3), activation='relu', 

input_shape=(28, 28, 1)),

tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),

tf.keras.layers.Conv2D(64, kernel_size=(3, 3), activation='relu'),

tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),
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tf.keras.layers.Flatten(),

tf.keras.layers.Dense(128, activation='relu'),

tf.keras.layers.Dense(10, activation='softmax')

])

8. Federated Learning Setup
import tensorflow_federated as tff

# Preprocess data for FL

def preprocess(dataset):

def batch_format_fn(element):

return (tf.reshape(element['pixels'], [-1, 28, 28, 1]),

tf.reshape(element['label'], [-1, 1]))

return dataset.batch(20).map(batch_format_fn)

# Create TFF types

sample_batch = tf.nest.map_structure(

lambda x: x.numpy(), next(iter(preprocess(train_data.take(1)))))

input_spec = sample_batch[0].shape, tf.TensorSpec(shape=[None, 1], 

dtype=tf.int64)

def model_fn():

keras_model = create_keras_model()

return tff.learning.from_keras_model(

keras_model,

input_spec=input_spec,

loss=tf.keras.losses.SparseCategoricalCrossentropy(),

metrics=[tf.keras.metrics.SparseCategoricalAccuracy()])

# Create federated training process

iterative_process = tff.learning.build_federated_averaging_process(

model_fn,

client_optimizer_fn=lambda: tf.keras.optimizers.SGD(learning_rate=0.02),

server_optimizer_fn=lambda: tf.keras.optimizers.SGD(learning_rate=1.0))

9. Running Experiments

NUM_ROUNDS = 5

NUM_CLIENTS = 10

for round_num in range(NUM_ROUNDS):

state, metrics = iterative_process.next(state, federated_train_data)

print(f'Round {round_num}')

print(metrics)

10. Recovery Strategies

# Recovery strategies
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def federated_recovery(x_test, y_test):

return global_accuracy

def start_from_scratch(x_train, y_train, x_test, y_test):

model, history = train_local_model(x_train, y_train, x_test, y_test)

return history.history['val_accuracy']

def continue_training(model, x_train, y_train, x_test, y_test):

_, history = train_local_model(x_train, y_train, x_test, y_test)

return history.history['val_accuracy']

# Simulate recovery

x_recovery, y_recovery = create_scenario_datasets('all')

federated_recovery_acc = [federated_recovery(x_recovery, y_recovery)] * 5

scratch_recovery_acc = start_from_scratch(x_train, y_train, x_recovery, 

y_recovery)

continue_recovery_acc = continue_training(local_model_even, x_train, y_train, 

x_recovery, y_recovery)
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