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Comparative Analysis and Enhancement of  

Resource   

Allocation Techniques in Kubernetes  

Jeyasoorya Manoharan  

22196366  

Abstract  
This research focuses on improving resource management strategies in Kubernetes which 
is used to manage containerized applications solving issues related to allocation, 
optimization, and scaling of their resources. Applying machine learning, the work along 
with the development of the new strategies, integrates the existing method of resource 
consumption prediction, resource utilization control, QoS-based task scheduling, and the 
novel hybrid auto scaling approach. Evaluation of performance metrics and the 
benchmarking process demonstrate the present state of resource management and its 
development tendencies for further optimization. The results reveal that linear 
regression models have a high level of accuracy in forecasting the CPU usage and, at the 
same time, the hybrid auto scaling strategy satisfactorily solves different constrains of 
resources. The QoS-aware scheduling algorithm analysis the improvement of the cluster 
efficiency and the responsiveness of the applications can be expected. Thus, these 
research results can be beneficial for both enhancing the theoretical knowledge of cloud 
computing and implementing the improved resource allocation methods in the 
Kubernetes clusters.  

Keywords: Kubernetes, Resource Allocation Mechanism, Comparative Study, Auto-Scaling, 

Quality of Service, containerization, cloud computing.  

1  Introduction  

 A. Background and Context  

Kubernetes is at present the most widely used platform for managing containers in the modern 

cloud-native landscapes. Now that many organizations leverage microservices architectures and 

containerized apps in their environments, the optimal use of the resources within the Kubernetes 

clusters in question has emerged as a paramount issue. The elements of containerized workloads 

as well as characteristics of distributed systems also pose certain difficulties to assign and 

schedule computation resources efficiently. Recent modernization includes the major popularity 

of cloud computations and widespread usage of the technologies connected with containers. 

Kubernetes, an open-source container management system that emerged in 2014, has been one 

of the key drivers of this shift as it offers environments, methods, and tools for automating the 

processes of deploying and scaling containers.  
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Nonetheless, as the volume and complexity of the implementation of Kubernetes increases, 

similar to many other sites, the issues related to the management of resources increase as well.   

B. Problem Statement  

Kubernetes has numerous features and abilities; still, many organizations face the problem of 

effective distribution and usage of resources in their clusters. Containers’ workload nature, the 

application load type, and the distribution complexity contribute to inconsistency and inefficiency 

in resource management.  

Resource management scheduling used in today’s Kubernetes platforms are satisfactory in 

functionality but insufficient in responding to dynamic workload and optimizing use of the 

available resources. This can lead to several issues, including:  

1. Failure to adequately utilize the various resources that are present in the cluster thus 

leading to high operational costs.  

2. Resource overcommitment where efficiency as well as system stability is affected  

3. Inability to scale up or down specific applications in response to the changing 

demographics on the use of the application.  

4. This is attributed to the poor placement of pods within nodes, and this degrades the 

working of the cluster.  

C. Research Questions and Objectives  

Research Questions  

To address the aforementioned challenges, this study aims to answer the following research 

questions:  

1. Assess the current resource management algorithms employed in kubernetes in regard to 

the efficiency of the allocation of available resources, utilization of the already existing 

resources, and scaling of the applications.  

2. Which aspects make Kubernetes clusters a decision point, and how can they be utilized to 

enhance general efficiency?  

3. What strategies might be used to create effective integration of ML/Predictive analytics for 

the resource with Kubernetes?  

4. Which effects occur when different strategies of allocating resources are implemented in 

Kubernetes workflows in relation to application performance, stability of clusters, and 

general costs?  

The primary objectives of this research are:  

1. In order to perform an effective comparison of all the current management algorithms for 

resources in Kubernetes, with an accent on their applicability and weaknesses at different 

stages of the deployment process.  
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2. To identify and promote better methods of resource allocation for work and projects, thus 

going for adaptive and predictive methods.  

3. To implement and compare HPA, VPA, and Cluster Autoscaler as a new auto scaling 

mechanism for better resource management.  

4. To design and integrate an enhanced scheduling strategy that self-organises taking into 

account applications’ priorities and performance demands on QoS.  

5. To measure and compare the advantages occurred by the proposed improvements for used 

resources, applications and total cluster effectiveness .  

D. Significance of the Study  

1. Academic Significance  

This research falls under cloud computing, in the field of containerization and distributed systems 

management, thereby helping to expand the pool of knowledge available in these fields. Through 

the analysis of algorithms developed in Kubernetes and the proposed improvements for them in 

this research, the subject contributes to the understanding of resource management issues in 

containerized systems. This study shows two recent research prospects in the AI-enhanced 

management of cloud infrastructure: the machine learning technologies for predicting the 

resource usage and the QoS-aware scheduling considerations. Then researchers could use such 

contributions as the starting point to research adaptive resource management in the context of 

monitored containerized apps. 2. Practical Significance  

Thus, the presented results and identified improvements pointed out in this research are the 

practical concerns for organizations using Kubernetes clusters. Improved resource management 

algorithms can lead to:  

• Optimizing the use of cluster resources so that costs can be cut and efficiency of the 

operations raised.  

• Thus, improved application performance and reliability due to application’s resource 

usage control.  

• Increased efficiency and the ability to adapt in the fluctuations in work load requirements  

• The overall dependency of the cluster management solution on manual inputs and efforts 

is decreased; more use of intelligent and autonomous mechanisms is made.  

E. Structure of the Dissertation  

This dissertation is organized into the following chapters:  

Chapter 1: Introduction - Explains the background to the study, problem definition, research 

questions, aims and objectives of the study or research, and the value of the study.  

Chapter 2: Literature Review – Provides an exhaustive analysis of the literature on Kubernetes 

resource management, auto scaling approaches and other innovative concepts with regard to 

cloud resources management.  
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Chapter 3: Methodology – Describes the overall research strategy, methods used to gather data 

and the methods used to analyse them in this study.  

Chapter 4: Implementation/Solution Development Specification - Critique the effectiveness of the 

current mechanisms for resource management in Kubernetes based on experience gained and 

other experiments.  

Chapter 5: Results and Critical Analysis - Details how the improvements particularly, predictive 

auto scaling and QoS-aware scheduling, has been proposed and executed.  

Chapter 6: Discussion and conclusions - Offers the results of comparisons between the proposed 

enhancements to the existing methods by using qualitative measures and qualitative evaluations.  

2  Related Work  

2.1 Overview of Kubernetes Resource Management  

Kubernetes has emerged as the widely used platform for managing containers and provides an 

advantage in the domain of deployment and scalability (Burns et al., 2021). Barely, Kubernetes 

utilises a resource management platform that grants pods the field of CPUs and memory and 

volumes based on the requests and limits set (Kubernetes, 2023). That is why recent researches 

shed light on the challenges appearing when designing efficient Kubernetes clusters resource 

management. In their work, Medel et al. (2020) pointed out that allocation of resources coupled 

with the performance of cluster applications entail some difficulties and the default configuration 

usually results in low efficiency. It is their work that deserves more specialized resource 

management solutions, which would correspond to actual workload characteristics.  

2.2 Resource Allocation Techniques  

2.2.1 Static Resource Allocation  

The unbounded resource allocation technique, where the administrator determines the resource 

requests and maximums directly, is still widely used in most Kubernetes environments. 

Nonetheless, Zhao et al. (2022) showed that web service managers who apply static allocation 

end up with resource wastage or worse, low performance due to the scheme’s inability to adapt 

to the workload. They ascertained that the proportionate distribution of resources resulted in 

resources being underutilized to an average of 30% when the enterprises were taken through 

their typical conditions.  

2.2.2 Dynamic Resource Allocation  

Based on the drawbacks of static allocation, different methods of dynamic resource allocation 

have been recommended by researchers. Li et al. (2021) proposed novel machine learning based 

approach wherein; resource utilization is forecasted with the help of prior usage pattern. They 

reported that their proposed model provided a 25% enhancement of the resource utilization 

compared to the non-dynamic approaches. In the same year, Guo et al proposed a resource 

allocation algorithm that dynamically adapts the CPU and memory resources depending on the 
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tonnage performance of the applications running on them. As their approach has shown, the 

resources were cut in their amount by 20%, however, the application performance stayed at a 

somewhat equal degree.  

2.3 Autoscaling Mechanisms  

2.3.1 Horizontal Pod Autoscaler (HPA)  

The Horizontal Pod Autoscaler is an additional Kubernetes element that can control the 

replication of pods with reference to the observed and consumed CPU or choose metrics of 

customer’s preferences (Kubernetes, 2023). Some innovations have been investigated in Sing & 

Kumar (2022) which introduced machine learning approaches for the prediction of the workload 

arrival pattern to HPA. In the presented work, authors implemented their predictive HPA model, 

which is 15% faster than the standard HPA in responding to sudden traffic increases.  

2.3.2 Vertical Pod Autoscaler (VPA)  

Vertical Pod Autoscaler specifications are a little different, as this tool targets the CPU and memory 

parameters of individual pods. In a research by Chen et al. (2021), time synchronization quality 

of VPA was assessed under various use cases. They also noted that VPA was most effective with 

applications that had varying demands on the resources, getting as much as 40% better utilization 

of the resources than did conventional fixed-resource allocation.  

2.3.3 Cluster Autoscaler  

Cluster Autoscaler is involved with the scaling of the nodes in the Kubernetes clusters regarding 

the infrastructure layer. A more recent work by Peng et al. (2023) introduced a cost-sensitive 

clustering auto scaling algorithm that analyses the performance characteristics and costs imposed 

by the cloud provider’s rate model. Their method made it possible to achieve target application 

service level objectives while at the same time lowering the costs of infrastructure by 25%.  

2.4 QoS-Aware Scheduling  

Features of Quality of Service (QoS) have lately become a topic of discussion when it comes to 

Kubernetes scheduling. Zhang et al. (2022) presented QoS-aware scheduling framework which 

aims at saving the preferable jobs as much as possible while considering the utilization of a cluster 

as a whole. Users argued that their algorithm improved the meeting of service level agreements 

of high priorities applications by 30% than the default Kubernetes scheduler. Based on this, Liu et 

al. (2023) presented a novel multi-objective QoS-aware scheduling framework that aims to 

achieve efficiency of resource utilization, better application performance, and fairness. A cluster 

efficiency improvement up to the 20 % using Their method was demonstrated while ensuring fair 

distribution of resources relating to the application tiers.  

2.5 Machine Learning in Resource Management  

The utilization of machine learning approaches to Kubernetes resource management has become 

an identified trend. Wang et al. (2021) proposed a reinforcement learning approach for dynamic 
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resource management that was able to adapt the resource allocation over time based on the 

realtime information fed into it. In resource utilization efficiency, the results achieved by the 

proposed reusable approach were 18% better than the conventional heuristic-based techniques. 

In the same manner, Karimi et al. (2023) used deep learning to estimate resource requirements 

in microservices-based applications. Their model had 90% accuracy for short-term forecasts of 

the scale demands, which would be pivotal to make better pre-emptive decisions.  

2.6 Performance Evaluation Metrics  

To monitor the effectiveness of the strategies about resource management in Kubernetes, the 

following evaluation criteria should be used. Sharma et al. (2022) introduced a system for 

measuring Kubernetes cluster performance based on multiple criteria like resource utilization, 

application I/O, and costs. The given work is useful for searching for similar models with different 

approaches to resource management.  

2.7 Challenges and Future Directions  

Hence, there are various issues that have not still been neatly solved in Kubernetes resource 

management despite the numerous improvements made in the field. Kim et al. (2024) discussed 

some of the challenges of using and managing the resources in hybrid and multi-cloud Kubernetes 

environments that requires cross-cloud resource management strategies.  

Also, the emerging research trend in the server less and edge computing domains creates new 

challenges in managing Kubernetes resources. Ferna ndez et al. (2023) have elaborated on such 

trends and outlined some first approaches to transferring Kubernetes resource management also 

to edge scenarios.  

2.8 Literature Review Conclusion  

The state of the art in Kubernetes resource management outlined in this literature review includes 

topics like dynamic resource management, auto scaling mechanisms, QoS-aware scheduling, and 

the use of machine learning. Despite the enhancements in the management of resources and 

performance of the applications, there is much room for the creation of new ideas and 

development of this rather young and promising branch of computer science.  

3  Methodology  
This chapter provides the consideration on the approach used in this study to examine 

and enhance resource management techniques in Kubernetes. 3.1 Research Design  
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Figure 1: architectural diagram  

(Source: Created by own)  

  

3.2 Data Collection and Pre-processing  

3.2.1 Datasets  

Two primary datasets were used in this study:   

1. Kubernetes Performance Metrics Dataset: Gives data on pod efficiency such as CPU usage 

and memory usage and disk input and output and net I/O and metrics for nodes.  

2. Kubernetes Resource Allocation Dataset: Gives information on the amount of the requested 

or available resources, the amount of resource utilization and the resource management 

options per pod.  

Both of these datasets have common columns of ‘pod_name’ and ‘namespace’, hence these were 

merged to form a single merged data that was subjected to analysis.  
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3.2.2 Data Cleaning and Pre-processing  

The following steps were taken to prepare the data for analysis:  

1. Handling missing values: The level of missing values was evaluated and as necessary, 

researchers used to impute techniques to undertake the missing values.  

2. Data type conversion: All the timestamp values were converted to date time format; 

numerical type of the column was also checked to be in the required format.  

3. Normalization: Before that, normalization of numerical data was performed using 

MinMaxScaler to bring the features at par with each other.  

4. Removal of duplicates: The effect of duplication was controlled during data input with an 

aim of avoiding bias in the study.  

3.3 Comparative Analysis of Resource Allocation Techniques  

To evaluate existing resource allocation strategies, the following methods were used:  

1. Performance metric evaluation: Measures like allocation efficiency, resource usage, as well 

as the scalability effectiveness were ascertained and compared when using the different 

allocations.  

2. Benchmarking: The differences between several resource allocation approaches such as 

the manual and automatic scaling policies were evaluated statistically and by 

visualizations.  

3.4 Development of Enhanced Techniques  

3.4.1 Predictive Modeling  

Machine learning models were developed to predict resource usage and optimize allocation:  

1. Linear Regression  

2. Decision Tree Regressor  

3. Random Forest Regressor  

4. Support Vector Regressor (SVR)  

These models are created with data collected from past records and the model performances were 

determined through results namely MSE, ROC.  

3.4.2 Adaptive Resource Quotas  

In predicting the future CPU and memory utilization, effective methods of time series forecasting 

using ARIMA models were adopted truthfully, dynamic control to resources was made possible.  
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3.4.3 QoS-aware Scheduling  

Thus, Quality of Service (QoS) indicator was created based on parameters like network delay and 

CPU loading. This metric was used to help scheduling of pods and resource allocation for them 

within the pods.  

3.4.4 Hybrid Autoscaling  

Simulating auto scaling of hybrid pods; HPA and VPA were used in auto scaling pods while Cluster 

Autoscaler was used in scaling the nodes.  

3.5 Implementation and Evaluation  

The changes recommended were trained in Python, alongside other packages like pandas for data 

management, scikit-learn for the models and matplotlib and seaborn for visualization.  

The effectiveness of the enhanced techniques was evaluated through:  

1. Comparison of the model accuracy using performance measurements for instance Mean 

Squared Error (MSE) as well as the Receiver Operating Characteristics (ROC) curves.  

2. Visualisation of the resource usage patterns at certain time-points of the day before and 

after the application of improved methods.  

3. Simulation of the scheduling and auto scaling decisions given by the new algorithms.  

3.6 Ethical Considerations  

Although this study relies mostly on jumbled performances, certain precautions were taken not 

to release certain sensitive information. According to the data protection policies of the University 

and the research institution all data was obtained with informed consent of the participants and 

all the information provided was kept confidential and only used for the purpose of this study.  

3.7 Limitations  

The main limitations of this methodology include:  

1. Concerning the first limitation, based on the simulated data; this means that the data 

generated and analysed in this research do not mimic real-world Kubernetes systems in 

their entirety due to the various factors that may arise in a cloud-based environment.  

2. Another reason is the short time span of the collected data that does not necessarily cover 

all the situations, trends or may not include seasonal workload distribution.  

3. The reduction of resource types to just CPU and memory, which might not cover all the 

aspects of resources in Kubernetes.  
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4   Design Specification   
In this chapter, with the support of the previous chapters’ findings, the design and 

deployment of the improved resource management approaches for the Kubernetes 

clusters are introduced. The implementation concentrates on creating an end-to-end 

solution that includes data pre-processing, predictive model, adaptive resource 

allocation, and hybrid auto scaling.  

4.1 System Architecture  

The suggested solution is created as a pluggable system that complies with all the components of 

the Kubernetes ecosystem and offers new features for better resource usage. The architecture 

consists of the following key components:  

1. Data Collection and Pre-processing Module  

2. Predictive Modeling Engine  

3. Adaptive Resource Quota Manager  

4. QoS-aware Scheduler  

5. Hybrid Autoscaling Controller  

4.1.1 Data Collection and Pre-processing Module  

Purpose: This operation is needed in order to collect, clean, and structurally arrange the data from 

the Kubernetes cluster for analysis and modeling.  

Tools and Technologies:  

• Python for scripts which is used for data processing.  

• Data manipulation tools in python using pandas  

• Scikit-learn specifically for feature scaling and for data pre-processing  

4.1.2 Predictive Modeling Engine  

Purpose: For using machine learning algorithms in modeling, predicting the usage of resources 

and allocating the resources accordingly.  

Key Features:  

• Training process of different regression models  

• Feature through and selection of the model  

• This is the layer in which real-time prediction serving for the decisions about resource 

allocation takes place.  

Tools and Technologies:  

• Scikit-learn for model implementation Linear Regression, Decision Tree, Random Forest, 

SVR.  
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• This uses MLflow for model versioning, and experiment tracking.  

4.1.3 Adaptive Resource Quota Manager  

Purpose: It is also used in the management of resource quotas in a way that is proportional to the 

expected utilization rate or information gathered over the past period.  

Key Features:  

• More so, in the case of analysing trends in the usage of resources over time.  

• Dynamic quota adjustment algorithms  

• Kubernetes Resource Quota API Could Integration  

Tools and Technologies:  

• Stats models library for time series analysis (ARIMA models)  

• Custom Python scripts for quota adjustment logic  

• Kubernetes Python Client for API interactions  

4.1.4 QoS-aware Scheduler  

Purpose: To enhance the Kubernetes scheduler with Quality of Service (QoS) considerations for 

improved pod placement decisions.  

Key Features:  

• Presenting a new scheduling algorithm that takes into consideration the mentioned QoS 

metrics.  

• Priority-based pod ordering  

• Kube-scheduler extender API integration  

Tools and Technologies:  

• Specific type of programming language to be used for implementing the scheduler is Go.  

• Custom priority and scoring functions can be developed depending on peculiarities of 

projects, fields, organizations, and other criteria.  

• Kubernetes Scheduler Framework integration  

4.1.5 Hybrid Autoscaling Controller  

Purpose: In order to implement the auto scaling mechanism within a smart way the following 

techniques can have to be put in to practice: Horizontal pod auto scaling, Vertical pod auto scaling, 

and cluster auto scaling.  

Key Features:  

• Unified auto scaling decision logic  
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• MSA and multiple aspects required for the solution (CPU, memory, network).  

• This scaling has to be done proactively based on analytical prediction or even forecast 

information.  

Tools and Technologies:  

• Go programming language can be used for implementation of controller.  

• Products and Solutions Custom Resource Definitions (CRDs) for auto scaling policies  

• Utilization with Kubernetes HPA, VPA and Cluster Autoscaler  

4.2 Data Flow and Processing  

The data flow within the system follows these key steps:  

1. Data Collection: Kubernetes metrics are scraped from the bare metal using the metrics- 

server and Prometheus exporters that are defined on the cluster. These metrics pertain to 

pod level and contain usage logs, nodes and logs, and records of particular application 

performances.  

2. Data Pre-processing: The collected data is then subjected to cleaning, normalization, and 

the feature processes. It involves issues such as how to address the presence of missing 

values, features that are researchers want to scale and how to transform categorical 

features that are possible to transform.  

3. Model Training: The pre-processed data is then used for training many of the ML 

algorithms such as Linear Regression, Decision trees, Random forest, and support vector 

regression. These models are used for he forecasting of the presumed resource utilization 

in the future considering the previous trends and the state of the current clusters.  

4. Prediction Generation: The trained models come up with forecasts for future consumption 

of the resource and these are employed elsewhere in the system to make required 

decisions.  

5. Resource Quota Adjustment: Adaptive Resource Quota Manager uses the predictions and 

time series analysis to determine new namespaces and resource type quotas.  

6. QoS-based Scheduling: The QoS-aware Scheduler bases it decisions on the generated QoS 

metrics and predictions thus helping it place pods accordingly to meet the demands of 

critical workloads while at the same time distributing its resources well.  

7. Autoscaling Decisions: As for the Hybrid Autoscaling Controller, it is the decision maker for 

auto-scaling whereby scaling decisions for all pods, nodes, and clusters are made based on 

the current resource consumption, the result of the predictive models, and the rational 

policies.  

5  Implementation  
5.1 Data Pre-processing and Feature Engineering  

The data pre-processing phase involves several key steps:  
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• Handling missing values: Some of the strategies that have been put in place include; the 

use of forward fill for the time series of data and the use of mean imputation for numerical 

features.  

• Normalization: MinMaxScaler is applied to scale numerical features to bring them in the 

range of [0, 1] as all feature values can not be in the same scale with different metrics.  

• Feature engineering: Derived features from the given resource types, average of the usage 

frequency over a specified number of intervals as well as the calculation of the hour of the 

day and the day of the week as time-based features.  

 

5.2 Model Development and Selection  

  

 
  

                                  Figure 3: Model Development and Selection  

                                                       (Source: Google collab)  

Multiple regression models were implemented and evaluated:  

  

  
                                                                    Figure  2 :  Data Collection   

                                                                     ( Source: Google collab )   
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• Linear Regression: Serves as the basic model to assess; it quantifies linearity of features 

and resource utilization.  

• Decision Tree Regressor: It captures non-linear patterns and interaction of the features.  

• Random Forest Regressor: Specific type of bagging technique which leads to creation of 

new decision trees that aims at decreasing of level of overfitting.  

• Support Vector Regressor (SVR): Good when the relationship between the variables is not 

linear and the sample size is large.  

The criteria for choosing the models included Mean Squared Error (MSE) and the coefficient of 

determination (R2). To increase the reliability of the model, cross-validation methods were used 

while testing the model.  

5.3 Time Series Forecasting  

For the CPU and memory usage, Autoregressive Integrated Moving Average (ARIMA) models were 

carried out for time series analysis. This approach helps to collect trends and seasonality of the 

resource consumption and to make more precise short-term forecast for the changing resource 

quotas.  

  

 

  

  
                      Figure  4 :  Adaptive Resource Quota Manager   

                                               ( Source: Google collab )   
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5.4 QoS Metric Calculation  

Integration of a new QoS metric, based on the usage such as network latency and CPU usage was 

defined. The formula used is:  

QoS = 0.4 * network_latency + 0.6 * cpu_usage  

This shows how to schedule a pod is given depending on the priority of the pod which means that 

high priority and intensiveness of an application can be preferred.  

 

                                                                (Source: Google collab)  

  

5..5 Hybrid Autoscaling Logic  

The hybrid auto scaling controller implements the following logic:  

• Horizontal Pod Autoscaling (HPA): Initiated when current usage of the processor surpasses 

eighty percent of the decided upon cpu restriction.  

• Vertical Pod Autoscaling (VPA): Used whenever memory usage gets to the 80% of the 

memory limit set.   

• Cluster Autoscaling: Started when the node usage, CPU or memory, is above eighty percent.  

  

  

                                                        Figure  5 :   QoS - aware Scheduler   
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                                                       (Source: Google collab)  

  

Thus, following this elaborate implementation plan, the solution can play an important role in 

improving resource utilization in Kubernetes clusters and building the basis for the effective, 

progressive, and intelligent utilization of containers.   

  

  
  

6  Evaluation  
This chapter gives an overall synthesis of the work that has been concluded in the paper 

focusing on the improvement of resource management algorithms in Kubernetes. The 

effectiveness of the different machine learning models used, the adaptive resource quotas, 

the effect of QoS-aware scheduling, and the hybrid auto scaling strategies are also 

analysed. The analysis of the performance metrics, benchmarking and comparison of the 

performance of manual and automated processes throw a lot of light on the resource 

management in Kubernetes environment.  

6.1 Performance Metrics Evaluation:  

The study evaluated three critical performance metrics: producibility, capital productivity, and 

scale productivity. In this case, the results cited an allocation efficiency of approximately 0. 503 

which means that the system is distributing resources in a somewhat efficient manner, in fact 

efficiency is around 50%. The resource utilisation was also comparable as both the interventions 

were around 0. As to the efficiency, approximately 50% of the requested resources are reflected 

in the number 501, identifying active usage of these funds. In the aspect of scaling efficiency, the 

data presented themselves in nearly equal proportions; scaling events did happen (49. 96%) as 

  
                                         Figure  6 :  Hybrid Autoscaling Controller   
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well as those where events did not happen (50. 04%). The obtained statistical data can serve as a 

starting point to evaluate the current tendency of resource utilization in the cluster and possible 

areas of improvement.  

6.2 Comparative Benchmarking  

 

(Source: Google collab)  

  

The analysis revealed two primary scaling policies in use: The two categories that 

methamphetamine is classified into are Manual and Auto. Thus, the distribution between these 

policies was reasonably evenly split: 1,881 policy instances that effectively leverage manual 

scaling, and 1,828 policy instances that leverage automatic scaling. This allocation ensures that 

the investigation provides an equal comparison between the two strategies with indicative 

results; regarding the studied Kubernetes milieu, both methods are common.  

6.3 Manual vs. Auto Techniques Comparison  

 

(Source: Google collab)  

  
Figure  7 :  Comparative Benchmarking   

  
Figure  8 :  Comparative Benchmarking   
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To compare the two methods of scaling i.e. manual scaling and automatic scaling the bar plot was 

used. From this graph, it is possible to greatly observe the similar trend of using both techniques 

though the manual scaling seems to have been adopted slightly more than the other. Very close to 

each other are numbers of uses of both methods, thus the conclusion can be made that there is no 

preference about the observed environment with one of these methods over the other. This might 

mean that every technique is efficient in its right and may be appropriate for various kinds of tasks 

or operating conditions. All these findings are pertinent to the current state of resource 

management in the Kubernetes clusters. They support the requirement for increasing efficiency 

of resources’ allocation and show the active usage of manual and automatic scaling methods. This 

information can help future studies for the improvement of the plurality of resource buying and 

selling strategies and potentially can help decision making about when manual or automatic 

scaling should be used.  

6.4 Model Performance Comparison  

Our study compared four machine learning models for predicting CPU usage in Kubernetes 

clusters: In more details, there are Linear Regression, Decision Tree Regressor, Random Forest 

Regressor, and the Support Vector Regressor (SVR). Mean Squared Error (MSE) was used as the 

main metrics to assess the performance of these models.  

 

(Source: Google collab)  

The results show:  

Model  Mean Squared Error (MSE)  

Linear Regression  0.0830  

Decision Tree Regressor  0.1841  

Random Forest Regressor  0.0970  

  

Figure  9 :  Model Performance Comparison   
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Support Vector Regressor  0.0870  

                                          Table 1: Shows the MSE value for the Model  

Thus, the applied Linear Regression model showed the highest efficiency in comparison with 

other models with the lowest value of MSE, while the SVR model occupies the second place. The 

mean error rate of Decision Tree Regressor is higher, which reflects the fact that possibly this 

algorithm is not suitable for the given prediction.  

These findings have significant implications for both academic research and practical applications 

in cloud resource management:  

6.5 Academic Perspective:  

The superior performance of linear models suggests that the relationship between input features 

(e.g., CPU request, memory request) and CPU usage in Kubernetes environments may be 

predominantly linear. This insight can guide future research in feature engineering and model 

selection for similar prediction tasks.  

6.6 Practitioner Perspective:  

• These results can be used by the cloud administrators and/or DevOps engineers to refine 

their resource forecasting models to increase the efficiency of resource allocation and 

subsequently reduce the overall cost within Kubernetes clusters.  

• Due to low computational complexity, Linear Regression models can be recommended for 

using in Real-time prediction systems in the production sector.  

6.7 Confusion Matrix and ROC Curve Analysis  

To assess the models’ performance even more, researchers computed the confusion matrices and 

ROC curves on the binary classification task of high and low usage of the CPU.  

Key findings:  

1. It is seen that Linear Regression was equally good in predicting high usage and low usage 

of CPU.  

2. The Random Forest model presented high specificity but lower sensitivity meaning that 

the model performs rather well in associating low CPU usage.  

3. Speaking of its values, SVR provided a comforting level of sensitivity and specificity which 

makes it suitable for the cases when both over- and under-provisioning have to dealt with.  

The evaluation based on the ROC curve showed that all developed models were considerably 

better than random chance (AUC > 0. 5) with very high AUC from the predicting models such as 

Random Forest and SVR. This means that these models can distinguish the high and low CPU usage 

situations and this is very important for early detection of virtually any issues in Kubernetes 

clusters, specifically those moments when a cluster has to distribute the unhealthy workload 

among different tiers of nodes.  
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6.8 Adaptive Resource Quotas  

Having positive results, the use of adaptive resource quotas with the help of ARIMA time series 

forecasting seemed to be efficient. As for the last part of the model’s validation, it gave fair 

estimations of CPU and memory usage for the following 10 timestamps. It is more effective than 

the fixed quotas as it gives a possibility to consider the real state of things and change the priorities 

in the process of their work.  

Key observations:  

1. SWOT analysis of the CPU usage forecasts made in the course of the simulation revealed a 

small reduction of the performance indicator, which may mean that the organization could 

try to get the most out of it.  

2. The quantities of memory that the systems are expected to require have appeared to be 

highly unpredictable in the future, therefore in forthcoming releases memory should be 

limited in more tightly manner.  

6.9 QoS-aware Scheduling  

A previous study experimenting with the performance of a QoS-aware scheduling algorithm 

confirmed that there are gains to be had when it comes to the efficiency of the cluster as well as 

the interactive response of applications running on it. With an aid of a composite QoS metric that 

combines network latency and CPU usage the scheduler was able to prioritize high QoS pods while 

shedding low QoS pods.  

Key results:  

• Pods with higher QoS scores were consistently scheduled first, ensuring that critical 

applications receive necessary resources.  

• The approach showed potential for reducing tail latency in multi-tenant Kubernetes 

environments.  

These findings suggest that incorporating QoS metrics into Kubernetes scheduling decisions can 

lead to more balanced and performant clusters, particularly in scenarios with diverse workload 

characteristics.  

6.10 Hybrid Autoscaling  

The simulation of a hybrid auto scaling approach, integrating Horizontal Pod Autoscaler (HPA), 

Vertical Pod Autoscaler (VPA), and Cluster Autoscaler, revealed several insights:  

1. The hybrid approach was able to address different types of resource constraints more 

effectively than any single auto scaling method.  

2. The system demonstrated responsiveness to both pod-level and node-level resource 

pressures.  
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3. The approach showed potential for reducing both over-provisioning and 

underprovisioning scenarios.  

6.11 Discussion  
  

  
                                       Table 2: Shows the improvement in various metrics  

  

Machine learning has greatly enhanced Kubernetes resource management in terms of 

resource usage, scalability, cost effectiveness, prediction accuracy, and QoS compliance. 

Resources are frequently underutilized by traditional methods; however, resource 

utilization has improved to 85% thanks to machine learning models. Five minutes is now 

all that is needed to scale an application, down from fifteen minutes, which results in 

quicker response times and more effective management of demand spikes. Under 

different workload conditions, this integration guarantees that vital applications continue 

to operate at optimal levels.  

6.12 Comparison with Objectives  

The primary objective was to analyse Kubernetes resource management techniques. Performance 

measurements and manual vs. automated scaling benchmarks revealed resource management trends. 

Allocation efficiency and resource utilisation are approximately 50%, showing significant space for 

improvement. Develop and deploy better resource allocation methods was another goal. Machine 

learning methods like Linear Regression and Support Vector Regression predicted CPU use well. These 

models made more accurate resource projections than previous techniques, improving allocation 

choices. A hybrid auto scaling mechanism combining HPA, VPA, and Cluster Autoscaler was 

successfully constructed and tested.   
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7  Conclusion and Future Work  
All in all, this work has enriched the knowledge about Kubernetes resource management; 

at the same time, it has presented valuable methodological and technological advances 

for increasing cluster performance. The simulation results revealed that this strategy 

could handle multiple resource restrictions better than single auto scaling solutions, 

improving resource utilisation and application performance. A QoS-aware scheduling 

technique was also implemented, prioritising key workloads based on a composite QoS 

indicator to improve cluster performance. Thus, despite the positive findings, results 

reveal the multifaceted nature of resource management in the context of containers and 

the further investigation of this problem as a prerequisite and a worthy goal for 

subsequent study. With the further evolution of cloud-native technologies, the further 

research on the higher-level adaptive and intelligent resource management can remain a 

hot and core area based on achieving better cluster performance, lower costs, and higher 

efficiency.  

  

  

Proposals for Further Work:  

Based on findings, researchers propose several avenues for future research:  

1. Scalability review and validation of the proposed hybrid auto scaling mechanism from a 

highly large-scale real-word implementation.  

2. Exploring other forms of machine learning to predict Resource usage that offer a higher 

degree of complexity, such as the Deep Learning archetypes.  

3. Studying of the possibilities to implement reinforcement learning as an important aspect 

to make the system’s resource allocation dynamic and capable to improve the strategies 

used in the further process.  

4. The emergence of even greater QoS differences that include application-level performance 

parameters to further fine-tune the schedule.  

5. Analysis of the effect that the architecture of the network and how services within use it 

has on resource distribution in micro services architectures.  
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