

Configuration Manual

MSc Research Project MSc in Cloud Computing

Zeba Mahfuz Student ID: x22226885

School of Computing National College of Ireland

Supervisor: Jorge Mario Cortes Mendoza

National College of Ireland Project Submission Sheet School of Computing

Student Name:	Zeba Mahfuz
Student ID:	x22226885
Programme:	MSc in Cloud Computing
Year:	2023-2024
Module:	Research in Computing
Supervisor:	Jorge Mario Cortes Mendoza
Submission Due Date:	16/09/2024
Project Title:	Machine Learning Approaches to analyze Intrusion Detection
	Risk under Cloud Computing
Word Count:	490
Page Count:	5

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:	Zeba Mahfuz
Date:	16-09-2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies).				
Attach a Moodle submission receipt of the online project submission, to				
each project (including multiple copies).				
You must ensure that you retain a HARD COPY of the project, both for				
your own reference and in case a project is lost or mislaid. It is not sufficient to keep				
a copy on computer				

Assignments that are submitted to the Programme Coordinator office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Zeba Mahfuz x22226885

16-09-2024

1 Introduction

1.1 Purpose of the Manual

This configuration manual offers in depth instructions on how to establish and customize an intrusion detection system based on machine learning within a computing setting. It features step by step guidance and visual aids to help users effectively implement and manage the system.

1.2 Overview of the Project

The project is about using machine learning methods to examine network traffic and identify possible security risks in cloud setups. By using algorithms such as K Nearest Neighbors (KNN) and Multilayer Perceptron (MLP) the system categorizes network actions as either normal or intrusive boosting cloud security, with risk evaluation and identification.

2 System Configuration

2.1 Hardware Requirements

- Processor: Minimum 2.4 GHz (Intel Core i5 or higher recommended)
- RAM: At least 8 GB
- Storage: Minimum 20 GB of free space
- Operating System: 64-bit (Windows, macOS, Linux)

2.2 Software Requirements

- Python: Version 3.8 or higher
- Jupyter Notebook: Accessible via Google Colab or installed locally

Required Libraries: Scikit-learn: Version 0.24.2 - for machine learning algorithms and data preprocessing. Pandas: Version 1.3.3 - for data manipulation and handling. NumPy: Version 1.20.3 - for numerical operations and data processing. Matplotlib: Version 3.4.3 - for data visualization and creating plots. Seaborn: Version 0.11.1 - for enhanced statistical data visualization.

• Cloud Platform: Google Colaboratory or an equivalent cloud-based Jupyter notebook environment

3 Project Setup

3.1 Environment Setup

1. Google Colaboratory:

- Access Google Colaboratory at: Google Colab
- Create a new notebook for coding and executing the project.
- Import necessary libraries and datasets as shown in the code below.

2. Local Environment Setup:

- Install Anaconda for package and environment management.
- Create a virtual environment and install the required packages.
- Launch Jupyter Notebook or your preferred IDE for running the project.

aws	Services	Q Search	[Option+S]					
=	Amazon Sage	Maker > Notebook instances > Create notebook instance						
	Create	Create notebook instance						
	Amazon Sage include exam	Maker provides pre-built fully managed notebook instances that ple code for common model training and hosting exercises. Lear	run Jupyter notebooks. The notebook instances n more 🖸					
	Noteboo	ok instance settings						
	Notebook	Notebook instance name						
	Risk-detection							
	Maximum of 63 alphanumeric characters. Can include hyphens (-), but not spaces. Must be unique within your account in an AWS Region. Notebook instance type							
	ml.t3.medium 🔻							
	Platform identifier Learn more 🔀							
	Amazon Linux 2, Jupyter Lab 3							
	► Additio	onal configuration						

Figure 1: Creation of Jupiter Notebook in Sagemaker

3.2 Dataset Preparation

- 1. Dataset: NSL-KDD dataset used for network intrusion detection.
- 2. Steps to load the dataset:
 - Download the dataset from the provided source: https://www.unb.ca/cic/datasets/nsl.html
 - Load the dataset into the notebook using Pandas.

Figure 2: Load the dataset

• Perform necessary data cleaning, feature selection, and encoding.

Data Pre-	processing.ipyr× 🖪 D	ata Pre-proces	sing_ex.×	🖲 Data Pre-processing fina×	🖪 Data Pre-processin
+ %		⋫ Code	~ O	git	
[0]+	df_icoull()_cum()				
[3] -	u1.15Hu(().5um()				
[9]:	duration		0		
	protocol type		ø		
	service		ø		
	flag		0		
	src bytes		0		
	dst_bytes		0		
	land		0		
	wrong_fragment		0		
	urgent		0		
	hot		0		
	num_failed_logins		0		
	logged_in		0		
	num_compromised		0		
	root_shell		0		
	<pre>su_attempted</pre>		0		
	num_root		0		
	num_file_creations		0		
	num_shells		0		
	num_access_files		0		
	num_outbound_cmds		0		
	is_host_login		0		
	is_guest_login		0		
	count		0		
	srv_count		0		
	serror_rate		0		
	srv_serror_rate		0		
	rerror rate		0		

Figure 3: Data Cleaning

3.3 Data Pre-processing

• Apply necessary pre-processing techniques such as scaling, normalization, and handling of null values.

+ 6	K 🖺 🗂 🕨 🔳 C 🏎 Code 🗸 🕓 git		ĕ	co	onda_	pytho	n3 ()
	Scaling						
[17]	<pre># Preprocessing the dataset from sklearn.preprocessing.import.RobustScaler eff Scaling(frum, cols); std_df = dubatFrame(std_scaler_temp, columns_scals), return std_df ct_cols_l'is_host_login'.protocol.type','service','flag','land', 'logged_in','is_guest_log: def_preprocess(dataframe); df_unm_cols = df_unw.columns scaled_df = Scaling(df_unw, num_cols) dataframe.logidataframe, xals="columns", inplace=True) dataframe.logidataframe['outcome'] == "normal", "outcome'] = 0 dataframe.logidataframe('outcome'] = 0; dataframe.logidataframe('outcome'] = 0; dataframe.logidataframe('outcome') = 0; dataframe.logidataframe('outcome') = 0; dataframe.logidataframe('outcome') = 0; dataframe.</pre>	<u>n'.</u>	<u>'le</u>	vel'	<u>. 1</u>	outco	me'
[18]	: scaled_data = preprocess(df)						
[19]	: x = scaled_data.drop(['outcome', 'level'], axis=1).values y = scaled_data['outcome'].values y_reg = scaled_data['uevt].values pca = PCA(r_components=20) x = reduced = co.a.transform(x)	Đ	^	\downarrow	÷	₽	Î
	<pre>print("Number of original features is {} and of reduced features is {}".format(<u>k_shapeLil_x_r</u> y = y_astype('int') x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42) x_train_reduced, x_test_reduced, y_train_reduced, y_test_reduced = train_test_split(x, reduced, x_train_reduced, x_test_reduced, y_train_reduced, y_test_reduced = train_test_split(x, y_red, test_size=0.2, r</pre>	y, ando	tes	shap t_si tate	e[1] .ze=0 =42))) .2,	rand

Figure 4: Scaling

3.4 Model Training and Evaluation

- 1. Models Implemented:
 - Random Classifier
 - Multilayer Perceptron (MLP)
 - Logistic Regression
 - k-Nearest Neighbors (KNN)
- 2. Training and Evaluation Process:
 - Split the dataset into training and test sets.

Figure 5: Split Dataset

- Train each model on the training set.
- Evaluate the models using accuracy, precision, recall, and F1-score metrics.
- Compare the performance of models using confusion matrices and validation scores.

3.5 Performance Evaluation

Evaluation of models on the original feature set. The performance metrics are shown in Table 1 and Table 2. Figure 6 displays confusion matrix of KNN model.

Model	Training Accuracy	Test Accuracy	Cross-	F1-Score
			Validation	
Random Classifier	49.87%	50.32%	50.17%	48.07%
Multilayer Per-	98.50%	98.50%	97.94%	98.49%
ceptron				
Logistic Regression	89.22%	88.77%	88.99%	88.35%
K-Nearest Neigh-	99.02%	98.87%	98.85%	98.95%
bors				

Table 1: Evaluation Results on the Original Feature Set

Model	Training	Test Ac-	Precision	Recall	F1-Score	Cross-
	Accuracy	curacy				Validation
Random Classi-	50.05%	49.68%	46.32%	51.18%	48.55%	50.01%
fier						
Multilayer Per-	98.15%	98.02%	98.78%	96.95%	97.99%	97.86%
ceptron						
K-Nearest	99.02%	98.87%	99.02%	98.56%	98.97%	98.85%
Neighbors						
Logistic Regres-	89.22%	88.77%	88.47%	87.35%	87.91%	88.99%
sion						

Table 1. Hialaadion Toosalos of Talloas hio acis	Table 2:	Evaluation	Results	of	Various	Models
--	----------	------------	---------	----	---------	--------

Figure 6: Confusion Matrix of KNN

3.6 Conclusion

This section concludes that KNN and MLP models performed well, demonstrating effectiveness in real world cloud security situations. However, the study emphasized the need for better feature selection and model optimization.