
Configuration Manual

MSc Research Project

MSc Cloud Computing

Siranjeevi Muthusamy
Student ID: x22241647

School of Computing

National College of Ireland

Supervisor: Yasantha Samarawickrama

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

Siranjeevi Muthusamy

Student ID: x22241647

Programme: MSc Cloud Computing Year: 2023-2024

Module: MSc Research Project

Lecturer: Yasantha Samarawickrama
Submission

Due Date: 16-09-2024

Project Title: Federated Deep Learning for Privacy Preserving

Collaborative Data Sharing and Fault Recovery in
Connected Vehicles

Word Count: 6851 Page Count: 19

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Date: 16th Sep 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project
(including multiple copies)

□

Attach a Moodle submission receipt of the online

project submission, to each project (including multiple
copies).

□

You must ensure that you retain a HARD COPY of the
project, both for your own reference and in case a project

□

is lost or mislaid. It is not sufficient to keep a copy on
computer.

Assignments that are submitted to the Programme Coordinator Office

must be placed into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if
applicable):

1

Configuration Manual

Siranjeevi Muthusamy

Student ID: x22241647

1 Introduction

To help the researchers and other academic purposes, this manual provides step by step

approach to setup the project. This includes system requirements, environment setup,

programming languages, libraries and other dependencies that are essential for the

project to run.

2 System Specifications

AWS Studio Notebook Instance:

• vCPUs: 4

• Memory: 16 GiB

• Networking: 25Gbps

• Storage: EBS

• GPUs: 1 NVIDIA T4 Tensor Core GPU

o GPU Memory: 16 GiB GDDR6

o CUDA Cores: 2,560

o Tensor Cores: 320

3 Essential Software Packages and Libraries

Initialize a new studio notebook instance and proceed with the installation of following

packages and libraries

1. Programming Language

a. Python

b. Version: 3.10

2. TensorFlow Federated (TFF)
a. Installation: !pip install --quiet --upgrade tensorflow_federated
b. Version: >= 2.13 < 2.18

3. Nest Asyncio
a. Installation: !pip install --quiet --upgrade nest_asyncio

4. TensorBoard Extensions
a. Command: %reload_ext tensorboard

2

3.1 Import Libraries for Data Processing, Models and Visualization

a. Numpy, Pandas, Matplotlib, Seaborn

a. Commands:
i. import numpy as np

ii. import pandas as pd
iii. import seaborn as sns
iv. import matplotlib.pyplot as plt

b. Scikit-learn (sklearn)
a. Import: from sklearn.metrics import accuracy_score

c. TensorFlow
a. Import: import tensorflow as tf

d. TensorFlow Federated (TFF)
a. Import: import tensorflow_federated as tff

4. Dataset
o MNIST

o Import: (x_train,y_train),(x_test,y_test) = tf.keras.datasets.mnist.load_data()

5. AWS SageMaker Setup
• Create a new SageMaker domain if not available already

• Create a new SageMaker notebook with the following configuration,

 Choose the "Python 3 (TensorFlow 2.13 Python 3.10 CPU Optimized)"

kernel.

 Select the "ml.c5.xlarge" instance type.

• Run the notebook instance.

6. Data Preparation

import tensorflow as tf

Load MNIST dataset

(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()

Normalize pixel values

x_train, x_test = x_train / 255.0, x_test / 255.0

Reshape data for CNN

x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)

x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)

7. Model Implementation
def create_keras_model():

return tf.keras.models.Sequential([

tf.keras.layers.Conv2D(32, kernel_size=(3, 3), activation='relu',

input_shape=(28, 28, 1)),

tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),

tf.keras.layers.Conv2D(64, kernel_size=(3, 3), activation='relu'),

tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),

3

tf.keras.layers.Flatten(),

tf.keras.layers.Dense(128, activation='relu'),

tf.keras.layers.Dense(10, activation='softmax')

])

8. Federated Learning Setup
import tensorflow_federated as tff

Preprocess data for FL

def preprocess(dataset):

def batch_format_fn(element):

return (tf.reshape(element['pixels'], [-1, 28, 28, 1]),

tf.reshape(element['label'], [-1, 1]))

return dataset.batch(20).map(batch_format_fn)

Create TFF types

sample_batch = tf.nest.map_structure(

lambda x: x.numpy(), next(iter(preprocess(train_data.take(1)))))

input_spec = sample_batch[0].shape, tf.TensorSpec(shape=[None, 1],

dtype=tf.int64)

def model_fn():

keras_model = create_keras_model()

return tff.learning.from_keras_model(

keras_model,

input_spec=input_spec,

loss=tf.keras.losses.SparseCategoricalCrossentropy(),

metrics=[tf.keras.metrics.SparseCategoricalAccuracy()])

Create federated training process

iterative_process = tff.learning.build_federated_averaging_process(

model_fn,

client_optimizer_fn=lambda: tf.keras.optimizers.SGD(learning_rate=0.02),

server_optimizer_fn=lambda: tf.keras.optimizers.SGD(learning_rate=1.0))

9. Running Experiments

NUM_ROUNDS = 5

NUM_CLIENTS = 10

for round_num in range(NUM_ROUNDS):

state, metrics = iterative_process.next(state, federated_train_data)

print(f'Round {round_num}')

print(metrics)

10. Recovery Strategies

Recovery strategies

4

def federated_recovery(x_test, y_test):

return global_accuracy

def start_from_scratch(x_train, y_train, x_test, y_test):

model, history = train_local_model(x_train, y_train, x_test, y_test)

return history.history['val_accuracy']

def continue_training(model, x_train, y_train, x_test, y_test):

_, history = train_local_model(x_train, y_train, x_test, y_test)

return history.history['val_accuracy']

Simulate recovery

x_recovery, y_recovery = create_scenario_datasets('all')

federated_recovery_acc = [federated_recovery(x_recovery, y_recovery)] * 5

scratch_recovery_acc = start_from_scratch(x_train, y_train, x_recovery,

y_recovery)

continue_recovery_acc = continue_training(local_model_even, x_train, y_train,

x_recovery, y_recovery)

References

LeCun, Y., Cortes, C., & Burges, C. J. C. (1998). MNIST handwritten digit database. Retrieved

from http://yann.lecun.com/exdb/mnist/

Google Research. (2019). TensorFlow Federated: Machine Learning on Decentralized Data.

Retrieved from https://www.tensorflow.org/federated

http://yann.lecun.com/exdb/mnist/
https://www.tensorflow.org/federated

