~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
MSc in Cloud Computing

Zeba Mahfuz
Student I1D: x22226885

School of Computing
National College of Ireland

Supervisor: Jorge Mario Cortes Mendoza

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Zeba Mahfuz
Student ID: x22226885
Programme: MSc in Cloud Computing
Year: 2023-2024
Module: Research in Computing
Supervisor: Jorge Mario Cortes Mendoza
Submission Due Date: 16/09/2024
Project Title: Machine Learning Approaches to analyze Intrusion Detection
Risk under Cloud Computing
Word Count: 490
Page Count: Pl

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Zeba Mahfuz

Date: 16-09-2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Zeba Mahfuz
x22226885

16-09-2024

1 Introduction

1.1 Purpose of the Manual

This configuration manual offers in depth instructions on how to establish and customize
an intrusion detection system based on machine learning within a computing setting. It
features step by step guidance and visual aids to help users effectively implement and
manage the system.

1.2 Overview of the Project

The project is about using machine learning methods to examine network traffic and
identify possible security risks in cloud setups. By using algorithms such as K Nearest
Neighbors (KNN) and Multilayer Perceptron (MLP) the system categorizes network ac-
tions as either normal or intrusive boosting cloud security, with risk evaluation and iden-
tification.

2 System Configuration

2.1 Hardware Requirements

e Processor: Minimum 2.4 GHz (Intel Core i5 or higher recommended)
e RAM: At least 8 GB
e Storage: Minimum 20 GB of free space

e Operating System: 64-bit (Windows, macOS, Linux)

2.2 Software Requirements

e Python: Version 3.8 or higher

e Jupyter Notebook: Accessible via Google Colab or installed locally

e Required Libraries:
Scikit-learn: Version 0.24.2 - for machine learning algorithms and data prepro-
cessing.
Pandas: Version 1.3.3 - for data manipulation and handling.
NumPy: Version 1.20.3 - for numerical operations and data processing.
Matplotlib: Version 3.4.3 - for data visualization and creating plots.
Seaborn: Version 0.11.1 - for enhanced statistical data visualization.

e Cloud Platform: Google Colaboratory or an equivalent cloud-based Jupyter note-
book environment

3 Project Setup

3.1 Environment Setup

1. Google Colaboratory:

e Access Google Colaboratory at: Google Colab

e Create a new notebook for coding and executing the project.

e Import necessary libraries and datasets as shown in the code below.
2. Local Environment Setup:

e Install Anaconda for package and environment management.

e Create a virtual environment and install the required packages.

e Launch Jupyter Notebook or your preferred IDE for running the project.

aWs 222 services | Q Search [Option+S]

Amazon SageMaker » Notebook instances » Create notebook instance

Create notebook instance

Amazon SageMaker provides pre-built fully managed notebook instances that run Jupyter notebooks. The notebook instances
include example code for common model training and hosting exercises. Learn more [4

Notebook instance settings

Notebook instance name

| Risk-detection

Maximum of 63 alphanumeric characters. Can include hyphens (-}, but not spaces. Must be unique within your account in an AWS Region.
Notebook instance type

‘ mlt3.medium v

Platform identifier Learn more [4

‘ Amazon Linux 2, Jupyter Lab 3 v

» Additional configuration

Figure 1: Creation of Jupiter Notebook in Sagemaker

3.2 Dataset Preparation

1. Dataset: NSL-KDD dataset used for network intrusion detection.
2. Steps to load the dataset:

e Download the dataset from the provided source: https://www.unb.ca/cic/datasets/nsl.html

e Load the dataset into the notebook using Pandas.

= Fle Edt View Run Kemel Git Tabs Settings Help

- o

\

o -/

o N -

= NsL-KDD
D archive.zip

(5 Data Pre-processing final.
o[Data Pre-processing_ex..
8 m ata Pre-processing-Co.

%] Data Pre-processing:

= Data
8 +

Last Modified
2 months ago
2 months ago
7 days ago

7 days ago
aday ago

2 days ago

2 days ago

2 days ago

F

" ex.X | [Data ing fine X | (% Data X = Data x|+

X MO » mC » Cde ~ O & conda_python3 O

Load the data
import zipfile
import os

Path to the uploaded ZIP file
zip_path = 'archive.zip'
extract_path = './NSL-KDD'——

Create a directory to extract the ZIP file
os.makedirs (extract_path, exist_ok=True)

Extract the ZIP file
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
2ip_ref.extractall(extract_path)

Define paths to the train and test datasets
train_path = os.path. join(extract_path, 'KDDTrain+.txt')
test_path = os.path. join(extract_path, 'KDDTest+.txt')

Column names for the dataset
columns = ['duration’, 'protocol_type', 'service','flag", src_bytes

'dst_bytes', 'land", ‘wrong_fragment', 'urgent’, 'hot"
tempted’, ‘nun_root', ‘nun_file_creations'
is_guest_login', 'count", 'sry_count', 'serror_rat

st_host_same_srv_rate', dst_host_diff_sryv_rate

J'dst_host_srv_serror_rate, 'dst_host_rerror_rate’,
Load the train and test datasets

train_data = pd.read_csv(train_path, header=None, names=columns)
test_data = pd.read_csv(test_path, header=None, names=columns)

Combine train and test datasets for uniform preprocessing
data = pd.concat([train_data, test_data), ignore_index=True)

igure 2: Load the dataset

e Perform necessary data cleaning, feature selection, and encoding.

%] Data Pre-processing.ipyi X %] Data Pre-processing_ex.X | [%l Data Pre-processing finzX [Data Pre-processin

+ X DO
df.isnull

duration

protocol_type

service
flag
src_bytes
dst_bytes
land
wrong_fra
urgent
hot
num_faile
logged_in

num_compromised
root_shell
su_attempted

num_root

num_file_creations
num_shells

num_acces

num_outbound_cmds
is_host_login
is_guest_login

count
srv_count

serror_rate
srv_serror_rate
rerror_rate

» ®m C » Code v ® st

().sum()

gment

d_logins

s_files

R R L L R R R R N]

Figure 3: Data Cleaning

3.3 Data Pre-processing

e Apply necessary pre-processing techniques such as scaling, normalization, and hand-

ling of null values.

B + X T [» m C » Code v O # conda_pythond O

Scaling

Preprocessing the dataset
from sklearn.preprocessing import RobustScaler
def Scaling(df_num, cols):
std_scaler = RobustScaler()
std_scaler_temp = std_scaler.fit_transform(df_num)
std_df = pd.DataFrame(std_scaler_temp, columns =cols)
return std_df
cat_cols = ['is host login', 'protocol type','service','flag*,'land’, 'logged in‘,'is guest login'
def preprocess (da ame) :
df_num = dataframe.drop(cat_cols, axis=1)
num_cols = df_num.columns
scaled_df = Scaling(df_num, num_cols)
dataframe.drop(labels=num_cols, axis="columns", inplace=True)
dataframe [num_cols] = scaled_df [nun_cols]
dataframe. loc[dataframe[’outcome']
dataframe. loc[dataframe[*outcome'] , “outcome"] = 1
dataframe = pd.get_dumnies(dataframe, columns = ['protocol type', ‘service’, 'flag'l),
return dataframe

*level', ‘outcome’

scaled_data = preprocess(df),

[19]: [x = scaled_data.drop(['outcome’, 'level'l, axis=1).values B ™Y & F

y = scaled_data['outcome'].values
y_reg = scaled_data['level'l.values

pca = PCA(n_components=20)

pca = pea.fit(x)

x_reduced = pca. transform(x)

print(“Number of original features is {} and of reduced features is {}".format(x.shape[1]l, x_reduced.shape(1l))

y = y.astype('int')

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)

x_train_reduced, x_test_reduced, y_train_reduced, y_test_reduced = train_test_split(x_reduced, y, test_size=0.2, ran
x_train_reg, x_test_reg, y_train_reg, y_test_reg = train_test_split(x, y_reg, test_size=0.2, random_state=42)

Figure 4: Scaling

3.4 Model Training and Evaluation
1. Models Implemented:

e Random Classifier

e Multilayer Perceptron (MLP)

e Logistic Regression

e k-Nearest Neighbors (KNN)
2. Training and Evaluation Process:

e Split the dataset into training and test sets.

[39]: x = scaled_data.drop(['outcome’, 'level'l, axis=1).values
y = scaled_datal 'outcome'].values
y_reg = scaled_datal'level'].values
pca = PCA(n_components=20)
pca = pea. fit(x)
x_reduced = pca. transform(x)

y = y.astype('int')
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)

x_train_reduced, x_test_reduced, y_train_reduced, y_test_reduced = train_test_split(x_reduced, y, test size=0.2, rand
x_train_reg, x_test_reg, y_train_reg, y_test_reg = train_test_split(x, y_reg, test_size=0.2, random_state=42)

Figure 5: Split Dataset

e Train each model on the training set.
e Evaluate the models using accuracy, precision, recall, and F1-score metrics.

e Compare the performance of models using confusion matrices and validation scores.

3.5 Performance Evaluation

Evaluation of models on the original feature set. The performance metrics are shown in
Table [I] and Table 2] Figure [f] displays confusion matrix of KNN model.

Model Training Accuracy Test Accuracy Cross- F1-Score
Validation
Random Classifier | 49.87% 50.32% 50.17% 48.07%
Multilayer Per- | 98.50% 98.50% 97.94% 98.49%
ceptron
Logistic Regression | 89.22% 88.77% 88.99% 88.35%
K-Nearest Neigh- | 99.02% 98.87% 98.85% 98.95%
bors
Table 1: Evaluation Results on the Original Feature Set
Model Training Test Ac- | Precision | Recall F1-Score Cross-
Accuracy curacy Validation
Random Classi- | 50.05% 49.68% 46.32% 51.18% 48.55% 50.01%
fier
Multilayer Per- | 98.15% 98.02% 98.78% 96.95% 97.99% 97.86%
ceptron
K-Nearest 99.02% 98.87% 99.02% 98.56% 98.97% 98.85%
Neighbors
Logistic Regres- | 89.22% 88.77% 88.47% 87.35% 87.91% 88.99%
sion

Table 2: Evaluation Results of Various Models

Training Accuracy KNeighborsClassifier: 99.02% Test Accuracy KNeighborsClassifier: 98.87%
Training Precision KNeighborsClassifier: 99.18% Test Precision KNeighborsClassifier: 99.02%
Training Recall KNeighborsClassifier: 98.71% Test Recall KNeighborsClassifier: 98.56%
Training Fl-score KNeighborsClassifier: 98.95% Test Fl-score KNeighborsClassifier: 98.79%
Cross-Validation Score KNeighborsClassifier: 98.85%

12000

10000

normal

8000

True label

6000

attack 4000

2000

normal attack
Predicted label

Figure 6: Confusion Matrix of KNN

3.6 Conclusion

This section concludes that KNN and MLP models performed well, demonstrating effect-
iveness in real world cloud security situations. However, the study emphasized the need
for better feature selection and model optimization.

	Introduction
	Purpose of the Manual
	Overview of the Project

	System Configuration
	Hardware Requirements
	Software Requirements

	Project Setup
	Environment Setup
	Dataset Preparation
	Data Pre-processing
	Model Training and Evaluation
	Performance Evaluation
	Conclusion

