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Federated Deep Learning for Privacy-Preserving

Collaborative Data Sharing and Fault Recovery in

Connected Vehicles

Siranjeevi Muthusamy

x22241647

Abstract

In smart connected internet-of-vehicles (IoVs), locally generated sensory data contains

the most important and knowledgeful vehicle-related information captured from onboard 

units like speedometers, dashboard cameras, and location trackers can offer deeper 

insights into its status. Through IoV with autonomous driving, this data can be used to 

optimize and update over-the-air (OTA) driving models from vectors on a cloud or 

supercomputer that can improve traffic handling dynamically. The current method of 

using centralized servers for processing vehicle data is limited in its ability to deliver real-

time analysis which causes long-lasting vehicle downtimes because it does not consume 

the common localized information located throughout the IoV network. This research has 

been influenced to understand if federated learning (FL) can enable privacy-preserving, 

collaborative use of data from connected intelligent vehicles, while also being robust 

against vehicle faults. To realize this objective, we propose an FL framework that utilizes 

deep learning (DL) algorithms such as feed-forward neural networks (FNNs) and 

convolutional neural networks (CNN), to obtain vital information from vehicular data to 

collaboratively train models that manage vehicle operations, without the need to share raw 

vehicle data. The proposed methodology concatenates local model training and global 

aggregation of the models of every vehicle belonging to the IoV network to overcome 

security threats, and communication overhead from sharing huge volumes of raw data 

between vehicles in a high-precision driving scenario. This ensures improved throughput 

with reduced uplink communications by offering enhanced privacy on large-scale datasets. 

The proposed FL framework is tested for accuracy, and effectiveness through a case study 

experiment on the MNIST dataset to diagnose faults and recovery times in the vehicle 

operation which will not only reduce downtime of the vehicle but will also provide an 

exquisite driving experience backed with the extracted intelligence from decentralized FL 

computing models.

Keywords: Federated Learning, Deep Learning, Internet-Of-Vehicles, Collaborative 

Data Sharing, Fault Diagnosis

1 Introduction

1.1 Problem Background

In connected vehicles, most status analysis needs to be done using the data produced by the

sensors local to the vehicle. This data could support in developing real-time route planning, 
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traffic update systems and driving models for the future IoV. Fault diagnosis in these systems 

would require dynamic processing as it involves a large amount of data. Current methods and 

analysis that use centralized servers for all the real-time data from vehicles are not sufficient.

They are slow in response time and lead to high downtimes of vehicles because these systems 

fail to utilize the data distributed across the network. The capabilities of centralized systems to 

effectively adapt and respond quickly to faults is very much limited because of the ever-

changing traffic patterns, unpredicted scenarios, and the variety of hardware configurations in 

diverse vehicular networks. (Dimitrios Michael Manias, 2021).

Moreover, these systems do not make use of the collectively available local information and

the vehicle contextual information that is available across the network. This information can

be used to achieve near real-time decentralized fault response time (Posner, 2021). The 

increasing complexity of vehicular systems and the need for real-time decision-making in 

autonomous vehicles highlights the importance of fault diagnosis and recovery mechanisms

(Dimitrios Michael Manias, 2021). In centralized methods, it takes more time to collect all the 

data from the nodes of IoV at a central place. Also, the increasing importance of data privacy 

and security in interconnected vehicles highlights the need for development of solutions that 

decentralize intelligence sharing without compromising sensitive information (Elbir, 2022).

1.2 Motivation

The recent advancements in federated learning (FL) offer promising solutions for distributed 

machine learning (ML) models that focus on immediate fault response and data privacy. Its 

compatibility with IoV ecosystem and the capability of providing privacy-preserving data 

exchange and allowing fast response times without the need to transfer raw input data from 

vehicle(s) makes it the ideal solution for facilitating collaborative training across distributed 

onboard vehicle hardware. 

However, only very few works have been done focused on using FL for automotive fault 

diagnostics, recovery, and restoring vehicle performance at its best. With the increasing 

complexity and the need for real-time decision-making in autonomous driving, designing

efficient fault diagnosis and recovery mechanisms is becoming even more critical (Dimitrios 

Michael Manias, 2021). FL provides an interesting solution to these issues through 

decentralized model training and aggregation, which helps in the early detection of 

faults/recovery while preserving data privacy. Therefore, the goal of this research is to 

implement an FL framework using FNN and CNN models which can effectively utilize the 

data collected and shared in a large group of connected vehicles across IoV systems. This helps 

in analyzing faults as well as taking appropriate actions to reduce vehicle downtime and 

restoring its performance back into its optimal operational condition, thus providing better 

reliability than before.

1.3 Research Question

“In decentralized vehicular networks, how well does federated learning works in fault recovery, 

reducing recovery times, and restoring system performance to optimal levels by leveraging 

group intelligence?”
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1.4 Research Objective

The objective of this research is to explore the capabilities of a federated learning scheme that 

employs convolutional neural networks (CNN) model and a feed-forward neural network

(FNN) model as FL learners. These models utilize collected historical vehicle information in 

detecting failures, reducing total downtime, and restoring the system performance to optimal 

condition using a practical scenario case study.

1.5 Research Contributions

The major contributions of this paper are: 

• Build a new FL framework for connected vehicular networks allowing vehicles to 

collectively train deep learning models for fault detection without sharing raw data.

• Compare the performance of CNN and FNN models trained on MNIST dataset in 

detecting fault patterns and analyzing multi-sensor vehicular data to extract useful 

insights from them under an FL environment using a case study.

• Our experimental goal is to evaluate the efficiency and feasibility of federated learning 

for fast recovering from faults, shortening downtimes for unmatched driving 

performance and improving transportation systems dependability.

1.6 Thesis Organization

Chapter 1: Describes the research problem, motivation, research question, research objective, 

and unique contributions of the research.

Chapter 2: Literature Review of studies and work in Federated Learning and its Applications 

in Intelligent Transportation Systems.

Chapter 3: Describes the proposed research methodology with the framework design and

discusses its implications in terms of ethics.

Chapter 4: Describes deep learning architecture, optimization strategy development, and how 

to evaluate these using a case study.

Chapter 5: Implementation Details and Experimental Setup.

Chapter 6: The results are described along with the evaluation and analysis of these findings.

Chapter 7: Summarizes the major findings and limitations of the research.

2 Related Work
This section begins with a literature review of the vehicular network and studies how to 

integrate advanced technologies into this kind of network, discussing some models related to 

deep learning, federated learning, and fault recovery that can be adopted. This review also 

proposes to reveal some research gaps such as privacy models with improved performance and 

fast fault recovery mechanisms, which this work attempts to bridge using novel learning 

paradigms of federated learning.
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2.1 Deep Learning for Vehicular Networks

The review work by (Hernandez, 2023) presents cloud computing in intelligent vehicles for 

parallel deep learning model integration with real-time data analysis. The promise of cloud-

based solutions to more effectively process the massive volumes of autonomous vehicle data 

that will need to be managed over vehicular networks is one of the single, useful takeaways 

from this. Though it offers some of the future research directions to address these problems, it 

faces difficulties in data privacy and latency. This survey offers a full picture of the cloud 

technologies within intelligent vehicles, which suggest several effective and secure data 

handling methods are needed. The work by (Han, 2023) highlighted the integration of deep 

learning models in intelligent vehicles. The challenges it recognizes include data variety and 

communication overhead, thus indicating that going forward the research should focus on 

offering efficient solutions while keeping these in mind. The survey provides significant 

insights about the state of FL in transportation systems, and future directions towards the 

adaptive scalable solutions. Yet, we could improve the study in terms of having an in-depth

detailed explanation on practical aspects of FL such as incentive mechanisms for participant 

selection and model aggregation strategy.

The study presented by (Palanisamy, 2019) addresses connected autonomous driving model 

utilizing a joint control multi agent mechanism that is based on deep reinforcement learning. 

The goal is to scale autonomous driving beyond geo-fences, using multi-agent interaction for 

learning control strategies in densely interacted and only partially visible urban intersections. 

This has implications for decision-making in autonomous vehicles, as cooperative decisions 

are crucial to ending the monopoly of centralized control imposed by single-agent scenarios. 

The model was demonstrated to learn different control policies directly from raw sensor inputs 

in a controlled urban scenario, indicating that DRL could help improve IoV infrastructure. The 

paper presented by (Altintas, 2020) develop a DRL-based cooperative perception framework 

for improving safety in connected vehicles. The model can reduce the network load creating a 

12% improvement in terms of object detection accuracy with dynamic selection for data 

transmission. The proposed framework was assessed through both traffic and vehicle 

simulators to validate that it optimizes data exchanges suitable for a better utilization of 

network resources. In this paper, we tackle the problem of data selection for transmission in 

cooperative perception(V2V). The DRL approach proposed here provides a workable solution

to the problem of data sharing among all connected vehicles, which enables the smart decision-

making agents based on shared perception information. Nonetheless, future work could 

examine the impact of diverse traffic situations and more importantly on evaluating how well 

the framework scales to larger vehicular networks.

A collaborative edge computing framework for IoV based on DRL-MDP was proposed in the 

research paper by (Li, 2020), which can help to achieve effective resource management. This 

architecture aims to decrease the latency of computing services, enhance security by 

distributing workloads dynamically and change tasks performance at the edge. This paper 

verifies its feasibility in a simulative MEC-enabled vehicular network and found that the 

approach can enhance service reliability, latency as well demonstrate benefits of edge 
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computing to third-party data processor. With this paper, the authors make a valuable 

contribution to enhancing edge computing: it introduces an intelligence-based task offloading 

and scheduling approach for IoV. On the other hand, further research could be conducted with 

a focus on edge device heterogeneity and vehicle mobility to study the performance of the 

framework.

2.2 Federated Learning for Vehicular Networks

A blockchain-based decentralized federated learning for connected vehicles was proposed by

(Pokhrel, 2020). This model solves both the privacy and efficiency issues of centralized FL 

models by making use of blockchain technology. The study uses mathematical modelling to 

regulate parameters for FL, establishing the possibility of decentralized training as an effective 

solution against high delays and faults. This research establishes a secure and efficient FL 

framework for vehicular networks with blockchain technology. The research could not be 

conducted in large-scale vehicular networks due to scalability and computational overhead 

issues of blockchain for federated learning-based privacy preservation. The recent study (Ye, 

2020) proposed a selective model aggregation technique for federated learning in vehicular 

edge computing. They show that it consistently improves model aggregation for image 

classification, by providing better utility and efficiency over baseline models such as FedAvg. 

This approach maintains privacy while improving model utility and illustrates the benefits of 

selective aggregation in federated learning. This research helps in developing more 

sophisticated model aggregation algorithm for FL over vehicular environment, as they have 

low resource. From this work, the study can be carried forward by using other types of datasets 

to assess out different data-driven approaches and finally implementing the techniques in 

practical vehicular networks.

A privacy preserving FL architecture for automotive cyber physical systems is introduced by 

research (Lu, 2020). It describes how to prevent privacy and promote legal security with two-

level intelligent data processing and leak detection system. The study justifies the need for 

enhanced privacy models in vehicular data sharing, and it practically proves its efficiency via 

an evaluation with a real-world dataset. In this study, a novel FL-based framework for safe data 

sharing in automotive networks was proposed. Future research can extend considering the 

effect of data heterogeneity in addition to malicious participants on performance for this 

proposed framework. (Li X. a.-Y., 2021) discussed about federated learning for collaborative 

data sharing in vehicular edge networks. The model seems to perform with less system latency 

and high efficiency in data sharing by deploying additional low-latency MEC servers. The 

researchers overcame data silo issues and network congestion by using a federated learning 

approach, as described in the study. The research demonstrates the possibility of achieving 

efficient and secure data exchange through FL which advances collaborative data sharing 

mechanisms for vehicular networks. However, the study can be extended to investigate how 

vehicle mobility and the dynamic nature of vehicular networks affect weather information 

dissemination performance in their FL-based data sharing framework.

Researchers that have worked on smart public transportation, including (Zhao, 2022), have 

presented an asynchronous FL model based on blockchain technology and investigated the 
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difficulties associated with FL. It allows the local models to scale dynamically, earning a better 

learning performance and resistance against attacks. Existing FL models are vulnerable, as 

shown in the study and numerical experiments suggest that the proposed approach is beneficial. 

The study's findings contribute to the development of a strong and secure FL framework for 

intelligent transportation systems by implementing blockchain-based foundations and 

asynchronous model updates. However, this study's analysis can be extended to include a more 

comprehensive assessment of its structure in actual transportation scenarios. (Zhao, 2022)

introduced a Collaborative Authentication Protocol for Securely Sharing the Data in Social 

IoV. In this study, the protocol secures vehicle parameterizing by encryption and authenticates 

each communication for data transmission more secure and efficient. To enable privacy-

preserving data sharing in IoV, they compare the proposed protocol with existing vehicle 

protocols. This research work, using the advantages of FL presents a protocol suitable for 

secure authentication schemes in social IoV. Still, more research can be done to find out how 

the protocol impacts computing overhead and scalability issues in big social IoV networks.

2.3 Fault Recovery Mechanisms in Vehicular Networks

To enable fault tolerance and self-recovery in federated learning systems, (Dautov et al., 2024) 

proposes the Raft consensus protocol. It uses Raft leader election and log replication 

behaviours for crawling engines, attempting to resolve the single point of failure issue in FL 

architectures. This ensures consistency across all the FL nodes and enables seamless training 

and model convergence by replicating logs. A proof-of-concept implementation was developed 

leveraging the Flower FL framework along with experiments that analyse aggregator re-

election time and evaluate state replication overheads. While iterations cause network overhead 

as expected, the results prove a robust self-recovering FL system that performs well even in 

case of node failures maintaining model consistency. In summary, the paper proposes an 

innovative technique to address these hard real-world problems and provides a solution for 

preserving FL scalability, fault tolerance as well as maintaining long-term availability of such 

system.

A model for redundancy-aware collaborative federated learning for automotive networks is 

presented in the work of Huang et al. (2023). By treating each data value with the enough 

importance and reducing the number of redundant results, this leads to a better prediction node 

for the added value model. The study also shows how the redundancy-aware mechanisms that 

are suggested can be used through numerical simulations; further research is needed to evaluate 

these mechanisms experimentally in real-world networks. Additionally, a new node 

collaboration mechanism and data importance evaluation were proposed, which improves the 

performance of FL frameworks intended for vehicle networks. The study can be expanded to a 

more comprehensive assessment of the proposed framework on online vehicular networks with 

unreliable quality and network conditions. (Yan et al., 2023) aims to address this need by 

presenting an online learning framework for real-time sensor fault diagnosis of cyber-physical 

systems putting a particular focus on the case study of autonomous vehicles combined with 

Application independent control system. They designed the framework to be able to effectively 

detect and classify sensor faults, through a clustering-based data stream fault localization 

scheme. To address this gap in the literature, they attempt to develop accurate fault signature 
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generation models that accurately diagnose sensor faults and then establish an efficient robust 

model (which also works well for time-varying small severity sensor faults) within the study. 

This paper puts forward a framework for both online learning of fault diagnosis problems on 

autonomous vehicle and it can also be applied in other sub-systems scenarios. The study 

presented by (Manias and Shami, 2021) demonstrates that decentralized learning models are 

useful when minimizing the recovery time and benefiting in restoring system performance. It 

begins by surveying the existing fault recovery models and argues that federated learning 

provides a wonderful opportunity. This work presents the potential of using FL for efficient 

fault diagnosis among automotive systems and paves the way in creating collaborative, 

privacy-preserving fault recovery techniques. However, the work may be further extended to 

provide a comprehensive discussion on issues and challenges in terms of FL-based fault 

recovery mechanisms within resource-constrained vehicular environments. (Chen et al., 2021) 

proposed a Byzantine-Fault-Tolerant decentralized (BDFL) federated learning approach for 

autonomous vehicles. The BDFL extends the HydRand protocol, to create a BYzantine Fault 

Tolerant (BFT) peer-to-peer FL system. The same model security is enforced in all where the 

Publicly Verifiable Secret Sharing (PVSS) scheme protects its local models, ensuring that 

encrypted shares of anyone can always be verified. Experiments on MNIST show the potential 

to adopt decentralized FL in AV by leveraging BDFL against other BFT-based FL methods for 

our study. Additionally, results on the KITTI dataset confirm that BDFL can improve multi-

object recognition for AVs. The simulation results suggest that the proposed PVSS-based data 

privacy preservation scheme has no side effects on model parameters. BDL offers a secure, 

robust, and decentralized way of optimizing collaboration learning in AVS whilst taking into 

capacity utilization with privacy protection, fault tolerance as well.

2.4 Summary

This literature review investigates the design of deep learning, federated learning, and fault 

recovery models in vehicular networks. Deep Reinforcement Learning and many deep learning 

techniques have been presented to improve autonomous driving scenarios as well as enhancing 

the cooperative perception. In vehicular network, work on the fault recovery models like 

redundancy-aware collaborative federated learning and online learning for sensor faults 

diagnosis has been identified to enhance their resilience in nature. However, this review 

illuminates the research gaps in time-critical use cases, less focus on error detection and 

recovery, exploration of data heterogeneity to name a few. By proposing approaches to handle 

these pitfalls can open new horizons by incorporating more flexibility into fault diagnosis, and 

auto-recovery mechanisms without deteriorating vehicle performance. This work is primarily 

motivated by those gaps and seeks to address them through the development of optimized 

models for achieving fault resilience by deploying a federated learning framework based on 

CNN and FNN models to contribute towards data privacy, as well reduce vehicle downtimes 

by diagnosing faults in decentralized mode. Finally, a real-world case study will be presented 

to demonstrate the efficiency of this model and show that it is able to reduce recovery time as 

well as improve accuracy, enhancing vehicular network reliability and performance.
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3 Research Methodology
In this paper, we propose comprehensive research to jointly address the fault tolerance of 

model training and data privacy preservation for connected vehicular networks with FL. The 

proposed methodology consists of a systematic follow to design, implement and evaluate an 

FL framework through a case study in object classification tasks performed by Roadside Units 

(RSUs) of IoT as in Figure 1.

Figure 1: Federated Learning Process Methodology

3.1 Proposed Federated Learning Framework

The FL framework proposes central server and vehicular clients as two main components to 

perform model training as in Figure 1. The central server starts the FL process that creates an 

initial global model, aggregates local updates from clients, and checks termination criteria. The 

local sensors in vehicular clients collect sensor data, the global model is used to train a local 

model on this data and generate a set of updates that are sent back to the central server for 

aggregation. The process starts with the first global model sent by the server to all clients. 

Every client now trains its local model with the global model. We only collect updates from all 

clients and update a combined global model. This goes on until the termination criteria is met. 

Instead of Recurrent Neural Networks (RNNs) that was proposed earlier, Feed-forward neural 

networks (FNN) and CNN will be used for FL training. FNNs are appropriate for modeling 
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structured data, such as images. They learn hierarchical representations of inputs. Our FNN 

architecture is specifically engineered to extract important patterns and anomalies from the 

vehicle sensor data for each type of object classification task. Federated learning using CNNs 

can be useful in the context of distributed object detection scenarios (e.g., cameras from 

different cars toward training a shared model), e.g., for autonomous vehicles or surveillance 

systems. CNNs are frequently used for on-device local inferences (e.g., smartphones or IoT 

devices). Federated learning makes it possible for all these devices to collaboratively make 

CNN model performance improve but safeguard the decentralized sensitive data. The proposed 

FL framework promotes data privacy-preserving such that raw data stays where it is on the 

vehicular clients and only model updates are transmitted to a central server.

3.2 Object Classification Case Study for Fault Recovery

The proposed FL framework is tested on an example of object classification tasks in a simulated 

IoV environment conducted by RSUs. The case study presents how the framework permits to 

train a collaborative model among devices while keeping data privacy and recovering faults in 

an efficient manner. For the case study scenario, an RSU detects objects (e.g., pedestrian, 

vehicles, and obstacles) under various traffic conditions. The RSU corrects its local model for 

these changes, but due to a fault, it loses its own local model. For this purpose, three fault 

recovery strategies were implemented as follows: retraining the model from scratch using only 

local data of RSU (referred to as Local Retrain), restore a previous version of the model at 

RSU, and continue training with its local data going further (Restart Training), or just push 

down without extra-tuning any new global federated models issued by central server. The 

handwritten digit images from the MNIST dataset are used to simulate the classification 

process and measure practices for recovery. It is illustrated that the global federated model can 

efficiently recover performance to pre-disturbance levels after fault without need of additional 

local training, hence validating feasibility for applying FL framework in fault recovery on IoV 

scene.

3.3 Experimental Setup and Evaluation

The proposed FL framework is to be implemented using the Python programming language 

with commonly used deep learning libraries such as TensorFlow and Keras. Experiments will 

be performed in a distributed computing environment, which simulates the IoV network for 

several vehicular clients and one central server. For training and evaluating the FNN and CNN 

models, the MNIST dataset will be divided into subsets and used for local model training. The 

dataset will be partitioned across the clients in such a way that every client has separate data to 

simulate distributed nature of IoV environment. Then, the FNN and CNN models and its 

hyperparameters will be tuned by validating its performance on a validation set. 

The proposed framework will be assessed based on several metrics: classification accuracy for 

general performance of object classification models, convergence speed to evaluate the time 

taken by global model in FL to reach a satisfactory level of performance, communication 

efficiency specifies how much data that is transmitted between clients and server during the FL 

process, Recovery Time measures duration consumed by RSUs with their default 

configurations are restored back after evoked under different strategies.



10

4 Design Specifications

4.1 FL Architecture

The architecture of our FL framework for connected vehicular networks includes three 

principal parts: the centralized server, roadside units (RSUs), and intelligent vehicles as shown 

in Figure 2. More generally, the autonomous vehicles themselves gather and process local 

sensor data for training utilizing FNNs and CNNs. The models or model updates are sent, over 

a wireless network, to the nearby RSUs where they will be locally trained.

Figure 2: Proposed FL Framework for Autonomous Vehicles

RSUs are in between and act as mediators that collect the updates from vehicles and then relay 

them to a central server. That global model is being used to update every individual vehicle, 

and distributed vehicles send back the aggregated result. The central server aggregates the 

model updates from multiple vehicles via RSUs and globally. The updates are aggregated to 

form an updated global model, which can then be sent back to the vehicles for cooperative 

learning or error recovery.

4.2 Deep Learning Models

4.2.1 FNN for FL Model Training

The primary architecture for FL model will be CNN, while FNN will be used instead of RNN. 

FNNs work well with structured data such as images, natural language text and can learn the 

hierarchical extraction of input features. For fault diagnosis tasks, the FNN architectures will 

be tailored for detecting patterns and/or anomalies in vehicular sensor data. Experimentation 

and hyperparameter tuning will find out the specific architecture details of the FNNs like layers, 

average neurons per layer, and activation functions. This method can make the model more 

convenient to adjust combined with vehicle sensor data and fault diagnosis tasks. The FNNs 

will go through the FL process, where each vehicle trains a local model using its own data and 

updates are contributed to the global model. This model of learning is called collaborative and 

preserves privacy as raw data between vehicle does not get shared. Only model updates are 

shared between nodes, preserving the localization of data on each vehicle. 
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4.2.2 CNNs for FL Model Training

CNNs work very well for processing grid-like data, like images or spatial sensor data. They 

employ convolutional layers with filters to learn spatial hierarchies of features without a fixed 

input size, which is suitable for pattern recognition tasks where structure exists in either the 

actual space (images) or time domain. 

Figure 3: Comparison of FNN and CNN architectures

When it comes to FNNs and CNNs, the differences they lay at an architectural level. In this 

kind of the model, each neuron is linked to every other neuron in adjacent layers. CNNs on the 

other hand, add convolutional, pooling layers, and fully connected layer. The convolutional 

layers use local connectivity and weight sharing, which gives them the capacity to efficiently 

capture spatial patterns in the data. They can also automatically learn relevant features from 

raw input data which may obviate manual feature selection preprocessing steps and leading to 

end-to-end learning. This ability can be particularly useful when working with difficult vehicle 

sensor data, as crucial patterns might not pop-up right away. Both FNN and CNN architectures 

could be considered based on the characteristics of vehicle sensor data while transforming it as 

diagnostic information, to achieve fault diagnosis tasks.

4.3 FL Learning Process

The FL learning process is presented below:

• Initialization: In the beginning, the Central Server generates an initial global model and 

shares it with all participating vehicles from RSUs.

• Local Training: The local FNN and CNN model of each vehicle is trained using the 

sensor data collected from that vehicle itself. The vehicles will be used to evaluate

advanced variations of their respective locally based models tailored to the dynamically 

changing operating conditions.
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• Update model: Once it is trained locally, every vehicle will send its update (gradients 

or weights for example) to the closest RSU which in turn sends them to a central server. 

The raw data is not shared among the RSUs, thus protecting data privacy and only 

model updates are shared between vehicles.

• Global Aggregation: The central server collects the updates of models from multiple 

vehicles and aggregates them to create an updated global model. Aggregation methods 

can be simple, such as taking the average model weights and more complex techniques 

like Federated Averaging (FedAvg).

• Model Distribution: The newly formed global model is sent back to the vehicles through 

RSUs. Vehicles could swap out their local models and replace them with the global 

model or use it to jump start training for an even more locally relevant policy.

• Termination: This can be continued till some stopping criteria tells you that the targeted 

model performance/number of rounds is reached. The iterative nature of the process 

also constitutes a method for implementing collaborative learning among the vehicles, 

so each vehicle in this network learns from it without fully disclosing any data to other 

partners regardless.

5 Implementation

5.1 Development Environment

The FL framework will be implemented using the Python programming language together with 

TensorFlow and Keras, two of today’s most used deep learning libraries. The code 

development will be done in Jupyter Notebook, which gives an interactive environment for 

writing and running a code. A simulated scenario considering a distributed computing 

environment will be implemented using the case study on fault recovery. The development 

platform with cloud computing instances support like Google Cloud Platform (GCP) or 

Amazon Web Services (AWS) Sagemaker Studio can used to deploy the proposed FL 

framework. 

5.2 Dataset Preparation

The object classification task in the case study will be simulated on MNIST dataset i.e.,

containing handwritten digit images. The workload will be preprocessed and spread over the 

vehicular clients such that no two vehicles have the same data. The partitioning will be 

accomplished in such a way that mimics the distributed nature of the IoV environment, where 

each vehicle can only access its own data locally. The dataset will be divided into training, 

validation, and testing sets. The training set will be used for local model fitting on the vehicular 

clients, and validation set are necessary to drive hyperparameters optimization as well as select 

among models. The final test set is used to assess how good the trained models will perform.

5.3 FL Model Implementation

The process followed to implement federated learning with FNNs and CNNs in the context of 

object classification tasks is presented below:
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The implementation applies TensorFlow Keras Sequential API for both FNN models, and CNN 

models. The FNN model usually begins with a flattened layer that converts the 2D input images 

into vectors. This is followed by Dense layers, which are normally a fully connected layers 

where each neuron in the previous and next layers is interconnected. The number of neurons 

in these layers and the depth on how deep network has to be is decided by trial experimentation. 

We use ReLU activation function in the hidden layer and not sigmoid, as this will help us to 

improve model performance. The output Layer and the number of neurons in the output layer 

are equal to that of number of prediction classes when you apply the SoftMax activation 

function for multi-class classification. 

CNNs are much deeper and usually better applicable for image classification problems. Model 

architecture starts with Conv2D layers that use convolutional filters to extract features from 

input images. These are then subsequently followed by MaxPooling2D layers to lower the 

spatial dimensions and capture only common attributes. Hierarchical features can be learned 

by stacking multiple sets of convolutional and pooling layers. Now, the feature maps are 

flattened and then fed through Dense layers as in FNN structure. For classification the final 

layer uses SoftMax activation. The loss function for both FNN and CNN models are categorical 

cross entropy whereas optimizers used with them are Adam or stochastic gradient descent 

(SGD). Important hyperparameters include the number of epochs, batch size and learning rate 

as they have a big impact on model performance as well how long training will take.
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5.4 Fault Recovery Strategy Implementation

The proposed FL framework will be analyzed for its utility in enabling fast fault recovery in 

IoV settings. The fault recovery strategies would be integrated as part of the FL framework. 

We assume that the vehicular clients might fall into fault modes and lose their local model. In 

particular, the report compares three different fault recovery strategies as in Figure 4:

• Local Retraining: If a vehicle faces an issue and loses its local model, it retrains the 

entire model from scratch on just its own data locally. This strategy uses only the 

vehicle's local resources and ignores other vehicles knowledge in system.

• Model Restoration: The vehicle restores a saved version of its local model and 

continues training on it using its own data. This strategy assumes that the vehicle has a 

model of its own which could be restored from some previous state.

• Global Model Push: Directly push the latest global model from the central server to 

faulty vehicles without extra local training. Based on the collective knowledge of the 

entire network, this strategy can quickly recover from some fault.

We will determine how well these fault recovery strategies work for the case study scenario, 

based on measurements of e.g. time to recover from faults and ability to regain performance 

levels in pre-fault condition in the next section.

Figure 4: Fault Recovery Strategy Execution
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6 Evaluation
In this section, an in-depth study of the results and discussion on the fault recovery strategies 

implemented using federated learning (FL) for CNN and FNN in a connected vehicle 

simulation environment is presented.

6.1 Experiment: CNN vs FNN for Fault Recovery

The classification accuracy over training epochs for different fault recovery strategies for both 

FNN and CNN in presented in Figures 5 and 6, respectively.

Figure 5: FNN Fault Recovery Mechanism

Figure 6: CNN Fault Recovery Mechanism

• Normal Operation: Equivalent High Accuracy (~95%) — Mid to Max at Initial Traffic

• Traffic Shifts: As the pattern of traffic shifts, accuracy decreases over time for both 

models.

• When fault occurs, accuracy falls to 0% accuracy. 

• Fault Recovery:

1. Local Retrain (red): The slowest but gradually more accurate recovery.
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2. Re-training (green line): More rapid re-learning, taking account of previous learned 

weights.

3. Global Model Push (orange line), which is the fastest recovery and immediately 

brings back high accuracy.

6.2 Fault Recovery Analysis

• Federated Recovery: CNN has the highest AUC with 3.90 and highest peak accuracy 

at 0.95, fastest recovery time per second for peak performance compared to FNN.

• Start from Scratch: CNN AUC (lower is better) = 3.00 score. It went the highest from 

zero to infinity, immediate recovery was slowest (.59 accuracy). Still, it managed to 

peak at an accuracy of 0.92 showing that long-term recover could be possible. 

• Continue Training: Has powerful quick recovery (CNN Performance: 0.79 accuracy) 

and a trade-off between speed and performance with AUC compared to FNN. FNN 

follows similar trends as CNN but slightly less effective.

6.3 Statistical Analysis of CNN Performance

• Area Under the Curve (AUC) (Table.1): Federated Recovery has an AUC of 3.90, 

yielding over two orders higher cumulative sum and therefore global "whole system" 

recovery performance on the ROC curve better than any other strategy.

Table 1: Area Under the Curve (AUC)

• Maximum Accuracy/Time: Federated Recovery has the highest peak of any method, 

with an average accuracy at its best time being 0.95 in approximately 1.5 seconds.

• Recovery Speed: Federated Recovery has one of the highest recovery speeds with 

perfect accuracy reached at 0.6121s per peak, over 4.5× faster than other strategies on 

average in this dimension (Refer Table 2).

Strategy Speed

Federated Recovery 0.6121

Start from Scratch 0.1341

Continue Training 0.1343
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Table 2: Recovery Speed (Peak Accuracy per second)

6.4 Discussion

This discussion presents the learnings from the experiments conducted.

• Across numerous metrics, we find that Federated Recovery strategy achieves improved 

performance over other baselines signifying that decentralized information in 

connected vehicle networks can indeed be harnessed for mutual benefit.

• While Federated Recovery is ideal along most axes, Continue Training performs 

strongly when rapid recovery time is of paramount importance hinting that it may serve 

as an acceptable fallback option if federated learning approaches are not applicable.

• Examining the excellent immediate performance of Continue Training, we find that 

CNNs appear able to retain useful information in spite faults, thus demonstrating its 

preservative properties which may be used to maintain productive features whenever 

possible.

• Federated Recovery combines rapid recovery with high accuracy lineament, which is 

paramount for connected vehicle real-time use cases.

• CNNS performed very well on all metrics and is an indication that it can efficiently 

process vehicle sensor data represented as images or grid-like structures. 

7 Conclusion and Future Work
In this study, the potential of federated learning scenario that uses FNN and CNN models 

for fault detection, recovery, or optimal performance restoration in connected vehicular 

networks. The proposed FL framework enables privacy-preserving collaborative learning with 

vehicles to minimize downtime by effective fault recovery mechanisms. This indicates the 

framework's potential in ensuring both high accuracy and speedy fault recovery time as was 

demonstrated by a case study performed on object classification tasks using the MNIST dataset. 

The global federated model was able to recover performance equivalent to pre-fault without 

any additional local training, demonstrating the potential of FL in recovery from faults for IoV 

applications. The results indicate that FL can improve the data privacy, vehicle downtimes and 

overall reliability of a vehicular network. That said, there are limitations to the study such as 

its simulated environment and use of a single data set. This study was focused only on the 

implementation of the proposed framework. Future work should concentrate on performing a 

wide range of experiments with diverse and real-world IoV datasets under various traffic 

contexts. The real application of such FL framework requires investigating how data 

heterogeneity, scalability, and communication efficiency in large-scale vehicular networks 

would affect.

Strategy AUC

Federated Recovery 3.90

Start from Scratch 3.00

Continue Training 3.63
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