
Identifying and risk-evaluating drifts in
Infrastructure as Code (IaC)-managed

infrastructures.

MSc Research Project

Cloud Computing

Laura Mendez
Student ID: x23172061

School of Computing

National College of Ireland

Supervisor: Punit Gupta

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Laura Mendez

Student ID: x23172061

Programme: Cloud Computing

Year: 2024

Module: MSc Research Project

Supervisor: Punit Gupta

Submission Due Date: 12/08/2024

Project Title: Identifying and risk-evaluating drifts in Infrastructure as Code
(IaC)-managed infrastructures.

Word Count: 5651

Page Count: 23

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 14th September 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Identifying and risk-evaluating drifts in Infrastructure
as Code (IaC)-managed infrastructures.

Laura Mendez
x23172061

x23172061@student.ncirl.ie

Abstract

This study investigates the impact of drifts in IaC-managed infrastructures.
Using an empirical approach, I created virtual machines in three different clouds
(AWS and Azure) using two different IaC tools (Terraform and Pulumi). In each
virtual machine, the parameters were changed directly in each cloud console, so
drifts between the state of the IaC tool and the real infrastructure were generated,
identified, and classified according to the risk. Each case study was analyzed to
extract key information about the context of drift, causes, and outcomes in terms
of security and operational effects. The findings in this paper showed that drifts
are inevitable, but monitoring and observability help when using IaC-managed
infrastructures to mitigate risks that could lead to unexpected behaviour.

1 Introduction

Nowadays, the abstraction and virtualisation of devices and computing services is part
of a daily routine. This abstraction, known as cloud computing Vaquero et al. (2009),
revolutionises how businesses operate, but what does it mean for the IT infrastructure
team and how are organisations adapting to this shift?

Infrastructure as Code (IaC) is a practice that includes provisioning and managing
computing infrastructure from configuration files rather than doing it directly in a config-
uration console. The idea was proposed as a strategy to automate the task of creating and
maintaining computing infrastructure Morris (2020), making the process efficient, con-
sistent, and scalable using software development practices such as DevSecOps workflow
shown in Figure 1.

Nowadays, one of the biggest problems of managing infrastructure as code is that, un-
like software development code, cloud infrastructure has many other inputs to consider in
order to maintain tracking and consistency, inputs like configuration consoles, other in-
frastructure management tools, and the dynamic nature of some cloud resources Maayan
(2024). Changes made through these other inputs can lead to discrepancies between
the declared state in the code and the actual state of the infrastructure. So far, these
challenges have been addressed through monitoring, auditing, and manual reconciliation
mechanisms.

1

Figure 1: DevSecOps workflow, taken from Alonso et al. (2023)

1.1 Research Question

How can state drifts be identified and risk-evaluated concerning their impact on security,
performance, and cost in cloud infrastructures managed by Infrastructure as Code (IaC)?

This paper will cover the following aspects:

Item #1 Definition of state drifts: In the context of IaC-managed infrastructures, high-
lighting the importance of being identified.

Item #2 Detection methods for state drifts: Analyzing the strengths and weaknesses
of these methods.

Item #3 Case studies: Demonstrating a real-world example of state drifts identification
using IaC projects.

Limitations:

• The scope of this paper is limited to IaC-managed infrastructures and does not
cover traditional infrastructure.

• The risk evaluation framework proposed in this paper is theoretical and will require
further validation through practical implementation and testing.

• The case studies are limited to provision only virtual machines; none other cloud
resource is considered.

By addressing these aspects, this paper provides an understanding of state drifts in
IaC-managed infrastructures and the risks they represent if they are not identified and
properly managed.

2 Related Work

This section explores the principal concepts of Infrastructure as Code (IaC), its principles,
evolution, challenges, and the methodologies developed to address these challenges; par-
ticularly the issue of state drifts. In this review, some state-of-the-art solutions are
described and compared, emphasizing the need for risk evaluation when a state drift is
detected.

Infrastructure as Code (IaC) helps teams that build and run IT infrastructure to auto-
mate their tasks and give more value in less time Morris (2020), it involves provisioning
IT infrastructure through configuration scripts, so instead of manually creating and con-
figuring any infrastructure resource, they write a script, run it, and the infrastructure

2

is automatically provisioned or updated, streamlining the entire process and making it
repeatable.

Managing infrastructure using declarative language has been on the radar since 1993
with the inception of CFEngine Burgess (2005), which set the foundation for what today
we call Infrastructure as Code. Today, CFEngine evolved to be a Continuous Config-
uration Automation Tool (CCA) and with the boom of cloud computing, some of their
concepts were taken to give way to Cloud Management Tooling such as Azure Manage-
ment Tools, AWS Cloud Formation, Morpheus, Flexera Cloud Management Platform,
Pulumi and Terraform Gartner (2024).

The general principles of using Infrastructure as Code (IaC) include Frank et al.
(2017):

• Idempotence (Consistency and Repeatability) - Ensures that the same output is
obtained every time a script is executed, which is critical for maintaining consistency
and allows reusing the code as many times as needed.

• DevSecOps best practices - Such as version control, static code analysis, automated
testing, code review, continuous integration, continuous delivery, security analysis,
observability, etc.

• Declarative language - The scripts contain the final desired state of the infrastruc-
ture rather than the process to get to that state.

The greatest benefits of using these principles include improved collaboration and
governance, robust disaster recovery plans, and efficient automated provisioning.

On paper it is good, but in practice, some challenges have been detected when working
collaboratively Nedeltcheva et al. (2023), Falazi et al. (2022), Alonso et al. (2023):

• Limited well-defined IaC code patterns - There is a lack of standardization when
talking about infrastructure coding. This limitation results in teams developing
their own practices, leading to confusion across different projects and organizations.

• Security and privacy - Configuration files often contain sensitive information such
as API keys, passwords, network information, open ports, etc. Handling this in-
formation securely can be challenging.

• Portability and interoperability - Even when an IaC tool can handle multi-cloud,
the scripts are written for specific cloud providers, making it difficult to transfer
configurations between different platforms.

• Market fragmentation - IaC technologies are different in terms of purpose, data
format, interfaces, and script language.

• Difficulty in replicating errors - When coding software usually there is a local en-
vironment, a testing environment, and a production environment, where errors can
be replicated, but with Infrastructure as Code environmental differences or the lack
of environments can lead to non-reproducible errors.

• State drifts - State drifts occur when the actual state of the infrastructure diverges
from the state defined in the IaC scripts leading to inconsistencies and potential
security vulnerabilities.

These challenges have been explored from the coding perspective using DevSecOps
principles Petrovic et al. (2022), but what makes IaC different than just code are the other

3

inputs from where cloud infrastructure can be generated, such as cloud consoles, other
IaC projects or even the physical infrastructure. This paper does not focus on the reasons
but on the consequences of having different sources that can modify the infrastructure
causing state drifts.

2.1 Definition of state drifts

A drift is often unintentional and happens when undocumented or unap-
proved changes are made to software, hardware, and operating systems. It
can have an impact on system performance and security.
-Perforce Software, Inc. (2023)

Following the workflow in Figure 2 in a simplified way to meet the participants when
using Infrastructure as Code. First, the IT infrastructure team declares the desired
infrastructure in the configuration files. After testing and approval, these configuration
files are applied. This application will generate the infrastructure in the cloud and produce
a state file also called the source of truth, which describes all the infrastructure generated
from the configuration files. You should be able to find all the details of your cloud
resources described in the state file.

Figure 2: Infrastructure as Code Workflow

State drifts are any differences between
the state file generated by the Cloud Man-
agement Tool and the actual Cloud Infra-
structure. These discrepancies are gen-
erated by changes outside the control of
the IaC scripts, leading to inconsistencies
Qiu et al. (2023). State drifts can also
be referred to as resource drifts or infra-
structure drifts since the drift is presen-
ted at a resource level in the infrastructure
HashiCorp (2024).

It is important to distinguish state drifts from configuration drifts; while state drifts
relate to differences in the infrastructure state, configuration drifts are more related to
deviations from company policies and intended configuration settings Perforce Software,
Inc. (2023).

The following example intends to show how a state drift looks like using Terraform
to provision an EC2 instance in AWS.

1. First, a Terraform configuration file is written specifying the desired state of an
EC2 instance, including the instance type, AMI, and other necessary parameters
(see Figure 3a). The Terraform configuration file for this example was taken from
https://github.com/hashicorp/learn-terraform-drift-management.git

2. Once applied, Terraform generates the infrastructure in AWS and creates the state
file that captures the current state of the provisioned EC2 instance (see Figure 3b).

3. Over time, changes are made directly in the AWS console, in this example someone
modified the instance type (see Figure 3c), and the scripts and the state file were
not updated.

At this point, the difference between the Terraform state file and the cloud infra-
structure in AWS is considered a state drift.

4

https://github.com/hashicorp/learn-terraform-drift-management.git

(a) Terraform Configuration File Showing
Initial Definition of EC2 Instance

(b) Terraform State File Showing Last
Known State of EC2 Instance

(c) AWS Cloud Console Showing Modified EC2 Instance

Figure 3: Example - how a state drift looks

What if nobody notices the drift, what are the consequences? So far the drift seems
inoffensive given that the instance type may not represent a big risk in this particular
example, but what if the modified instance type would be a u-12tb1.112xlarge that up
today costs $109.20 per hour Amazon Web Services (2024a)? Then this drift could be a
big problem.

State drifts in Infrastructure as Code (IaC) managed infrastructures can result in
losing control over the desired infrastructure, leading to different consequences such as
Mikkelsen et al. (2019):

• Vulnerabilities in security.

• Unpredictable system behavior, loss of control.

• SLA non-compliance and increase in the mean time to recovery (MTTR).

• Penalties, fines, and harm to reputation due to failing in compliance.

• Extra expenses.

Therefore, detecting state drifts is crucial for maintaining the integrity and reliability
on Infrastructure as Code (IaC) workflow.

5

2.2 Detection methods for state drifts

The main approach to detecting state drifts involves comparisons between the state
defined in the IaC configuration files and the actual infrastructure. Tools such as Ter-
raform, AWS Config, and Ansible offer self-built functionalities to facilitate this process.
These tools typically provide the option to compare the current state with the desired
state and highlight any discrepancies.

For example, Terraform’s plan command generates an execution plan that shows the
changes required to align the actual state with the configuration file, and it also has a
drift managing module shown in Figure 4a. This solution has other functionalities, such
as remediating the detected drift and sending notifications when a drift is detected.

(a) Example of Terraform Drift Detection
taken from HashiCorp Youtube Channel1

(b) Example of Pulumi Drift Detection taken
from PulumiTV Youtube Channel2

(c) Example of Spacelift Drift Detection taken
from Spacelift Youtube Channel3

Figure 4: Examples of Drift Detection

Similarly, AWS Config Amazon Web Services (2024b) provides an inventory of the
resources in the AWS account. This solution helps maintaining compliance with the
desired state, any deviation triggers alerts allowing fast remediation of state drifts.

There is also a Pulumi program Pulumi (2022) in which a Lambda is periodically
activated to refresh the Pulumi state using Pulumi Deployments API. This solution is
based on the monitoring of a log where every drift-check execution is printed, if a drift is
detected, the log announces which execution does not pass the check, an example of this
log can be seen in Figure 4b.

1Automatic drift detection in Terraform Cloud. URL: https://www.youtube.com/watch?v=

FHoPzQQJw_Y
2Drift Detection — Modern Infrastructure. URL: https://www.youtube.com/watch?v=

-K90I1F6tfs
3Drift Detection. URL: https://www.youtube.com/watch?v=4inDSpTEZ54

6

https://www.youtube.com/watch?v=FHoPzQQJw_Y
https://www.youtube.com/watch?v=FHoPzQQJw_Y
https://www.youtube.com/watch?v=-K90I1F6tfs
https://www.youtube.com/watch?v=-K90I1F6tfs
https://www.youtube.com/watch?v=4inDSpTEZ54

So far, the most complete solution is the one developed by Spacelift Dinu and Fontaine
(2024) where a complete state drift detection automation has been developed. This
solution includes from manual reconciliation to automated jobs programmed to reconcile
when a drift is detected Spacelift (2024). In Figure 4cthe Spacelift web console can be
observed, showing graphically the drift identified with the detailed description on the
right column.

The projects that have been discussed in this section, their singularity, and drawbacks
are summarized in Table 1.

Table 1: Drift detection existing projects

Project Cloud Singularity Drawbacks

Spacelift Multi-cloud Automatic remediation
solution

Private workers needed, no risk
evaluation

Terraform Multi-cloud Remediation options Manual application, no risk eval-
uation

Pulumi Multi-cloud Open source Log-based solution, no risk eval-
uation

AWS Config AWS Embedded on the AWS
Cloud Platform

Single-cloud, no risk evaluation

Despite the advances described in this section, there are still challenges associated
with state drift detection, such as the complexity of managing multi-cloud environments,
the managing of continuous monitoring, the potential for false positives, and the unknown
real risk and impact of drifts even when they are detected.

Given that poor collaboration is often the cause of state drifts, much literature recom-
mends following best practices already used for software development, including continu-
ous integration/continuous deployment (CI/CD) pipelines to ensure that drift detection
is an ongoing process.

3 Methodology

A qualitative approach is performed by systematically analyzing drift scenarios using IaC
tools, specifically Terraform and Pulumi, for the provisioning and management of virtual
machines across AWS and Azure cloud providers. This approach ensures a comprehensive
understanding of the impact of state drifts in IaC-managed environments.

The general methodology involves the following steps.

1. Data collection for analysis purposes:

• Generating input files for provisioning virtual machines (scripts based on veri-
fied scripts taken from official IaC tool repositories with an Apache-2.0 li-
cense.). The final collection is formed by combining IaC tools and cloud pro-
viders:

– Terraform - AWS 1

– Terraform - Azure 2

– Pulumi(Python) - AWS 3

1https://github.com/terraform-aws-modules/terraform-aws-ec2-instance
2https://github.com/Azure/terraform-azurerm-virtual-machine
3https://github.com/pulumi/templates/tree/master/vm-aws-python

7

https://github.com/terraform-aws-modules/terraform-aws-ec2-instance
https://github.com/Azure/terraform-azurerm-virtual-machine
https://github.com/pulumi/templates/tree/master/vm-aws-python

– Pulumi(Python) - Azure 4

• Collecting state files generated by applying the scripts.

• Using CLI tools to get the actual state of the infrastructure.

2. Analysis of properties in collected data:

• Analyzing the properties shared among the sources, comparing configurations,
and identifying differences.

• Selecting properties to work with.

• Evaluating the risk of each property when drifted and considering buffer of
options.

3. Core solution development (API):

• Building a REST API exposing the core functionality of the solution, that can
be summarized as:

– Saving the source files and cloud provider connectivity data.

– Using the project ID as input to fetch the source files and cloud provider
connectivity data.

– Implementing functionality to identify state drift between the actual in-
frastructure, the state file (desired infrastructure), and the configuration
file.

– Giving a risk evaluation for the differences identified, based on the result-
ing table from the analysis.

4. User interface development:

• Building a Web Application to allow final users to consume the final solution,
the main interactions to develop are:

– Collecting source files and cloud provider connectivity data, to save it as
a project.

– Displaying the summary report for the infrastructure project.

– Showing detailed information on each drifted attribute identified.

5. Evaluation:

• The primary goal is to replicate the drift scenarios to evaluate the accuracy and
effectiveness of the developed solution. The objective is to evaluate whether
the solution can detect and evaluate drifts in a manner consistent with previous
studies.

– Setting up test environments across AWS and Azure using the same IaC
scripts used in the earlier phases of the methodology.

– Making manual changes to the infrastructure that deviate from the ori-
ginal state.

– Running the developed system to detect these drifts and evaluate the risks
associated with them.

4https://github.com/pulumi/templates/blob/master/vm-azure-python

8

https://github.com/pulumi/templates/blob/master/vm-azure-python

– Comparing the outcome against the known introduced changes to verify
accuracy and compare overall information provided with the technologies
mentioned in section 2.2.

4 Design Specification

4.1 Model Description

The entire project is divided into three main stages: Data Normalisation Stage, Drift
Detection Stage, and Risk Evaluation Stage.

4.1.1 Data Normalisation Stage

The solution proposed in this paper requires three inputs: the configuration file, the state
file, and the actual architecture file, so this stage aims to collect these files and normalise
the attributes among the three of them.

The configuration file and the state file must be provided by the final user of the solu-
tion, the state file must be the one obtained by applying the configuration file provided.

The actual architecture files are dynamically updated using CLI tools to obtain the
current state of the infrastructure, the connection data to use the CLI tool must also be
provided by the final user of the solution. Data provided for the user is stored under an
infrastructure-project-ID, and using encrypted storage for security reasons.

Lastly, all the collected files have different structures and attribute names, so this
stage takes the source files and normalise them into a unified format following structure
in Figure 5

Figure 5: Drift Detection Project Collection Data Structure

Infrastructure Project

CLI instances State instances Script instances

4.1.2 Drift Detection Stage

The methods described in section 2.2 use the Terraform and Pulimi refresh functionality
to identify drifts; here, an external connection directly to the cloud is used to avoid IaC
tool bias functionality. They also do not identify missing instances.

This stage analyses the collected data using the outcome of the Data Normalisation
Stage for the algorithm to identify drifts, such algorithm is designed as follows:

1. Identify the common instances between the CLI instances and the State instances.

• The instances in the CLI instances but not in the State instances are marked
as missing instances.

2. For each common instance:

(a) Identify the common attributes between the CLI attributes and the State
attributes.

9

(b) Verify that the attribute values match.

• If the values do not match, it is marked as a drifted attribute

(c) Evaluate whether the attribute exists in the script attributes.

• If the attribute does not exist, it is marked as a drifted attribute

• If the attribute exists, but its value does not match with the CLI and
State value, it is marked as a drifted attribute

The data structure of the solution at this point should look like Figure 6 where each
drifted attribute may contain its CLI value, state value, and script value.

Figure 6: Drift Detection Project Output Data Structure

Infrastructure Project

Drifted instances

VM Instance X

Drifted attributes

. . . VM Instance N

Healthy instances Missing instances

4.1.3 Risk Evaluation Stage

This stage evaluates the risk associated with each drifted attribute identified in the Drift
Detection Stage. The model evaluates each drift based on predefined risk tables and
assigns a risk level based on the deviation found. This helps the end user prioritize
remediation efforts.

Although the existing methods described in section 2.2 have remediation and auto-
mation features, none has a risk evaluation of the drift identified.

The risk evaluation model is applied on each drifted attribute taken as input the
values from the different sources (CLI tool, state file, and script file) and follows these
steps to assess the risk:

1. Normalization: If the attribute value is a number, a simple normalization will be
applied to obtain values between 0 and 100.

2. Ranking: A High, Medium, or Low label is assigned to the attribute according to the
deviation between the state and CLI value. This deviation is based on predefined
risk tables.

3. Identification of default values: this scenario is identified when the scrip value is
empty but the state and CLI values match.

4. Identification of outdated values: this scenario is identified when the state and CLI
values match but the scrip value is different, which means the provided state file is
not the last version generated by the provided script file.

5. Scoring: The complete infrastructure project is evaluated according to the total
High, Medium, and Low risk identified, giving an overall percentage of trustworthi-
ness.

10

4.2 Components

The solution is composed of two components: the API Module, where the core solution is
developed, and the User Interface Module, where the results are shown to the final user.
These components ensure that the system is not only functional but also accessible and
user-friendly.

4.2.1 API Module

The API Module is designed to provide a programmable interface for storing the input
data, accessing and managing the state drift analysis results, and facilitating integration
with external systems or tools.

The endpoints required are the following. Create a new project, get the project list,
check the health of a project, and get the details of a drifted project.

4.2.2 User Interface Module

The User Interface (UI) Module is designed to provide a user-friendly platform for inter-
acting with the API. This module must allow users to easily check the health of their
IaC projects. In the Web Interface, the user can create projects, initiate drift detection,
view the results, and get the details needed to prioritise remediation activities.

5 Implementation

The Implementation section details the final stage of the proposed solution, highlight-
ing the outputs produced, the tools and frameworks used, and the overall process that
translates the specifications described in section 4 into a functional product.

The novelty of this project lies in its approach to risk evaluation for identified drifts
and the trustworthiness assessment of the entire IaC-managed infrastructure. This study
developed a solution that integrates both drift detection and risk evaluation. For drift
detection, using CLI tools for AWS and Azure, as well as state files for Terraform and
Pulumi. This method contrasts with existing projects, which are typically native to Ter-
raform or Pulumi and do not specify their source for comparison, making their methods
less transparent.

The main loophole identified in current projects is the absence of risk evaluation for
detected drifts. Existing solutions focus on detecting drifts and suggesting remediation,
without evaluating any risks that might be associated. This project overcomes this gap
by providing a risk evaluation for each identified drift, it includes the reason why the
drift was identified showing the original value, the desired value, and the current value.
Additionally, it takes the given risk evaluations to calculate an overall trustworthiness
percentage for the entire IaC-managed infrastructure, offering an overview of the reliab-
ility of the IaC.

5.1 Outputs Produced

The final implementation involved integrating all modules and producing various outputs,
including transformed data, developed code, and generated reports. This section outlines
the outputs produced during the overall solution.

11

5.1.1 Models

The two models developed as the final solution enable the identification of state drifts in
virtual machine instances and evaluate their associated risks.

1. Drift Detection Model

The Drift Detection Model is developed to identify discrepancies between the actual
state of the infrastructure and the desired state as specified in the configuration files
and state files. This model performs the steps in Algorithm 1.

Algorithm 1 Drift Detection Algorithm

1: Input: cloud, tool, state file, script file, cloud connectivity data
2: Output: healthy instances, drifted instances, missing instances
3: Step 1: Retrieve actual infrastructure using CLI
4: raw cli instances ← cli connection(cloud connectivity data)
5: Step 2: Normalize instances according to the cloud provider
6: cli instances ← normalise(cloud, raw cli instances)
7: state instances ← normalise(cloud, state file)
8: script instances ← normalise(cloud, script file)
9: Step 3: Get common instances and missing instances
10: common instances ← cli instances and state instances
11: missing instances ← cli instances - common instances
12: Step 4: Compare attributes and get drifted instances
13: drifted instances ← []
14: for each instance in common instances do
15: cli instance ← cli instances[instance]
16: state instance ← state instances[instance]
17: is drifted ← false
18: for each attribute in cli instance.attributes do
19: if cli instance[attribute] ̸= state instance[attribute] then
20: is drifted ← true
21: end if
22: end for
23: if is drifted then
24: add instance to drifted instances
25: end if
26: end for
27: Step 5: Get healthy instances
28: healthy instances ← common instances - drifted instances
29: return healthy instances, drifted instances, missing instances

The model retrieves the actual infrastructure using CLI tools, compares them
against instances specified in the state file, and the instances not found in the state
file, and marks them as missing instances. For each common instance, the model
identifies attributes that do not match between the actual state and the desired
state. These discrepancies are flagged as drifts. Drifted instances are those with
one or more drifted attributes; if no drifted attributes, then is a healthy instance.
The output of this model is the list of healthy, drifted, and missing instances, along
with detailed information on the drifted attributes.

2. Risk Evaluation Model

The drifts are classified into high, medium, or low risk based on the distance of
the new value from the original value, using the hierarchy table and a simple slope
equation specified in Equation 1.

12

Change rate = Round

(
|New Value−Original Value|
max(Values)−min(Values)

)
(1)

Then the risk is classified5 according to Table 2

Change Rate (%) Risk Level
1% – 10% Low
11% – 50% Medium
51% – 100% High

Table 2: Risk Level Based on Change Rate

Once all the attributes have a risk evaluation then the complete project infrastruc-
ture can be evaluated to indicate how much the Infrastructure as Code (IaC) can
be trusted, and prioritize remediation tasks.

The trustworthiness calculation uses a weight-scoring algorithm, which evaluates
the overall infrastructure reliability. This algorithm assigns different weights to
each risk level (low, medium, and high) and normalizes the results to produce a
trustworthiness score. The detailed calculation process is based on Algorithm 2

Algorithm 2 Calculate Trustworthiness

1: Input: low risk count, medium risk count, high risk count, unknown risk count, coverage
2: Output: trustworthiness
3: Step 1: Initialize total count
4: total count ← low risk count + medium risk count + high risk count + unknown risk count
5: Step 2: Define risk weights
6: low risk weight ← 1
7: medium risk weight ← 3
8: high risk weight ← 5
9: Step 3: Calculate the weighted sum of risks
10: weighted sum ← (low risk count × low risk weight) + (medium risk count × medium risk weight)

+ (high risk count × high risk weight) + (unknown risk count × high risk weight)
11: Step 4: Normalize the total risk score
12: max possible weighted sum ← total count × high risk weight
13: normalized risk score ← (weighted sum / max possible weighted sum) × 100
14: Step 5: Calculate trustworthiness
15: trustworthiness ← (100 - normalized risk score) × coverage
16: return trustworthiness

5.1.2 Code Developed

Two coding projects6 developed for this solution were an API with the core solution and
a User Interface:

5If the attribute is not in the hierarchy table, it is classified as Unknown and counted as a high-risk
weight in the trustworthiness calculation.

6The complete code developed can be found in the repositories (permission must be granted for
access):

• API: https://github.com/laurusik/drift_detector_api.git

• User Interface: https://github.com/laurusik/drift_detector_user_interface.git

13

https://github.com/laurusik/drift_detector_api.git
https://github.com/laurusik/drift_detector_user_interface.git

1. API

The developed API is the main component that facilitates the interaction between
the processing modules and the user interface. It provides endpoints for data stor-
age, drift detection, and result summarising, and also incorporates security meas-
ures to protect sensitive information. The available endpoints are:

• Data Storage Endpoint: Accepts the source files (state and configuration
files) and the cloud provider connectivity data. Validates and stores these data
securely by implementing encrypted storage.

• Drift Details Endpoint: Triggers the drift detection process for an infra-
structure project and returns the detailed identified drifts with the risk as-
signed.

• Report Endpoint: Fetches the summarized results of the drift analysis and
risk evaluation.

2. User Interface

The user interface (UI) was developed to provide an intuitive and interactive Web
Portal for users to interact with the system. It allows users to upload source files,
initiate drift detection, and view drift reports. The UI is built using a responsive
and user-friendly experience having the following features:

(a) Settings View (b) Health Check View

Figure 7: User Interfaces

• Views

– Home: Displays an overview of the purpose of the Web Portal.

– Settings: Allows users to create projects, upload the necessary source
files, and provide the cloud connectivity details - Figure 7a.

– Health Check: Displays the report results allowing the user to get more
details about the identified drifts - Figure 7b.

• Security

– Authentication: Implements secure user authentication and authoriza-
tion mechanisms to protect user data and ensure privacy.

5.1.3 Data

There are two main outputs in this solution, the report and the drift details, here, is the
description of the data transformation for each output.

14

1. Data Normalization and Risk Evaluation

The configuration files, state files, and actual architecture files are transformed into
a unified object at running time. This normalisation is applied at the attribute
level so that all attributes can be compared, and evaluated to assign a risk level.

Data Normalization Output Example

{
"drifted_instances": {

"vmb951a7d0": {
"instance_id": "vmb951a7d0",

"attributes": {
"Subnet_Id": {

"key": "Subnet_Id",

"cli_value": "subnet -0e78ac25b5142713d",

"state_value": "subnet -076b470b63898f9e1",

"conf_value": "subnet -076b470b63898f9e1",

"risk_level": "High",

"comments": "Drift detected - It could severely

impact the instance ’s functionality,

security, or connectivity"

}
}
// ... other attributes

}
// ... other drifted instances

},
"healthy_instances": {

// ... healthy instances data

},
"missing_instances": {

// ... missing instances data

}
}

2. Infrastructure Project Report

The report gives an overall health summary of the infrastructure project. It includes
the total count of missing, drifted, and healthy instances, calculating the coverage
of the actual infrastructure built by IaC. Additionally, the report calculates the
trustworthiness of the Infrastructure as Code (IaC)-managed infrastructure based
on the types of risk detected. Here is an example of a report output.

Infrastructure Project Report Output Data Example

{
"drifted_instances_count": 1,

"healthy_instances_count": 2,

"missing_instances_count": 1,

"coverage": "75.00",

"low_risk_count": 3,

"medium_risk_count": 1,

"high_risk_count": 1,

"trustworthiness": "42.00"

}

15

5.2 Tools and Frameworks

The complete list of tools and frameworks used for this solution can be found in Table 3.
The category and purpose of each tool or framework are described to understand the
application of each tool in the context of this solution. The specific methodology step it
supports is also mentioned.

Table 3: Tools and Frameworks

Tool or
framework

Category Purpose Methodology step

Terraform
and Pulumi

Infrastructure-as-
Code (IaC) Tools

Provision and management of infra-
structure for AWS and Azure

Analysis and Eval-
uation

AWS and
Azure vir-
tual machine
instances

Cloud Infrastruc-
ture

Provide secure, resizable computing
in the cloud, offering a big range of
processor, storage, networking, and
OS options

Analysis and Eval-
uation

Python +
Flask

General-Purpose
Programming Lan-
guage

Development of the API to handle
requests and responses for the main
solution

Development of the
core solution

MySQL Database Provide encryption storage to en-
sure security on sensitive data stor-
age

Development of the
core solution

Vue + Vite Web Development
Framework

Development of an interactive user
interface to display drift analysis
results

User interface de-
velopment

Keycloak Security: Identity
and Access Man-
agement Tool

Provision authentication to the user
interface.

User interface de-
velopment

6 Evaluation

The Evaluation section provides a comprehensive analysis of the results and insights of the
solution proposed. The most relevant results are discussed and identified as supporting
the research question.

To evaluate the effectiveness of the developed solution, there were carried 4 case
studies using IaC scripts to provide virtual machines across AWS and Azure following
the scenarios described in Table 4

This distribution allows to show how drifts in different IaC tools across AWS and
Azure can be detected. The intention is to show how these tools operate in different
contexts, rather than comparing the same scenario across both platforms.

Additionally, using the NCI cloud resources allows to demonstrate a scenario with low
coverage in AWS but not in Azure. This difference provides valuable insights into the
challenges and considerations when managing IaC infrastructures.

During the initial phase of the research, native AWS (AWS CloudFormation) and
Azure (Azure Resource Manager) IaC tools were considered, as they came up while
writing the related work. However, they were not used in this evaluation because the focus
of the study is multi-cloud environments, then, only tools like Terraform and Pulumi that
offer multi-cloud compatibility were chosen. Native tools are limited to their respective
cloud environments, which would not provide a cross-platform analysis.

16

Table 4: Evaluation Scenarios

Scenario
ID

Cloud IaC Tool Purpose

1 Azure Terraform Showing a full coverage NON-drifted infrastructure
project

2 Azure Pulumi Showing a full-coverage high-trustworthiness (low-
risk) infrastructure

3 AWS Terraform Showing a low-coverage medium-trustworthiness
(medium-risk) infrastructure

4 AWS Pulumi Showing a low-coverage low-trustworthiness (high-
risk) infrastructure

6.1 Scenario 1

Showing a fully covered, NON-drifted infrastructure project, this case was chosen to
provide a baseline comparison against projects where drifts are present. The main purpose
is to show that the solution has the ability to identify a healthy infrastructure.

Cloud: Azure IaC Tool: Terraform

Steps: Followed steps to replicate this scenario

1. Apply the IaC script to provision a Virtual Machine

2. Set up the Azure-Terraform project in the solution

3. Run the health check solution

Results: Expected and obtained results are summarised in Table 5, the supportive evidences
can be found in Figure 8

Table 5: Comparison of Expected and Obtained Results for Scenario 1

Metric Expected Result Obtained Result

Healthy instances 1 1
Coverage 100% 100%

Drifts Detected None None
Trustworthiness 100% Not Displayed

This successful baseline scenario indicates that any drift found after is indeed gener-
ated by a change made in the infrastructure outside of the IaC workflow. The healthy
instance found confirms that no unauthorised changes have been made and that all com-
ponents match the desired state. The trustworthiness metric was expected to be 100%,
but it was not displayed as by design the trustworthiness is only calculated when a drift is
detected because the maximum trustworthiness that a project can reach is the percentage
of the entire infrastructure covered, in this scenario is 100%.

6.2 Scenario 2

Showing a half-coverage high trustworthiness (low risk) infrastructure, this case was
chosen to show a low-risk identification and the behaviour of the solution when the drift
happens by adding features in the cloud provider console.

17

In this scenario, it is considered that the instance created in section 6.1 has been
destroyed and would not affect the trustworthiness value in this scenario.

Cloud: Azure IaC Tool: Pulumi

Steps: Followed steps to replicate this scenario

1. Apply the IaC script to provision a Virtual Machine

2. Set up the Azure-Pulumi project in the solution

3. Manually create a drift by adding a Tag directly in the Azure console.

4. Run the health check solution

Results: Expected and obtained results are summarised in Table 6, the supportive evidences
can be found in Figure 9

Table 6: Comparison of Expected and Obtained Results for Scenario 2

Metric Expected Result Obtained Result

Missing Instances 0 0
Coverage 100% 100%

Drifts Detected 1-Low 1-Low
Trustworthiness 80% 80%

Figure 8: Scenario 1 Result
Figure 9: Scenario 2 Result

This scenario shows 100% accuracy in finding added configurations to the ones defined
by the IaC project. A low-risk drift typically involves minor changes, but even when
the impact is evaluated as low risk, the identification of these drifts is key to planning
remediation work not only in the infrastructure but also in the teamwork and the workflow
and procedures that should be followed.

18

6.3 Scenario 3

Showing a low-covered infrastructure, which means that most of the instances are missing
from the Infrastructure as Code (IaC) project evaluated. The drift found will exemplify
a medium risk detected by modifying a property set by the configuration scripts.

Cloud: AWS IaC Tool: Pulumi

Steps: Followed steps to replicate this scenario

1. Apply the IaC script to provision an EC2 instance

2. Set up the AWS-Terraform project in the solution

3. Manually create a drift modifying the instance type from t2.micro to t3.large.

4. Run the health check solution

Results: Expected7 and obtained results are summarised in Table 7, the supportive evidences
can be found in Figure 10

Table 7: Comparison of Expected and Obtained Results for Scenario 3

Metric Expected Result Obtained Result

Missing instances > 10 76
Coverage low 1.3%

Drifts Detected 1-Medium 1-Medium, 1-Low, 1-Unknown
Trustworthiness 1.04% 0.52%

This is one example of a worst-case scenario where only 1.3% of the infrastructure is
managed by an IaC tool, this means that the highest trustworthiness that can be expected
is 1.3% and any drift found will affect the final result. The low coverage in this scenario
shows the importance of having a proper IaC project where all the instances and changes
can be tracked in a unique process. The accuracy of drift identification is 33.3% as only
one drift was expected and 3 were identified, reducing even more the trustworthiness.

6.4 Scenario 4

Having the same case as section 6.3, changing the same attribute but a higher distance
from the original value to have a higher risk evaluated.

Cloud: AWS IaC Tool: Pulumi

Steps: Followed steps to replicate this scenario

1. Apply the IaC script to provision an EC2 instance

2. Set up the AWS-Terraform project in the solution

3. Manually create a drift modifying the instance type from t2.micro to i3.large.

4. Run the health check solution

Results: Expected7 and obtained results are summarised in Table 8, the supportive evidences
can be found in Figure 11

7As using NCI cloud resources, cannot be specified an exact number of missing instances nor coverage

19

Table 8: Comparison of Expected and Obtained Results for Scenario 4

Metric Expected Result Obtained Result

Missing instances > 10 75
Coverage low 1.32%

Drifts Detected 1-High 1-High, 1-Low, 1-Unknown
Trustworthiness 0% 0.35%

The result of this scenario aims to highlight the impact of a drift when the new value
is further away from the original value. Having as a baseline the results in section 6.3
where the impact of changing t2.micro to t3.large was evaluated as medium risk, then
changing t2.micro to i3.large implicates a major impact on potential performance and
cost, that is why it is evaluated as high risk.

Figure 10: Scenario 3 Result Figure 11: Scenario 4 Result

6.5 Discussion

The evaluation scenarios presented demonstrate the robustness of the developed solution
in detecting and assessing infrastructure drifts across different cloud environments and
IaC tools. The key findings include:

• Drift Detection: The solution consistently detected drifts across all scenarios
where drifts were expected.

• Trustworthiness: The trustworthiness scores reflected the health of the infra-
structure, with higher scores correlating with fewer or less-risk drifts.

• IaC Coverage: Scenarios 3 and 4 highlighted the critical role of IaC coverage in
maintaining infrastructure integrity. Low coverage not only reduces trustworthiness
but also increases the probability of untracked changes.

• Risk Evaluation: The comparison between Scenarios 3 and 4 illustrates how the
risk level of a drift, directly influences the overall trustworthiness.

While the experiments demonstrated the overall effectiveness of the solution, they
also highlighted areas where the design could be improved:

• Drift Detection: The solution successfully identified drifts in the infrastructure
suggesting a robust model. Yet in scenarios 3 and 4 there were identified more
drifts than expected indicating the Drift Detection Model may need an adjustment
handling nested attributes.

20

• Risk Evaluation: The solution confirms its capability to detect low, medium, and
high-risk drifts. However, there is a fourth category of unknown risk, which means
that the Risk Evaluation Model must consider more cases and drift scenarios.

• Metrics: The coverage and trustworthiness scores are the data that any infra-
structure manager is looking for. The trustworthiness calculation gives very useful
information about the overall health of the infrastructure. However, the linear
reduction, particularly in high-risk scenarios, suggests that the scoring algorithm
could need refinement to avoid disproportionate penalties such as in scenario 4
where only one high-risk identified drift reduced trustworthiness to 0%.

• Methodology: Using CLI tools to fetch the actual infrastructures is the most dir-
ect way to go to the source, but during the construction of the solution, identifying
and unifying the common attributes among all the source files across the different
IaC tools and cloud formats closed the development in terms of including any other
cloud to IaC tool beside the ones defined from the begging. This supports the
decisions made by the solutions presented in section 2.2 not using file comparison
that will imply high maintenance in long-term scenarios.

7 Conclusion and Future Work

This paper aimed to answer the question: How can state drifts be identified and risk-
evaluated concerning their impact on security, performance, and cost in cloud infrastruc-
tures managed by Infrastructure as Code (IaC)?

To achieve that objective, the study developed and tested a solution that automates
drift detection and risk evaluation of state drifts in different cloud environments (AWS and
Azure) using IaC tools (Terraform and Pulumi). Four case studies were conducted, each
focusing on different aspects of drift detection, risk evaluation impact, and infrastructure
coverage. The findings were:

- Drift Detection: The solution detected state drifts across different cloud providers
and IaC tools.

- Risk Evaluation: The risk evaluation model provided valuable insights for the de-
tected drifts that can work as guidance for infrastructure management.

- IaC Coverage Importance: Having a high coverage using IaC tools to manage cloud
infrastructure is key to keeping track of changes and maintaining trustworthiness
in the projects.

In conclusion, this solution supports that drift detection and risk evaluation in IaC-
managed environments improve infrastructure management practices, particularly in
multi-cloud environments. However, it has limitations: the scope was limited to vir-
tual machines, and the risk evaluation framework requires further validation in more
diverse and complex infrastructure scenarios. Lastly, trustworthiness scores in high-risk
scenarios suggest the need to adjust the calculation algorithm.

7.1 Future Work

There are several areas where future work could be done:

21

- Extending Beyond Virtual Machines: Cover a broader range of cloud resources.
This would provide a more detailed infrastructure health.

- Extending cloud providers: Cover cloud providers different from AWS and Azure.
This would enhance the multi-cloud environment’s usability.

- Extending IaC tools: Cover IaC tools different from Terraform and Pulumi. This
would provide a different methodology that may involve less attribute normalisa-
tion.

- Enhance drift detection model: Go deep into nested attributes that may involve a
finer but important risk evaluation.

- Enhance risk evaluation: Redefine the risk evaluation model to consider context
using machine learning techniques allowing dynamically adjusting risk scores.

- Exploring Potential for Commercialisation: Commercialization could make the solu-
tion accessible to a wider audience commercialising the solution as a SaaS (Software
as a Service) product.

References

Alonso, J., Piliszek, R. and Cankar, M. (2023). Embracing iac through the devsecops philosophy:
Concepts, challenges, and a reference framework, IEEE Software 40(1): 56–62.

Amazon Web Services (2024a). Amazon EC2 On-Demand Pricing. Accessed: 2024-07-26.
URL: https: // aws. amazon. com/ ec2/ pricing/ on-demand/

Amazon Web Services (2024b). AWS Config Developer Guide. Accessed: 2024-07-20.
URL: https: // docs. aws. amazon. com/ config/ latest/ developerguide/

cloudformation-stack-drift-detection-check. html

Burgess, M. (2005). A tiny overview of cfengine: Convergent maintenance agent, Proceedings of the 1st
International Workshop on Multi-Agent and Robotic Systems, MARS/ICINCO 2005: 4. P.O. Box 4,
St. Olavs Plass, Oslo 0230, Norway. Email: mark@iu.hio.no.

Dinu, F. and Fontaine, J.-M. (2024). Infrastructure drift detection and how to fix it with iac tools.
Accessed: 2024-07-24.
URL: https: // spacelift. io/ blog/ drift-detection

Falazi, G., Breitenbücher, U., Leymann, F., Stötzner, M., Ntentos, E., Zdun, U., Becker, M. and Held-
wein, E. (2022). On unifying the compliance management of applications based on iac automation,
2022 IEEE 19th International Conference on Software Architecture Companion (ICSA-C), pp. 226–
229.

Frank, F., Alfke, M., Franceschi, A., Pastor, J. S. and Uphillis, T. (2017). Puppet: Mastering
Infrastructure Automation, Packt Publishing, Birmingham, UK.
URL: https: // research. ebsco. com/ linkprocessor/ plink? id=

d3abd1f7-b67b-354f-a0d3-68a51e02536b

Gartner (2024). Cloud management tooling. Accessed: 2024-07-17.
URL: https: // www. gartner. com/ reviews/ market/ cloud-management-tooling

HashiCorp (2024). Detect resource drift in terraform state. Accessed: 2024-07-17.
URL: https: // developer. hashicorp. com/ terraform/ tutorials/ state/ resource-drift

Maayan, G. D. (2024). Configuration as code: Trends and predictions for 2024, https://devops.com/
configuration-as-code-trends-and-predictions-for-2024/. Accessed: 2024-02-14.

22

https://aws.amazon.com/ec2/pricing/on-demand/
https://docs.aws.amazon.com/config/latest/developerguide/cloudformation-stack-drift-detection-check.html
https://docs.aws.amazon.com/config/latest/developerguide/cloudformation-stack-drift-detection-check.html
https://spacelift.io/blog/drift-detection
https://research.ebsco.com/linkprocessor/plink?id=d3abd1f7-b67b-354f-a0d3-68a51e02536b
https://research.ebsco.com/linkprocessor/plink?id=d3abd1f7-b67b-354f-a0d3-68a51e02536b
https://www.gartner.com/reviews/market/cloud-management-tooling
https://developer.hashicorp.com/terraform/tutorials/state/resource-drift
https://devops.com/configuration-as-code-trends-and-predictions-for-2024/
https://devops.com/configuration-as-code-trends-and-predictions-for-2024/

Mikkelsen, A., Grønli, T.-M. and Kazman, R. (2019). Immutable infrastructure calls for immutable
architecture, Hawaii International Conference on System Sciences.
URL: https: // api. semanticscholar. org/ CorpusID: 102351693

Morris, K. (2020). Infrastructure as Code, O’Reilly Media, Inc. ISBN-13: 978-1-0981-1467-1.

Nedeltcheva, G. N., Xiang, B., Niculut, L. and Benedetto, D. (2023). Challenges towards modeling and
generating infrastructure-as-code, Companion of the 2023 ACM/SPEC International Conference on
Performance Engineering, ICPE ’23 Companion, Association for Computing Machinery, New York,
NY, USA, p. 189–193.
URL: https: // doi. org/ 10. 1145/ 3578245. 3584937

Perforce Software, Inc. (2023). Configuration drift, https://www.puppet.com/blog/

configuration-drift. Accessed: 2024-07-20.

Petrovic, N., Cankar, M. and Luzar, A. (2022). Automated approach to iac code inspection using
python-based devsecops tool, 2022 30th Telecommunications Forum (TELFOR), IEEE, Belgrade,
Serbia, pp. 1–4.
URL: https: // ieeexplore. ieee. org/ document/ 9983681/

Pulumi (2022). Drift detection. Accessed: 2024-07-24.
URL: https: // github. com/ pulumi/ deploy-demos/ tree/ main/ pulumi-programs/

drift-detection

Qiu, Y., Kon, P. T. J., Xing, J., Huang, Y., Liu, H., Wang, X., Huang, P., Chowdhury, M. and Chen,
A. (2023). Simplifying cloud management with cloudless computing, Proceedings of the 22nd ACM
Workshop on Hot Topics in Networks, HotNets ’23, Association for Computing Machinery, New York,
NY, USA, p. 95–101.
URL: https: // doi. org/ 10. 1145/ 3626111. 3628206

Spacelift (2024). Drift Detection in Spacelift Stacks. Accessed: 2024-07-24.
URL: https: // docs. spacelift. io/ concepts/ stack/ drift-detection

Vaquero, L. M., Rodero-Merino, L., Caceres, J. and Lindner, M. (2009). A break in the clouds: towards
a cloud definition, SIGCOMM Comput. Commun. Rev. 39(1): 50–55.
URL: https: // doi. org/ 10. 1145/ 1496091. 1496100

23

https://api.semanticscholar.org/CorpusID:102351693
https://doi.org/10.1145/3578245.3584937
https://www.puppet.com/blog/configuration-drift
https://www.puppet.com/blog/configuration-drift
https://ieeexplore.ieee.org/document/9983681/
https://github.com/pulumi/deploy-demos/tree/main/pulumi-programs/drift-detection
https://github.com/pulumi/deploy-demos/tree/main/pulumi-programs/drift-detection
https://doi.org/10.1145/3626111.3628206
https://docs.spacelift.io/concepts/stack/drift-detection
https://doi.org/10.1145/1496091.1496100

	Introduction
	Research Question

	Related Work
	Definition of state drifts
	Detection methods for state drifts

	Methodology
	Design Specification
	Model Description
	Data Normalisation Stage
	Drift Detection Stage
	Risk Evaluation Stage

	Components
	API Module
	User Interface Module

	Implementation
	Outputs Produced
	Models
	Code Developed
	Data

	Tools and Frameworks

	Evaluation
	Scenario 1
	Scenario 2
	Scenario 3
	Scenario 4
	Discussion

	Conclusion and Future Work
	Future Work

