

Configuration Manual

MSc Research Project Cloud Computing

Shubham Kumbhar Student ID: x22119345

School of Computing National College of Ireland

Supervisor: Shaguna Gupta

National College of Ireland Project Submission Sheet School of Computing

Student Name:	Shubham Kumbhar			
Student ID:	x22119345			
Programme:	Cloud Computing			
Year:	2024			
Module:	MSc Research Project			
Supervisor:	Shaguna Gupta			
Submission Due Date:	19/08/2024			
Project Title:	Configuration Manual			
Word Count:	XXX			
Page Count:	45			

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:	
Date:	18th August 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies).□Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).□You must ensure that you retain a HARD COPY of the project, both for
or□

your own reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Shubham Kumbhar x22119345

1 Requirements

1. System Requirements A. Hardware Requirements

- CPU: Minimum 4 cores, 2.5GHz or higher
- RAM: Minimum 16 GB
- GPU: NVIDIA/AMD with 4 GB VRAM (for gaming and neural network training)
- Disk Space: Minimum 100 GB free space
- Network: Stable internet connection, preferably 5G for testing cloud gaming performance

B.Software Requiremnets

- Operating System: Windows 10/11, Linux (Ubuntu 20.04 or later), macOS 10.15 or later
- Python: Version 3.8 or higher
- IDE/Code Editor: Visual Studio (for local development and Python scripting)

C. Tools & Platforms:

- Google Colab (for cloud-based model training and visualization)
- AWS SageMaker (for large-scale model training and deployment)
- AWS Lambda (for serverless execution of Python scripts)
- AWS S3 (for data storage)
- Wireshark (for network data capture and analysis)
- Xbox Cloud Gaming (for cloud gaming sessions with Fortnite)
- Python Libraries:
 - TensorFlow / Keras (Neural Networks)
 - XGBoost
 - Scikit-learn (Random Forest, SVR)
 - Pandas, NumPy (Data Processing)
 - Matplotlib, Seaborn (Data Visualization)

2 Environmental Setup

2.1 Installation of Visual studio

I.Download from its offical website : https://visualstudio.microsoft.com/ downloads/



Figure 1: Visual stduio website

II. Install the Python development environment within Visual Studio.

2.2 Installing Python and Required Libraries

I. Install Python from https://www.python.org.

II. Install the required Python libraries:

- pip install tensorflow xgboost scikit-learn pandas numpy matplotlib seaborn
- pip install lightgbm
- pip install xgboost
- pip install numpy==1.23 tensorflow==2.11

2.3 Google Colab

A. Open Google Colab : https://colab.google

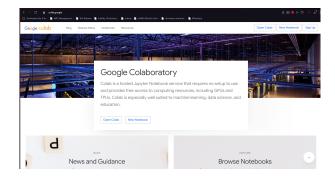


Figure 2: Google Colab

B. Create New Notebook

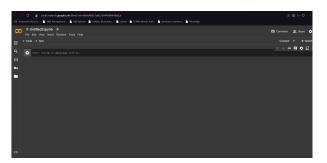


Figure 3: New Notebook

C. Import the necessary libraries in Colab notebooks:

- import tensorflow as tf
- import xgboost as xgb
- from sklearn.ensemble import RandomForestRegressor
- from sklearn.svm import SVR

2.4 Setting Up AWS Services

2.4.1 S3

- Create an S3 bucket to store your datasets, trained models, and results.
- Create two buckets

	nite-s3-bucket 🛶				
Obje	ets Properties Permissions	Netrics Mana	gement Access Peints		
	ects (8) into	(C C Copy S3 URI C Copy URL E by	enland Open 🔀 Delete Actions 🔻 🖬	Freate folder 🛛 🕅 Upload
Q	Find objects by prefix		Show versions		< 1 > 1
	Name 🔺	Туре	Ψ Last madified Ψ Size	v Storage class	
	D combined_mobile_game_motrics 	civ.	August 16, 2024, 01:43:05 0/10:+01:001	38.3 KB Standard	
	D combined_wift_parte_metrics.cs Y	694	August 16, 2024, 01:43:05 0JTC+01:00	38.3 KB Standard	
	b detailed_metrics.cov	av.	August 13, 2024, 21:47:18 (UTC+01:00)	8.5 KB Standard	
	B detailed_metrics.log	log	August 15, 2024, 21:47:18 (UTC+01:00)	18.4 KB Standard	
			August 14, 2024, 21:33:09		

Figure 4: S3 bucket : fortnite-s3-bucket

	51 > <u>huists</u> > formite-data-hadort			
OFU		Hetzics Hasage	ment Access Points	
	cts (7) mis		C Copy S3 UNI C Copy UNI. C Download Open C Delet	
0, 1	Tod objects by prefix			<1> 6
	Name	Type	τ Last modified	v Storage class
0	Combined mobile game metrics refine datas	GV	August 16, 2024, 0143/11 (UTC+01:00)	37.6 KB Standard
0	D combined_witi_game_metrics_refined.cs 2	CIV	August 16, 2024, 01:45:11 (UTC+01:00)	37.6 KB Standard
0	detailed_metrics_refined.cov	csv	August 13, 2024, 21:87:21 (UTC+01:00)	8.4 KB Standard
0	detailed_metriculog	log	August 13, 2024, 21:87:25 (UTC+01:00)	18.3 KB Standard
0	game_metrics_refined_stats.cov	csv	August 14, 2024, 21:33:21 (UTC+01:00)	\$76.0 B Standard
	ame_metrics_refined.cov		August 14, 2024, 21:33:16 (UTC+01:00)	37.6 KB Standard

Figure 5: S3 buckect: fortnite-data-bucket

2.4.2 AWS Lambda

- Use Lambda to run serverless Python scripts.
- Deploy Python scripts to Lambda for tasks like data preprocessing or invoking models.

whboard	Fui	ttions (3)				Last fetched 1 minute age 🛛 Actions 🔻	Create function	
pplications	0	Filter by togs and ettri	bates or search by knywor	e			<1> @	
dditional researces		Function name	π Description	π Package type π	Rustine	v Last modified	*	
Code signing configurations Event source mappings		collectRealTimeDo AndProcessIt	≞ .	Zp	Pythes 3.12	5 days ago		
ayen. Seplem		ProcessFortniteGa Metrics	· .	Zp	Pythes 3.12	5 days ago		
Related AWS resources Rea Functions state machines		process_fortnite_d	# .	Zp	Pythes 3.12	4 days ago		

Figure 6: Creating Lambda Function

2.4.3 AWS SageMaker

- Use SageMaker for training machine learning models at scale.
- Refer to SageMaker Setup : https://docs.aws.amazon.com/sagemaker/latest/ dg/gs-console.html for more details.
- Create two notebook for this research
 - 1. To perform action related to gameMetrics.csv (dataset)
 - 2. To perform action related to combined Dataset

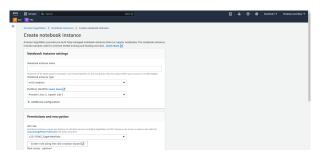


Figure 7: Creating SageMaker Notebook

💭 jupyter	Open JupyterLab Quit	Logout
Files Running Clusters SageMaker Examples Conda		
Select items to perform actions on them.	Upload	New - C
	Name 🔶 Last Modified	File size
Combining Dataset loynb	a day ago	3.16 MB
🗆 🖉 Game_metrics.ipynb	2 days ago	402 kB
🗆 🥔 Untitled.ipynb	Running seconds ago	72 B
D mobile_random_forest_model.pkl	2 days ago	2.04 MB
B wit random forest model.oki	2 days ago	2.04 MB

Figure 8: SageMaker jupter notebook open : see the list of notebook created

3 Game and Network Data Collection

3.1 Running game on Cloud Platform

- For this project we selected Fortnite game
- Run game on official website via xbox cloud gaming
- While playing game , run python script and wireshark in background to collect data.

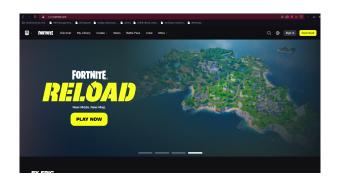


Figure 9: Fortnite Official Website dashboard

- Click on play button as show in 9 figure
- After that select xbox cloud gaming. 10

Figure 10: Gaming platform : Fortnite game to be played on

3.1.1 Visual Studio to collected game metrics data

- Run python script on visual studio in background while playing game
- After collecting data send it to S3 bucket

1	import psutil
2	import time
3	import GPUtil
4	from ping3 import ping
5	import boto3
-	
6	import csv
7	import os
8	import speedtest
9	
10	# Function to capture CPU usage
11	<pre>def get_cpu_usage():</pre>
12	<pre>return psutil.cpu_percent(interval=1)</pre>
13	
14	# Function to capture memory usage
15	<pre>def get_memory_usage():</pre>
16	<pre>memory = psutil.virtual_memory()</pre>
10	
	return memory.percent
18	
19	# Function to capture GPU usage
	<pre>def get_gpu_usage():</pre>
21	<pre>gpus = GPUtil.getGPUs()</pre>
22	if gpus:
23	<pre>gpu = gpus[0] # Assuming the first GPU</pre>
24	return gpu.load * 100 # Convert to percentage
25	return 0 # If no GPU is found, return 0
26	
27	# Function to capture network latency (ping to a server)
28	<pre>def get_network_latency(host='www.fortnite.com'):</pre>
28	
	<pre>latency = ping(host) if latency is not Name:</pre>
30	if latency is not None:
20	and a sector strate laborate laborate (star to a second)
28 def 29	<pre>inclion to capture network latency (ping to a server) get_network_latency(host+'www.fortnite.com'): latency = ping(host)</pre>
30	return latency * 1000 # Convert to milliseconds
31	return latency * 1000 # Convert to milliseconds
32	
32	
33	
33	
33 34 35 # Fi 36 def 37 38	
33 34 35 # Fi 36 def 37 38 39	return None ≡ If ping fails mction to capture disk I/O usage get_disk_io(): disk_io = putilidisk_io_counters() return disk_io.read_bytes + disk_io.write_bytes ⊯ Total I/O in bytes
33 34 35 # Fi 36 def 37 38 39 40 # Fi 41 def	<pre>return None # If ping falls mction to capture disk i/o usage get_disk_d(0; disk_lo_counters() disk_lo_poutLidisk_lo_counters() return disk_lo_read_bytes + disk_lo_write_bytes # Total 1/0 in bytes mction to collect actual jitter get_titter(host-iwo, fortuite.com; .counts, interval=0.2);</pre>
33 34 35 # Fi 36 def 37 38 39 40 # Fi 41 def 42 43	<pre>return None # If ping falls mction to capture disk i/o usage get_disk_d(0; disk_lo_counters() disk_lo_poutLidisk_lo_counters() return disk_lo_read_bytes + disk_lo_write_bytes # Total 1/0 in bytes mction to collect actual jitter get_titter(host-iwo, fortuite.com; .counts, interval=0.2);</pre>
33 34 35 # Fi 36 def 37 38 39 40 # Fi 41 def 42 43 44	<pre>return None # If ping fails nction to capture disk 1/0 usage get_disk_to(): disk_io = putil.disk_io_counters() return disk_io.read_bytes + disk_io.rente_bytes # Total 1/0 in bytes nction to collect actual jitter get_ditter(host-'www.fortnite.com', count-S, interval=0.2): latencies = [] for _in range(count): latences = []</pre>
33 34 35 # F(36 def 37 38 39 40 # F(41 def 42 43 44 45 46	<pre>return None # if ping fails return None # if ping fails get_disk_iol; disk_io = puntil.disk_bytes / to counters() disk_io = puntil.disk_bytes / to counters() forin same(count); forin range(count); flatency is not.None; latency is not.None; latency is not.None;</pre>
33 34 35 # Fi 36 def 37 38 39 40 # Fi 41 def 42 43 44 45 46 47	<pre>return None # If ping falls mction to capture disk i/o usage get_disk_d(0; disk_lo_counters() disk_lo_poutLidisk_lo_counters() return disk_lo_read_bytes + disk_lo_write_bytes # Total 1/0 in bytes mction to collect actual jitter get_titter(host-iwo, fortuite.com; .counts, interval=0.2);</pre>
33 34 35 # Fi 36 def 37 38 39 # Fi 42 43 44 45 46 47 48	<pre>return None # If ping fails return None # If ping fails return None # If ping fails disk_io = pswill.disk_io_counters() disk_io = pswill.disk_io_exite_bytes # Total 1/0 in bytes return disk_io-read_trial_bytes + disk_io.write_bytes # Total 1/0 in bytes medion to collect actual jitter get_ditter(host-'www.fortnite.com', count=5, interval=0.2): latences = 0; for _in range(count): latences = 0; latence > interval; latence > interval; latence > interval; </pre>
33 35 # F(36 def 37 38 39 40 # F(41 def 42 43 44 45 46 47 48 49 50 51	<pre>return None # if ping fails metion to capture disk i/o usage get_disk_[0]; disk_jo = putil.disk_jo_counters() eturn disk_jo.read_bytes + disk_jo.reite_bytes # Total I/O in bytes metion to collect actual jitter get_distre(host-'www.fortnite.com', count-s, interval=0.2): latencis = [] for _ in range(count); latency = in the totage interval = inter</pre>
33 35 # F(36 def 37 38 39 40 # F(41 def 42 43 44 45 46 47 48 49 50 51	<pre>return None # if ping fails metion to capture disk i/o usage get_disk_[0]; disk_jo = putil.disk_jo_counters() eturn disk_jo.read_bytes + disk_jo.reite_bytes # Total I/O in bytes metion to collect actual jitter get_distre(host-'www.fortnite.com', count-s, interval=0.2): latencis = [] for _ in range(count); latency = in the totage interval = inter</pre>
33 35 # F(36 def 37 38 39 40 # F(41 def 42 43 44 45 46 47 48 49 50 51	<pre>return None # If ping fails return None # If ping fails return None # If ping fails disk_io = pswill.disk_io_counters() disk_io = pswill.disk_io_exite_bytes # Total 1/0 in bytes return disk_io-read_trial_bytes + disk_io.write_bytes # Total 1/0 in bytes medion to collect actual jitter get_ditter(host-'www.fortnite.com', count=5, interval=0.2): latences = 0; for _in range(count): latences = 0; latence > interval; latence > interval; latence > interval; </pre>
33 33 35 # F 36 def 37 38 38 # F 39 # F 40 # 41 42 43 441 def 45 46 47 8 50 51 52 53 54 55	<pre>return None # if ping fails metion to capture disk i/o usage get_disk_[0]; disk_lo = putil.disk_locuttes() eturn disk_locutate_bytes # Total I/O in bytes metion to collect actual jitter get_dist(eta); fatency = name(count); latency = name(count); if atency = name(co</pre>
33 34 35 36 46 37 38 37 38 49 41 41 42 43 44 45 44 45 46 47 48 49 50 51 52 53 54 55 55 56 67 77 88 55 55 56 56 57 57 57 57 57 57 57 57 57 57	<pre>return None # if ping fails motion to capture disk i/o usage get_disk_d(); disk_lo = psutil.disk_lo_counters() disk_lo = psutil.disk_lo_counters() disk_lo = psutil.disk_lo_counters() file(); disk_los = psutil.disk_los.efte_bytes # Total I/O in bytes motion to collect actual jitter get_litter(host-iwe, forthite.com', counts5, interval=0.2): latencies = [] for _ in range(count): latencies.append(latency * 1000) # Convert to milliseconds time.sitee(Interval) fil ben(latencies) < ?: return None # Not enough data to calculate jitter # Gaiculate jitter as the average of absolute differences between consecutive ping results jitter = sum(abs(latencies[i] - latencies[i-1]) for i in range(3, len(latencies))) / (len(latencies) - 1 return intervan motion to measure actual bandwidth usage</pre>
33 34 35 #Fi 36 def 37 38 39 #Fi 41 def 42 44 44 45 45 46 50 51 52 53 54 55 57 def 56 # Fi 57 88	<pre>return None # if ping fails metton to capture disk i/o usage get_disk.ed(): disk_lo = pswtil.disk_io_counters() disk_lo = pswtil.disk_io_counters() disk_lo = pswtil.disk_io_counters() disk_lo = pswtil.disk_io_counters() istencines = [] for</pre>
33 34 35 # Fi 36 def 37 38 39 # Fi 40 # 41 42 44 45 46 47 48 49 50 51 52 53 54 55 56 56 # Fi 59 56	<pre>return None # if ping fails metion to capture disk i/o usage get_disk_(0(); disk_io = putil.disk_io_counters() fitter usage is interval=0.2); listencis = 1; for _ in range(count); litencis = nonge(tot) if litencis =</pre>
33 34 35 #Fi 36 def 37 38 39 #Fi 41 def 42 44 44 45 45 46 50 51 52 53 54 55 57 def 56 # Fi 57 88	<pre>return None # if ping fails metton to capture disk if 0 usage get_disk_d(0); disk_do = putil.disk_io_counters() disk_do = putil.disk_io_counters() disk_do = putil.disk_io_counters() fails_do = putil.disk_io_counters() for _ib range(count); latencies.append(latencies() if latency = ping(host) if latency is not None; latencies.append(latencies() # 0000) # Convert to milliseconds time.size(informal) if latencies (2: return None # Not monyed data to calculate fifter scalculate fifter as the average of absolute differences between consecutive ping results fifter = sum(abs(latencies[i] - latencies[i-1]) for i in range(1, len(latencies))) / (len(latencies) - 1) return jitter metton to measure actual bandwidth usage pt_Landwidth(); try; s = pupddest.() to the summer() </pre>
33 # Fi 34 # Fi 36 def 37 6 40 # Fi 41 def 42 42 43 44 45 47 48 49 55 54 56 # Fi 57 def 58 59 60 61 62 62	<pre>return None # if ping fails metton to capture disk if 0 usage getdask.ed(); disk_lo = putil.disk_locurite_bytes # Total 1/0 in bytes metton to collect actual jitter patholics = () for is name(count); life(count); life(cou</pre>
33 # Fi 34 # Fi 36 def 37 # 38 9 40 # 41 def 42 43 44 45 46 47 48 40 51 52 53 54 55 57 66 62 63 64	<pre>return None # if ping fails metton to capture disk if 0 usage getdask.ed(); disk_lo = putil.disk_locuntes() field(); disk_lo = putil.disk_locuntes() field(); disk_locuntes() field(); fiel</pre>
33 # Fi 35 # E 36 deff 37 36 38 # A 39 0 # Fi 30 deff 37 30 # # A 44 deff 44 44 44 45 50 51 52 53 54 55 56 # fi 58 66 62 63 64 55 54	<pre>return None # if ping fails metion to capture disk i/o usage get_disk_d(); disk_do = putil.disk_ic_counters() return disk_ico-read/ystes + dist_ico-rite_bytes # Total I/O in bytes metion to collect actual jitter get_litter(horead/ystes + disk_ico-rite_bytes # Total I/O in bytes metion to collect actual jitter get_litter(horead/ystes + disk_ico-rite_bytes, interval=0.2): latencies = [] for _ in range(count): latencies = [] for _ in range(count): latencies.append(latency * 1000) # Convert to milliseconds time.size(niterval) fil be(distencies) < 1: return None # Not enough data to calculate jitter # Calculate jitter as the average of absolute differences between consecutive ping results jitter = sum(abs(latencies[i] - latencies[i-1]) for i in range(3, len(latencies))) / (len(latencies) - 1 return None # such_aboutdth usage get_banddth(): try: st = speedtest.Speedtest() st.ect_best_server() download_speed = st.upload() / 1_000_000 # Convert from bits per second to Mps upload_speed = st.upload() / 1_000_000 # Convert from bits per second to Mps upload_speed = st.upload() / 1_000_000 # Convert from bits per second to Mps upload_speed = st.upload() / 1_000_000 # Convert from bits per second to Mps upload_speed = st.upload() / 1_000_000 # Convert from bits per second to Mps upload_speed = st.upload() / 1_000_000 # Convert from bits per second to Mps upload_speed = st.upload() / 1_000_000 # Convert from bits per second to Mps upload_speed = st.upload() / 1_000_000 # Convert from bits per second to Mps upload_speed = st.upload() / 1_000_000 # Convert from bits per second to Mps upload_speed = st.upload() / 1_000_000 # Convert from bits per second to Mps upload(speed = st.upload() / 1_000_000 # Convert from bits per second to Mps upload(speed = st.upload() / 1_000_000 # Convert from bits per second to Mps upload(speed = st.upload() / 1_000_000 # Convert from bits per second to Mps upload(speed = st.upload() / 1_000_000 # Convert from bits per second to M</pre>
33 # Fi 34 # Fi 36 def 37 # 38 9 40 # 41 def 42 43 44 45 46 47 48 40 51 52 53 54 55 57 66 62 63 64	<pre>return None # if ping fails metion to capture disk i/o usage get_disk.ed(); disk_lo = psutil.disk_ic_counters() return disk_loc=addysts + dist_low_fite_bytes # Total I/O in bytes metion to collect actual jitter get_litter(horeadbytes + dist_low_fite_bytes # Total I/O in bytes metion to collect actual jitter get_litter(horeadbytes + dist_low_fite_bytes + Total I/O in bytes if latencies = [] for _ in range(count): latencies = [] for _ in range(count): latencies.append(latency * 1000) # Convert to milliseconds time.sitee(interval) fit latencies() < 1: return None # Not enough data to calculate jitter # Calculate jitter # Calculate jitter metion None # Not enough data to calculate jitter metion to measure actual bandwidth usage get_bandwidth(): try: st = speedtest.Speedtest() st.ect_best_server() download_speed = st.upload() / 1_000_000 # Convert from bits per second to Mps upload_speed = st.upload() / 1_000_000 # Convert from bits per second to Mps upload_speed = st.upload() / 1_000_000 # Convert from bits per second to Mps upload_speed = st.upload_speed conturn download_speed.upload_speed conturn None # St.upload_speed conturn None</pre>
33 # FI 34 # FI 35 # # FI 36 # # # # # # # # # # 41 # # # # # # # 44 # # # # # 45 # 45 46 # 50 50 # # # # # # # # # 46 # 50 50 # # 50 51 \$ 51 52 \$ 55 50 # # # # # # # # # # # # # # # # # # #	<pre>return None # if ping fails metion to capture disk i/o usage get_disk_d(0); disk_io = putil.disk_io_counters() file(); disk_io = putil.disk_io_counters() file(); disk_io = putil.disk_io_counters() file(); disk_io = putil.disk_io_counters() file(); f</pre>
33 # Fi 34 # Fi 35 def 36 def 373 def 38 39 40 # fi 41 def 42 44 44 45 45 51 52 53 54 55 56 # Fi 56 66 66 66 66 66 66 66 66 66 66 66 66 66	<pre>return None # if ping fails motion to capture disk i/o usage get_disk_d(); disk_lo = psutil.disk_i_o_unters() disk_lo = psutil.disk_i_o_unters() disk_lo = psutil.disk_i_ounters() return disk_ion=read_bytes + dist_ion=rite_bytes # Total I/O in bytes motion to collect actual jitter get_litter(host:'www.forthite.com', counts5, interval=0.2): latencies = [] for _ in range(count): latencies = [] for _ in range(count): latencies.append(latency * 1000) # Convert to milliseconds time.sitee(interval) fil be(idstencies) < ?: return None # Not enough data to calculate jitter # Calculate jitter motion to measure actual bandwidth usage get_bandwidth(): try: st = speedtest.Speedtest() st.edt_best_server() download_speed = st.upbaod_/ / 1_000_000 # Convert from bits per second to Mbps upload_speed = st.upbaod_/ / 1_000_000 # Convert from bits per second to Mbps upload_speed = st.upbaod_/ / 1_000_000 # Convert from bits per second to Mbps upload_speed = st.upbaod_/ / 1_000_000 # Convert from bits per second to Mbps upload_speed = st.upbaod_/ / 1_000_000 # Convert from bits per second to Mbps upload_speed = st.upbaod_/ / 1_000_000 # Convert from bits per second to Mbps upload_speed = st.upbaod_/ / 1_000_000 # Convert from bits per second to Mbps upload_speed = st.upbaod_/ / 1_000_000 # Convert from bits per second to Mbps upload_speed = st.upbaod_/ / 1_000_000 # Convert from bits per second to Mbps upload_speed = st.upbaod_/ / 1_000_000 # Convert from bits per second to Mbps upload_speed = st.upbaod_/ / 1_000_000 # Convert from bits per second to Mbps upload_speed = st.upbaod_/ / 1_000_000 # Convert from bits per second to Mbps upload_speed = st.upbaod_/ / 1_000_000 # Convert from bits per second to Mbps upload_speed = st.upbaod_/ / 1_000_000 # Convert from bits per second to Mbps upload_speed = st.upbaod_/ / 1_000_000 # Convert from bits per second to Mbps upload_speed = st.upbaod_/ / 1_000_000 # Convert from bits per second to Mbps upload_speed = st.upbaod_/ / 1_000_000 # Convert from bits per second to Mbps upload_speed</pre>
33 # Fi 34 # Fi 35 def 36 def 373 def 38 39 40 # fi 41 def 42 44 44 45 45 51 52 53 54 55 56 # Fi 56 66 66 66 66 66 66 66 66 66 66 66 66 66	<pre>return None # if ping fails motion to capture disk i/o usage get_disk_d(); disk_lo = psutil.disk_i_o_unters() disk_lo = psutil.disk_i_o_unters() disk_lo = psutil.disk_i_ounters() return disk_ion=read_bytes + dist_ion=rite_bytes # Total I/O in bytes motion to collect actual jitter get_litter(host:'www.forthite.com', counts5, interval=0.2): latencies = [] for _ in range(count): latencies = [] for _ in range(count): latencies.append(latency * 1000) # Convert to milliseconds time.sitee(interval) fil be(idstencies) < ?: return None # Not enough data to calculate jitter # Calculate jitter motion to measure actual bandwidth usage get_bandwidth(): try: st = speedtest.Speedtest() st.edt_best_server() download_speed = st.upbaod_/ / 1_000_000 # Convert from bits per second to Mbps upload_speed = st.upbaod_/ / 1_000_000 # Convert from bits per second to Mbps upload_speed = st.upbaod_/ / 1_000_000 # Convert from bits per second to Mbps upload_speed = st.upbaod_/ / 1_000_000 # Convert from bits per second to Mbps upload_speed = st.upbaod_/ / 1_000_000 # Convert from bits per second to Mbps upload_speed = st.upbaod_/ / 1_000_000 # Convert from bits per second to Mbps upload_speed = st.upbaod_/ / 1_000_000 # Convert from bits per second to Mbps upload_speed = st.upbaod_/ / 1_000_000 # Convert from bits per second to Mbps upload_speed = st.upbaod_/ / 1_000_000 # Convert from bits per second to Mbps upload_speed = st.upbaod_/ / 1_000_000 # Convert from bits per second to Mbps upload_speed = st.upbaod_/ / 1_000_000 # Convert from bits per second to Mbps upload_speed = st.upbaod_/ / 1_000_000 # Convert from bits per second to Mbps upload_speed = st.upbaod_/ / 1_000_000 # Convert from bits per second to Mbps upload_speed = st.upbaod_/ / 1_000_000 # Convert from bits per second to Mbps upload_speed = st.upbaod_/ / 1_000_000 # Convert from bits per second to Mbps upload_speed = st.upbaod_/ / 1_000_000 # Convert from bits per second to Mbps upload_speed = st.upbaod_/ / 1_000_000 # Convert from bits per second to Mbps upload_speed</pre>
33 # FI 34 # FI 35 # E 36 # E 37 # 38 # 41 # 42 # 43 # 46 # 47 # 48 # 50 # 51 \$ 52 \$ 53 \$ 60 # 60 # 60 # 60 # 61 # 62 # 64 # 60 # 62 # 64 # 66 # 67 # 77 #	<pre>return None # if ping fails mettion to capture disk i/o usage get_disk.ed(): disk_lo = pswtil.disk_io_counters() file(): disk_lo = pswtil.disk_io_counters() file(): disk_lo = pswtil.disk_io_artite_bytes # Total I/O in bytes mettion to collect actual jitter pst_litter(host=') file(): file(</pre>
33 # FI 34 # FI 35 # E 36 # E 37 # 38 # 41 # 42 # 43 # 46 # 47 # 48 # 50 # 51 \$ 52 \$ 53 \$ 60 # 60 # 60 # 60 # 61 # 62 # 64 # 60 # 62 # 64 # 66 # 67 # 77 #	<pre>return None # if ping fails metton to capture disk i/o usage get_disk.ed(): id(k_lo = pswtil.disk_io_counters() disk_lo = pswtil.disk_io_artite_bytes # Total I/O in bytes metton to collect actual jitter get_litter(host-iwew.forthite.com', count-S, interval=0.2): litencies = [] for</pre>
33 # 34 # 35 # 36 # 37 37 38 # 41 # 42 44 46 47 48 46 51 53 55 # 51 55 56 # 61 63 65 66 67 # 66 67 77 7 74 7	<pre>return None # if ping fails metton to capture disk if 0 usage get_disk.ed(): id(k_lo = putil.disk_locurite_bytes # Total I/O in bytes metton to collect actual jitter preturn disk_locurite_bytes # Total I/O in bytes metton to collect actual jitter pret_litter(fore(count): latencies.append[latency * 1800) # Convert to milliseconds time.size@(interval) if latency = ping(host) if latencies.append[latency * 1800) # Convert to milliseconds time.size@(interval) if latencies.append[latency * 1800) # Convert to milliseconds time.size@(interval) if latencies.append[latencies[i-1]) for i in range(1, len(latencies))) / (len(latencies) - 1 metton to measure actual bandwidth usage get_bandwidth(): rry; true moduled.sequed.upload_speed except Exception as e: preturn download aftel from 51 download_from_sols].ise(howledth: (a)*) return Mone, home metton to download a file from 53 download_from_sols].ise(howledth: (a)*) return Mone, home metton to download a file from 53 download_from_sols].ise(howledth: (a)*) return Mone in se: print(ff"Error downloading file '(file_name, download_path); ry; } } </pre>
33 # 34 # 35 # 36 deff 37 38 38 # 39 # 41 44 42 43 44 46 47 48 50 \$ 51 \$ 52 \$ 53 \$ 54 \$ 55 \$ 56 # 61 63 65 65 66 67 77 74 77 77	<pre>return None # if ping fails metton to capture disk if 0 usage getdask.ed(): disk_lo = putil.disk_locurtes() fills(): disk_lo = putil.disk_locurte_bytes # Total 1/0 in bytes metton to collect actual jitter putilise(): if latency = ping(host) if latency = ping(host)</pre>
33 # FI 34 # FI 35 deff 36 deff 37 38 38 # I 41 deff 42 44 46 45 45 46 53 53 56 # I 67 def 63 65 66 67 77 def 776 def 776 76 777 78 778 78	<pre>return None = if ping fails metton to capture disk if 0 usage get_disk_d(0); disk_do = putil.disk_io_counters() fill and the statum is a statum i</pre>
33 # FI 34 # FI 35 def 36 def 373 B 390 def 41 def 42 def 44 def 45 def 51 52 53 54 54 55 56 # FI 64 66 63 66 64 66 70 def 72 73 74 def 77 def 77 76 77 77 78 77 78 77 78 77 78 77 78 77 78 77 78 77	<pre>return None # if ping fails mettion to capture disk if 0 usage get_disk_d(0); disk_lo = psutil.disk_io_counters() file(); disk_lo = psutil.disk_io_counters() file(); disk_lo = psutil.disk_io_counters() file(); disk_lo = psutil.disk_io_counters() file(); fil</pre>
33 # FI 34 # FI 35 def 36 def 373 B 390 def 41 def 42 def 44 def 45 def 51 52 53 54 54 55 56 # FI 64 66 63 66 64 66 70 def 72 73 74 def 77 def 77 76 77 77 78 77 78 77 78 77 78 77 78 77 78 77 78 77	<pre>return None # if ping falls metion to capture disk i/o usage get_dask_d(); disk_do = psutil.disk_ic_counters() disk_do = psutil.disk_ic_counters() disk_do = psutil.disk_ic_counters() fill = fall = fal</pre>

Figure 11: Python Script to collect game metrics data

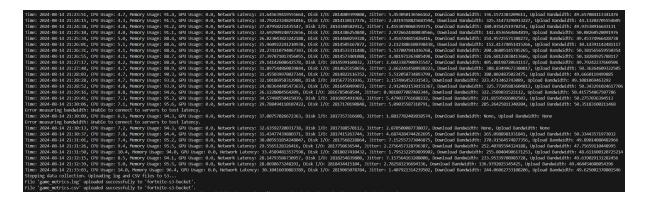


Figure 12: Snapshot of : collecting game metrics data

3.1.2 Wireshark

- Install Wireshark
- Open Wireshark
- Capture wifi connected data

- We captured two dataset during this resarch when connected to wifi (5G network connection) and other when connected to Mobile Hotspot (4G network connection)
- Collecting this data in background while running game

	Go Capture Analyze Statistics Telephony Wireless Tools Help			
	□ X C Q + + = = ∓ ±			
Apply a display				-
Abbit a disbial	ner «utn-/»			-
	Welcome to Wireshark			
	Open			
	C\Users\Shubham\Downloads\network capture.pcapng (2094 KB)			
	Capture			
			All interfaces shown *	
	using this filter:		All interfaces shown *	
	W-Fi and			
	Adapter for loopback traffic capture			
	Adapter for loopback traffic capture N			
	Adapter for loopback traffic capture N Local Area Connection* 10 Local Area Connection* 9			
	Adapter for loopback traffic capture N Local Area Connection* 10 Local Area Connection* 9 Local Area Connection* 8			
	Adapter for loopback traffic capture Local Area Connection* 10 Local Area Connection* 9 Local Area Connection* 2 Local Area Connection* 2			
	Adapter for loopback traffic capture N Local Area Connection* 10 Local Area Connection* 9 Local Area Connection* 8			
	Adapter for loopback traffic capture Local Area Connection* 10 Local Area Connection* 9 Local Area Connection* 8 Local Area Connection* 1 Local Area Connection* 1			
	Adapter for logicials fullific capture Local Area Connection* 10 Local Area Connection* 9 Local Area Connection* 9 Local Area Connection* 1 Local Area Connection* 1 Local Area Connection* 1	rføst - Wireshark Discord - Dona		
	Adapter for looplank talk capture Local Area Connection *9 Local Area Connection *9 Local Area Connection *9 Local Area Connection *1 Local Area Connection *1 Learn Learn Learn Learn Learn Learn Learn Learn		te	
	Adapter for looplack traff capture Local Nex Convection *9 Local Nex Convection *9 Local Nex Convection *1 Local Nex Convection *1 Local Nex Convection *1 Local Nex Convection *1 Learm			

Figure 13: Open wireshark : we can see the list of connected network to capture data

4 AWS Cloud Services

4.1 AWS S3

• Once the data is collected by Python script and wireshark, that data is send to S3 bucket

Amazon	Amazon 53 > Buckets > fortnite-s3-bucket								
fort	fortnite-s3-bucket Info								
Obje	cts Properties Permissions	Metrics Manag	gement Access Points						
Obje	ects (8) Info		C Copy S3 URI Copy I	URL 🕑 Download Open	☐ Delete Actions ▼	Create folder Doload			
Object	ts are the fundamental entities stored in Amaz	on S3. You can use Amazon S3	inventory 🔀 to get a list of all objects in your buck	xet. For others to access your objects, you'll nee	d to explicitly grant them permissions. Learn	i more 🔽			
Q	Find objects by prefix		Show versions			< 1 > ©			
	Name 🔺	Туре	▼ Last modified	▼ Size	▼ Storage class				
	C combined_mobile_game_metrics .csv	csv	August 16, 2024, 01:43:05 (UTC+01:00)	38	.3 KB Standard				
	Combined_wifi_game_metrics.cs	csv	August 16, 2024, 01:43:05 (UTC+01:00)	38	.3 KB Standard				
	detailed_metrics.csv	csv	August 13, 2024, 21:47:18 (UTC+01:00)	8	.5 KB Standard				
	detailed_metrics.log	log	August 13, 2024, 21:47:18 (UTC+01:00)	18	.4 KB Standard				
_			August 14, 2024, 21:33:09						

Figure 15: Files uploaded on S3 bucket

	pturing from Wi-Fi) >
ile	Edit View Go	Capture Analyze Statistics	s Telephony Wireless	Tools Help							
1	🙇 💿 🚞 🛅	🖹 🖉 🗢 🗢 🖉 🏹	👲 📃 📃 🔍 🍳 🍳								
Ар	oly a display filter <	<ctrl-></ctrl->									
o.	Time	Source	Destination	Protocol L	Length Info						
	1 0.000000	192.168.0.58	230.0.0.1	UDP	92 49622 → 666	56 Len=50					
	2 0.137012		2a02:8084:20c2:5780								
	3 0.188183		2603:1026:2405:1::1a			3 [ACK] Seq=1 Ac	k=52 Win=10	926 Ler	n=0		
	4 1.000158	192.168.0.58	230.0.0.1	UDP	92 49622 → 666				_		_
	5 1.515394	192.168.0.58	195.181.165.139	TCP		3 [ACK] Seq=1 Ac					
	6 1.535182	195.181.165.139	192.168.0.58	TCP		4 [ACK] Seq=1 Ac	:K=2 Win=501	L Len=6	SLE=1	SRE=2	
	7 2.012751 8 3.012880	192.168.0.58 192.168.0.58	230.0.0.1 230.0.0.1	UDP UDP	92 49622 → 666 92 49622 → 666						
Etł	ernet II, Src:	on wire (736 bits), 92 Intel_7d:99:e3 (3c:21:0 Version 4, Src: 192.16	9c:7d:99:e3), Dst: IP	/4mcast_01			D06D-4861-	0000 0010 0020	00 4e 00 01	5e 00 77 db c1 d6	00 00 1a 0a
Eth Int Use	ernet II, Src: ernet Protocol	Intel_7d:99:e3 (3c:21:9	9c:7d:99:e3), Dst: IP 8.0.58, Dst: 230.0.0.	/4mcast_01			D06D-4861-	0010	00 4e 00 01 00 00 98 24	77 db	00 00 1a 0a 00 00 ac 3f
Eth Int Use	nernet II, Src: cernet Protocol er Datagram Prot	Intel_7d:99:e3 (3c:21:9 Version 4, Src: 192.168	9c:7d:99:e3), Dst: IP 8.0.58, Dst: 230.0.0.	/4mcast_01			D06D-4861-	0010 0020 0030 0040	00 4e 00 01 00 00 98 24	77 db c1 d6 00 00 47 9e	00 00 1a 0a 00 00 ac 3f

Figure 14: Capturing Network Data

4.1.1 AWS Lambda

- Create Lambda function and set a trigger when this function should be executed.
- We created two lambda function:
 - 1. To clean, process and refine raw dataset and store the new dataset in new S3 bucket.
 - -2. To compute the game metrics resources to find mean, median and variance.

aws @ ec:	2 G VPC	[Alt+S]		D 🗘 Ø Ø Stockholm ▼ Shubham_Kumbhar ▼
Ξ	Lambda > Functions > process_fortnite_data process_fortnite_data Function overview Info			Copy ARN Actions V Export to Application Composer Download V
	Diagram Template	process_fortnite_data Layers (1)	+ Add destination	Description - Last modified 4 days ago Function ARN anawstambda:eu-north-1:654654518769:function:process_fortnit e_data Function URL Info -
	Code Test Monitor Configuration	Aliases Versions		

Figure 16: Lambda Function overview

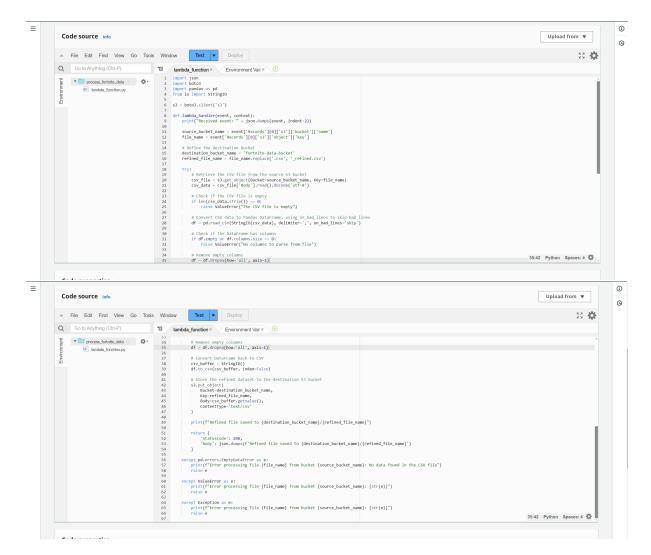


Figure 17: Lambda Function code : to refine raw dataset

▲ File Edit Find View G	Do Tools Window Test V Deploy
Q Go to Anything (Ctrl-P)	■ lambda_function × Environment Vari × ⊕
ProcessFortniteGam	1 import json 2 import boto3
S lambda_function.py	3 import pandas as pd
i vi	4 from io import StringIO 5
Ш	6 s3 = boto3.client('s3')
	7
	<pre>8 def lambda_handler(event, context):</pre>
	<pre>9 # Log the received event 10 print("Received event: " + json.dumps(event, indent=2))</pre>
	<pre>10 print("Received event: " + json.dumps(event, indent=2)) 11</pre>
	12 bucket_name = event['Records'][0]['s3']['bucket']['name']
	<pre>13 file_name = event['Records'][0]['s3']['object']['key']</pre>
	14
	<pre>15 # Log the bucket name and file name 16 print(f"Bucket: {bucket name}, File: {file name}")</pre>
	17
	18 try:
	19 # Retrieve the CSV file from S3
	<pre>20 csv_file = s3.get_object(Bucket=bucket_name, Key=file_na 21 csv data = csv file['Body'].read().decode('utf-8')</pre>
	22
	23 # Convert CSV data to Pandas DataFrame
	<pre>24 df = pd.read_csv(StringIO(csv_data))</pre>
	25 26 # Calculate statistics
	27 stats = {
	<pre>28 'cpu_usage_mean': [df['CPU Usage'].mean()],</pre>
	<pre>29 'cpu_usage_median': [df['CPU Usage'].median()],</pre>
	30 'cpu_usage_var': [df['CPU Usage'].var()],
	<pre>31 'memory_usage_mean': [df['Memory Usage'].mean()], 32 'memory_usage_median': [df['Memory_Usage'].median()]</pre>
	33 'memory usage var': [df['Memory Usage'].var()],
	<pre>34 'gpu_usage_mean': [df['GPU Usage'].mean()],</pre>
	35 'gnu usage median': [df['GPU Usage'].median()].

Q	Go to Anything (Ctrl-P)	1	ambda_function × Environment Vari × 🕀
	, , , ,	3/	network fatency mean ; [ui] network fatency [imean()],
Environment	ProcessFortniteGam	38	'network latency median': [df['Network Latency'].median()],
Ē	lambda_function.py	39	'network latency var': [df['Network Latency'].var()],
<u>p</u>	Mambua_runcuon.py	40	'disk io mean': [df['Disk I/O'].mean()],
Ξ.		41	'disk_io_median': [df['Disk I/O'].median()],
ш		42	'disk_io_var': [df['Disk I/O'].var()],
		43	'jitter_mean': [df['Jitter'].mean()],
		44	'jitter_median': [df['Jitter'].median()],
		45	'jitter_var': [df['Jitter'].var()]
		46	}
		47	
		48	# Convert statistics to DataFrame
		49	<pre>stats_df = pd.DataFrame(stats)</pre>
		50	
		51	# Convert DataFrame to CSV
		52 53	<pre>csv_buffer = StringIO() stats df.to csv(csv buffer, index=False)</pre>
		54	stats_ui.to_csv(csv_buller, index=raise)
		55	# Store the result back to S3 as a CSV file
		56	result key = file name.replace('.csv', ' stats.csv')
		57	s3.put object(
		58	Bucket=bucket name,
		59	Key=result key,
		60	Body=csv buffer.getvalue(),
		61	ContentType='text/csv'
		62)
		63	
		64	return {
		65	'statusCode': 200,
		66	'body': json.dumps('Processing complete.')
		67	}
		68	
		69	except Exception as e:
		70 71	<pre>print(f"Error processing file {file_name} from bucket {bucket_name}: {str(e)}") raise e</pre>

Figure 18: Lambda Function Code : to calculate mean, median and mode

4.1.2 AWS SageMaker

- Create Notebook
- Open Notebook
- Running code for performing action on game-metrics dataset individually and another code for performing action on combined dataset.

	Gam	e_metrics	Last Checkpoir	nt: Last Thursda	iy at 8:52 PM (a	utosaved)					Logo
File Edit	View	Insert C	cell Kernel	Widgets	Help			Kernel starting,	please wait	Not Trusted conc	la_python3
+ % @	10	↑ ↓ ►	Run 📕 C	Dode Code	× 🖾	O nbdiff					
In [154]:		boto3 pandas as	pd								
In [155]:	bucket file_n # Load obj =	ame = 'gam the CSV f s3.get_obj	ortnite-data e_metrics_re ile from S3	fined.csv' ucket_name,		your bucket th your file e)					
	# Disp df.hea		rst few rows								
Out[156]:						Network Latency	Disk I/C			Upload Bandwidth	
	0 202	4-08-13 21:35:	14 4.7	93.1	23.0	12.349606	258157313484	8 1.333475	567.579356	49.733278	
		4-08-13 21:35:4		93.9		14.088631	258191207372		331.067366	49.434823	
	2 202	4-08-13 21:35:- 4-08-13 21:36:1	08 1.2	94.1	44.0	14.773130	258222918195	2 1.558423	522.446390	49.794932	
	2 202 3 202	4-08-13 21:35:4	08 1.2 52 2.6		44.0 2 23.0	14.773130 12.058258		2 1.558423 2 1.792192			
In [157]:	2 202 3 202 4 202 # Get	4-08-13 21:35: 4-08-13 21:36: 4-08-13 21:36: 4-08-13 21:37:	08 1.2 52 2.6	94. 94. 93.(44.0 2 23.0	14.773130 12.058258	258222918195 258237705523	2 1.558423 2 1.792192	522.446390 494.318620	49.794932 49.976185	
In [157]: Out[157]:	2 202 3 202 4 202 # Get	4-08-13 21:35: 4-08-13 21:36: 4-08-13 21:36: 4-08-13 21:37: <i>a summary (</i> cribe()	08 1.2 52 2.6 21 6.0	94. 94. 93.(44.0 2 23.0 3 24.0	14.773130 12.058258	258222918195 258237705523 258257630976	2 1.558423 2 1.792192	522.446390 494.318620 191.838909	49.794932 49.976185 50.464365	
	2 202- 3 202- 4 202- # Get df.des	4-08-13 21:35: 4-08-13 21:36: 4-08-13 21:36: 4-08-13 21:37: <i>a summary (</i> cribe()	08 1.2 52 2.6 21 6.0 of the datase	94. 94. 93.(44.0 2 23.0 3 24.0	14.773130 12.058258 13.025284	258222918195 258237705523 258257630976	2 1.558423 2 1.792192 0 3.298640	522.446390 494.318620 191.838909	49.794932 49.976185 50.464365	
	2 202- 3 202- 4 202- # Get df.des	4-08-13 21:35: 4-08-13 21:36: 4-08-13 21:36: 4-08-13 21:37: 4-08-13 21:37: a summary (cribe() CPU Usage	08 1.2 52 2.6 21 6.0 of the datase Memory Usage	94. 94.2 93.6 et GPU Usage	44.0 2 23.0 3 24.0 4etwork Latency 332.000000	14.773130 12.058258 13.025284 Disk I/O	258222918195 258237705523 258257630976 Jitter D	2 1.558423 2 1.792192 0 3.298640	522.446390 494.318620 191.838909 Upload Bandw	49.794932 49.976185 50.464365	
	2 202- 3 202- 4 202- # Get df.des	4-08-13 21:35: 4-08-13 21:36: 4-08-13 21:36: 4-08-13 21:37: <i>a summary</i> (cribe() CPU Usage 335.000000	08 1.2 52 2.6 21 6.0 of the dataset Memory Usage 335.000000	94. 94.2 93.6 et GPU Usage N 335.000000	44.0 2 23.0 3 24.0 4etwork Latency 332.000000 25.917281 16.948659	14.773130 12.058258 13.025284 Disk I/O 3.350000e+02 2.755400e+12 7.918501e+10	258222918195 258237705523 258257630970 Jitter D 335.000000	2 1.558423 2 1.792192 0 3.298640 kownload Bandwidth 286.000000	522.446390 494.318620 191.838909 Upload Bandw 286.00 47.368 8.085	49.794932 49.976185 50.464365 vidth 00000 5859 5288	
	2 202- 3 202- 4 202- # Get df.des	4-08-13 21:35: 4-08-13 21:36: 4-08-13 21:36: 4-08-13 21:37: a summary of cribe() CPU Usage 335.000000 5.107463	08 1.2 52 2.6 21 6.0 opf the datase Memory Usage 335.000000 92.217910	94. 94. 93. 93. 93. 93. 935.00000 14.617910	44.0 2 23.0 3 24.0 4etwork Latency 332.000000 25.917281 16.948659	14.773130 12.058258 13.025284 Disk I/O 3.350000e+02 2.755400e+12	258222918195. 258237705523 258257630976 Jitter D 335.000000 15.067707	2 1.558423 2 1.792192 0 3.298640 townload Bandwidth 286.00000 319.540920	522.446390 494.318620 191.838909 Upload Bandw 286.00 47.365	49.794932 49.976185 50.464365 vidth 00000 5859 5288	

Figure 19: SageMaker Notebook 1



Figure 20: SageMaker Notebook 2

5 Processing Dataset and Training Model on Individual Datset

- 5.1 Game Metrics Dataset Individual
- 5.1.1 Calculating Performance Metrics

In [154]:		: boto3 : pandas as	pd										
En [155]:	<pre>s3 = boto3.client('s3')</pre>												
							your bucket th your file						
	obj =	f the CSV f s3.get_obj d.read_csv	ect(Bucket=bu	ucket_name, H	ey=file_nam	e)						
In [156]:	# Disp df.hea	ilay the fi id()	rst ;	few rows									
Out[156]:		т	me C	PU Usage	Memory Usage	GPU Usage	Network Latency	Disk I/C	D Jitter	Download Bandwid	th Upload Bandwidth		
	0 202	4-08-13 21:35	14	4.7	93.7	23.0	12.349606	258157313484	8 1.333475	567.5793	6 49.733278		
	1 202	4-08-13 21:35	:43	5.9	93.9	43.0	14.088631	258191207372	8 2.987087	331.0673	6 49.434823		
	2 202	4-08-13 21:36	:08	1.2	94.1	44.0	14.773130	258222918195	2 1.558423	522.4463	49.794932		
	3 202	4-08-13 21:36	:52	2.6	94.2	23.0	12.058258	258237705523	2 1.792192	494.31862	49.976185		
	4 202	4-08-13 21:37	21	6.0	93.6	24.0	13.025284	258257630976	0 3.298640	191.83890	9 50.464365		
		a summary cribe()	of t	he datase	rt								
In [157]:	ur.ues												
In [157]: Dut[157]:	ur.ues	CPU Usage	Mem	ory Usage	GPU Usage N	etwork Latency	Disk I/O	Jitter D	ownload Bar	dwidth Upload Bar	dwidth		
		CPU Usage 335.000000		ory Usage	GPU Usage N 335.000000		Disk I/O 3.350000e+02	Jitter D			dwidth		
		•	3			332.000000			286.	000000 286.			
	count	335.000000	3	35.000000	335.000000	332.000000 25.917281	3.350000e+02	335.000000	286. 319.	000000 286. 540920 47.	000000		
	count mean	335.000000 5.107463	3	92.217910	335.000000 14.617910	332.000000 25.917281 16.948659	3.350000e+02 2.755400e+12	335.000000 15.067707	286. 319. 95.	000000 286. 540920 47. 291907 8.	000000 365859		

Figure 21: Load Game Metrics Dataset

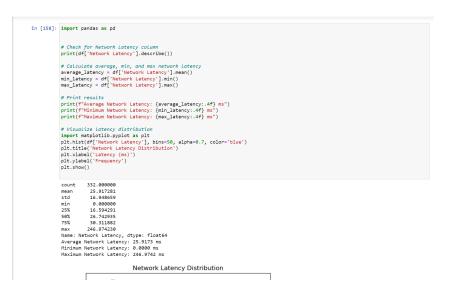


Figure 22: Calculating Network Latency Performance

Figure 23: Calculating CPU Usage Performance

In [160]:	import pandas as pd import matplotlib.pyplot as plt									
	# Assuming df is your DataFrame with GPU Usage data # Let's first check basic statistics of GPU Usage									
	<pre>gpu_usage_stats = df['GPU Usage'].describe()</pre>									
	<pre>print("GPU Usage Statistics:") print(gpu_usage_stats)</pre>									
	<pre># Plotting GPU Usage Distribution plt.figure(figurusage), bins=20, color='orange', alpha=0.7) plt.fist(df'[GPU Usage], bins=20, color='orange', alpha=0.7) plt.fist(df'[GPU Usage (S)] plt.fibat("Frequency") plt.fibat("Frequency") plt.fibat("Frequency")</pre>									
	<pre># Specific statistics average_gpu_usage = df['GPU Usage'].mean() min_gpu_usage = df['GPU Usage'].min() max_gpu_usage = df['GPU Usage'].max()</pre>									
	print(f"Average GPU Usage: {average_gpu_usage:.2f}%") print(f"Winimum GPU Usage: {min_gpu_usage:.2f}%") print(f"Waximum GPU Usage: {max_gpu_usage:.2f}%")									
	GPU Usage Statistics: count 335.000000 mean 14.617910 std 29.337959 min 0.000000 25% 0.000000 75% 0.000000 max 98.000000 max 98.000000 max 96.000000									
	GPU Usage Distribution									

Figure 24: Calculating GPU Usage Performance

Figure 25: Calculating Memory Usage Performance

In [164]:	# Disk I/O Statistic disk.io_stats = df[Disk I/O'].describe() print(disk_io_stats)										
	averagg_dist_io = df['Disk I/O'].max() mm_disk_io = df['Disk I/O'].min() mm_dist_io = df['Disk I/O'].max()										
	print(f"Average Disk I/O: {average_disk_io:.2f}%") print(f"Hinimum Disk I/O: (min_disk_io:.2f}%") print(f"Haximum Disk I/O: (max_disk_io:.2f}%")										
	<pre># Plot Disk I/O Distribution plt.figure(figitar(6,6)) plt.figure(figitar(6,7)) plt.title('Disk I/O Distribution') plt.title('Disk I/O (M%/s')') plt.label('Disk I/O (M%/s')') plt.label('Disk I/O (M%/s')') plt.labed(')</pre>										
	count 3.350000e+02										
	mean 2.755400e+12										
	std 7.918501e+10										
	min 2.581573e+12										
	25% 2.771347e+12										
	50% 2.797162e+12										
	75% 2.804576e+12 max 2.819065e+12										
	Name: Disk I/O, dtype: float64 Average Disk I/O: 2755400384210.91%										
	Average Disk I/O: 2753400504210.31.6 Minimum Disk I/O: 2581573134848.00%										
	Marimum Disk 1/0: 281965878784.00%										

Figure 26: Calculating Disk I/O Performance

Figure 27: Calculating download and upload bandwidth Performance

Figure 28: Calculating Jitter Performance

5.1.2 Model Training

A. Random Forest

Figure 29: Random Forest Training Code

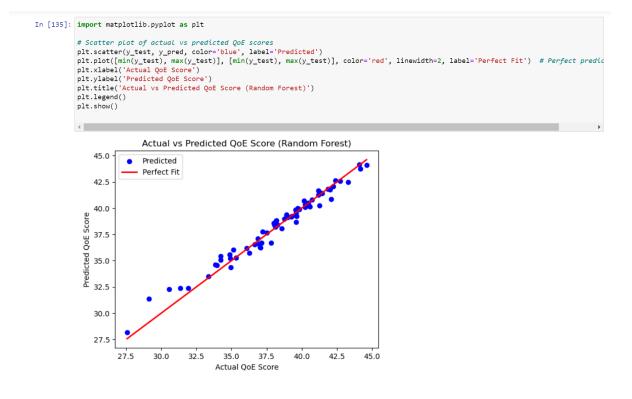
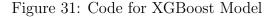



Figure 30: Plot Random Forest Model

B. Gradient Boosting Regressor : XGBoost

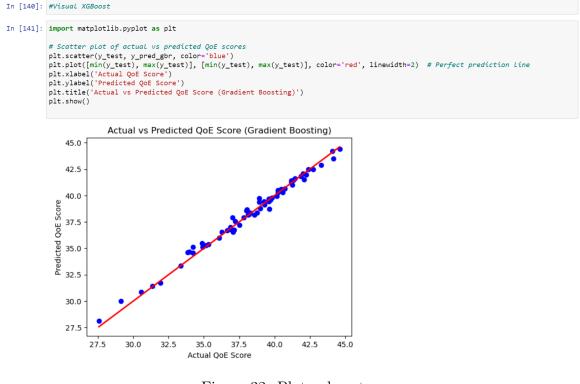
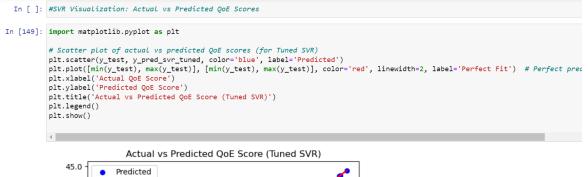


Figure 32: Plot xgboost

C. Support Vector Regression : SVR


```
In [ ]: #Training the SVR model:
In [144]: from sklearn.svm import SVR
          from sklearn.preprocessing import StandardScaler
          from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
          # Since SVR performs better when the data is scaled, we'll scale the features
          scaler = StandardScaler()
          X_train_scaled = scaler.fit_transform(X_train_imputed) # Scale the imputed training data
          X test scaled = scaler.transform(X test imputed)
                                                                  # Scale the imputed test data
          # Initialize the SVR model
          svr_model = SVR(kernel='rbf') # You can also try other kernels like 'linear' or 'poly'
          # Train the model.
          svr_model.fit(X_train_scaled, y_train)
          # Make predictions on the test set
          y_pred_svr = svr_model.predict(X_test_scaled)
          # Calculate evaluation metrics for SVR
          mse_svr = mean_squared_error(y_test, y_pred_svr)
          mae_svr = mean_absolute_error(y_test, y_pred_svr)
          rmse_svr = mean_squared_error(y_test, y_pred_svr, squared=False)
          r2_svr = r2_score(y_test, y_pred_svr)
          # Print the evaluation results for SVR
          print(f"SVR - Mean Squared Error (MSE): {mse_svr}")
          print(f"SVR - Mean Absolute Error (MAE): {mae_svr}")
          print(f"SVR - Root Mean Squared Error (RMSE): {rmse_svr}")
          print(f"SVR - R<sup>2</sup> Score: {r2_svr}")
          SVR - Mean Squared Error (MSE): 1.7721803987677869
          SVR - Mean Absolute Error (MAE): 0.7885500420066415
          SVR - Root Mean Squared Error (RMSE): 1.3312326613961163
```

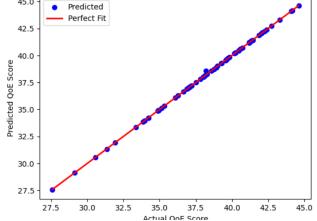

```
SVR - R<sup>2</sup> Score: 0.8579833673811527
```


Figure 34: Hypertunning SVR Model

D. Neural Network

```
In [ ]: #Train the Neural Network (MLPRegressor)
In [150]: from sklearn.neural_network import MLPRegressor
           from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
           # Initialize the Neural Network model (Multi-Layer Perceptron Regressor)
           # You can experiment with different hidden layers and neuron sizes
           nn_model = MLPRegressor(hidden_layer_sizes=(100, 50), max_iter=1000, random_state=42)
           # Train the Neural Network model
           nn_model.fit(X_train_scaled, y_train)
           # Make predictions on the test set
          y_pred_nn = nn_model.predict(X_test_scaled)
           # Calculate evaluation metrics for Neural Network
           mse_nn = mean_squared_error(y_test, y_pred_nn)
           mae_nn = mean_absolute_error(y_test, y_pred_nn)
           rmse_nn = mean_squared_error(y_test, y_pred_nn, squared=False)
           r2_nn = r2_score(y_test, y_pred_nn)
           # Print the evaluation results for Neural Network
           print(f"Neural Network - Mean Squared Error (MSE): {mse_nn}")
           print(f"Neural Network - Mean Absolute Error (MAE): {mae_nn}")
          print(f"Neural Network - Root Mean Squared Error (RMSE): {rmse_nn}")
print(f"Neural Network - R<sup>2</sup> Score: {r2_nn}")
           Neural Network - Mean Squared Error (MSE): 0.26922036638723024
           Neural Network - Mean Absolute Error (MAE): 0.3128992613871213
           Neural Network - Root Mean Squared Error (RMSE): 0.5188644971350711
           Neural Network - R<sup>2</sup> Score: 0.9784255768242832
```

Figure 36: Code for Neural Network

In [151]: import matplotlib.pyplot as plt

```
# Scatter plot of actual vs predicted QoE scores (Neural Network)
plt.scatter(y_test, y_pred_nn, color='blue', label='Predicted')
plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], color='red', linewidth=2, label='Perfect Fit')
plt.ylabel('Actual QoE Score')
plt.ylabel('Predicted QoE Score')
plt.tite('Actual vs Predicted QoE Score (Neural Network)')
plt.legend()
plt.show()
```

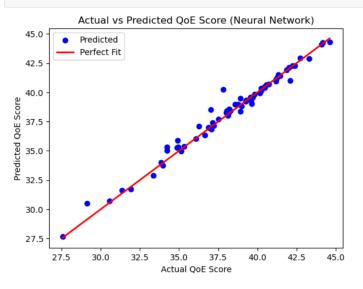


Figure 37: Visualize Neural Network

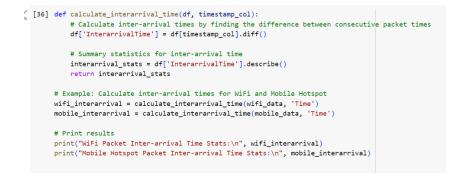
- 5.2 Dataset collected using Wire-shark : Calculating Performance Metrics using Google Colab
- 5.2.1 Calculating Performance Metrics :
- A. Average RTT and Average Jitter Calcualtion on wifi(5G) network:

```
[D] import pandas as pd
     # Load the CSV file
     wireshark_data = pd.read_csv('wireshark_network.csv', engine='python', on_bad_lihes='skip')
     # Function to calculate RTT
     def calculate_rtt(df):
        rtt_values = []
        seq_to_time = {}
        for i, row in df.iterrows():
            # Ensure 'Info' field is treated as a string
            info = str(row['Info'])
            # Capture sequence numbers and their corresponding times
            if "Seq=" in info:
               try:
                   seq_number = info.split("Seq=")[1].split()[0]
                   seq_to_time[seq_number] = float(row['Time'])
               except (IndexError, ValueError):
                   # Skip if there are issues with the parsing or conversion
                   continue
            # Match ACK numbers with their corresponding sequence numbers to calculate RTT
            if "Ack=" in info:
               try:
                   ack_number = info.split("Ack=")[1].split()[0]
                   if ack_number in seq_to_time:
                      rtt = float(row['Time']) - seq_to_time[ack_number]
                      rtt_values.append(rtt)
               except (IndexError, ValueError):
                   # Skip if there are issues with the parsing or conversion
                   continue
        return rtt values
[45] # Function to calculate Jitter
      def calculate jitter(df):
          jitter_values = []
          previous_time = None
          for i, row in df.iterrows():
              try:
                   current_time = float(row['Time'])
                   if previous_time is not None:
                        jitter = abs(current_time - previous_time)
                        jitter_values.append(jitter)
                   previous_time = current_time
               except ValueError:
                   # Skip if there are issues with time conversion
                   continue
          return jitter_values
     # Calculate RTT and Jitter
      rtt_values = calculate_rtt(wireshark_data)
     jitter_values = calculate_jitter(wireshark_data)
      # Calculate average RTT and Jitter with safe division
     average_rtt_wifi = sum(rtt_values) / len(rtt_values) if rtt_values else 0
      average_jitter_wifi = sum(jitter_values) / len(jitter_values) if jitter_values else 0
      print(f"Average RTT Wifi: {average_rtt_wifi:.6f} seconds")
     print(f"Average Jitter Wifi: {average_jitter_wifi:.6f} seconds")
Average RTT Wifi: 0.227748 seconds
     Average Jitter Wifi: 0.000063 seconds
```

Figure 38: Code to Calculate Avg RTT and jitter on 5G network dataset

B. Average RTT and Average Jitter Calcualtion on Mobile Hotspot(4G) network

```
import pandas as pd
    # Load the CSV file
    wireshark_data = pd.read_csv('wireshark_mobHotspot.csv', engine='python', on_bad_lines='skip')
    # Function to calculate RTT
    def calculate_rtt(df):
        rtt_values = []
        seq_to_time = {}
        for i, row in df.iterrows():
            # Ensure 'Info' field is treated as a string
            info = str(row['Info'])
            # Capture sequence numbers and their corresponding times
            if "Seq=" in info:
               try:
                   seq_number = info.split("Seq=")[1].split()[0]
                   seq_to_time[seq_number] = float(row['Time'])
                except (IndexError, ValueError):
                   # Skip if there are issues with the parsing or conversion
                   continue
            # Match ACK numbers with their corresponding sequence numbers to calculate RTT
            if "Ack=" in info:
                try:
                   ack_number = info.split("Ack=")[1].split()[0]
                   if ack_number in seq_to_time:
                       rtt = float(row['Time']) - seq_to_time[ack_number]
                       rtt_values.append(rtt)
                except (IndexError, ValueError):
                   # Skip if there are issues with the parsing or conversion
                   continue
        return rtt_values
    # Function to calculate Jitter
def calculate_jitter(df):
        jitter_values = []
        previous_time = None
        for i, row in df.iterrows():
             try:
                 current_time = float(row['Time'])
                 if previous_time is not None:
                     jitter = abs(current_time - previous_time)
                     jitter_values.append(jitter)
                 previous_time = current_time
             except ValueError:
                 # Skip if there are issues with time conversion
                 continue
        return jitter_values
    # Calculate RTT and Jitter
    rtt_values = calculate_rtt(wireshark_data)
    jitter_values = calculate_jitter(wireshark_data)
    # Calculate average RTT and Jitter with safe division
    average_rtt_mob = sum(rtt_values) / len(rtt_values) if rtt_values else 0
    average_jitter_mob = sum(jitter_values) / len(jitter_values) if jitter_values else 0
    print(f"Average RTT Mob: {average_rtt_mob:.6f} seconds")
    print(f"Average Jitter Mob: {average_jitter_mob:.6f} seconds")
→ Average RTT Mob: 2.121424 seconds
    Average Jitter Mob: 0.000541 seconds
```


Figure 39: ode to Calculate Avg RTT and jitter on 4G network dataset

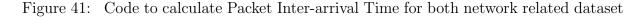

C. Throughput Calculation for both network related dataset

Figure 40: Code to Calculate throughput for both network dataset

D. Packet Inter-arrival Time Calculation for both network related dataset

E. TCP Retransmissions Calcualtion for both network related dataset

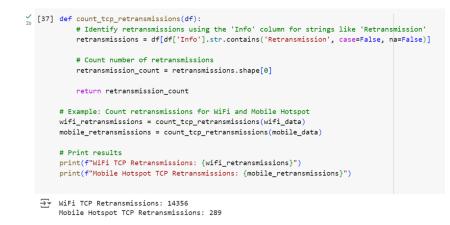


Figure 42: TCP Retransmissions Calculation for both network related dataset

F. RTT Variability (Standard Deviation) Calculation for both network related dataset

```
[39] def calculate_tcp_rtt(df):
         # Filter for TCP packets (if needed)
         tcp_packets = df[df['Protocol'] == 'TCP']
        # Filter for SYN and SYN-ACK packets
        syn_packets = tcp_packets[tcp_packets['Info'].str.contains('SYN', case=False)]
        ack_packets = tcp_packets[tcp_packets['Info'].str.contains('ACK', case=False)]
         # Ensure packets are sorted by time
        df_sorted = tcp_packets.sort_values(by='Time')
         # Create a column to store calculated RTT
        df['RTT'] = None
         # Iterate through the SYN packets and find the corresponding ACK
         for idx, syn_row in syn_packets.iterrows():
             # Find the ACK packet for the same TCP stream
             ack_row = ack_packets[ack_packets['Source'] == syn_row['Destination']]
             if not ack_row.empty:
                # Calculate RTT as the time difference between SYN and ACK
                 rtt = ack_row['Time'].values[0] - syn_row['Time']
                df.at[idx, 'RTT'] = rtt
        return df
     # Apply to your dataset
     wifi_data_with_rtt = calculate_tcp_rtt(wifi_data)
     mobile_data_with_rtt = calculate_tcp_rtt(mobile_data)
     # Now you can calculate RTT statistics
    wifi_rtt_stddev = calculate_rtt_stddev(wifi_data_with_rtt, 'RTT')
    mobile_rtt_stddev = calculate_rtt_stddev(mobile_data_with_rtt, 'RTT')
    print(f"WiFi RTT Standard Deviation: {wifi_rtt_stddev:.4f} seconds")
    print(f"Mobile Hotspot RTT Standard Deviation: {mobile_rtt_stddev:.4f} seconds")
→ WiFi RTT Standard Deviation: 25.1514 seconds
```

Mobile Hotspot RTT Standard Deviation: 25.1514 seconds

Figure 43: RTT Variability (Standard Deviation) Calculation for both network related dataset

5.2.2 Visualization for all the metrics calculated above for Network Dataset

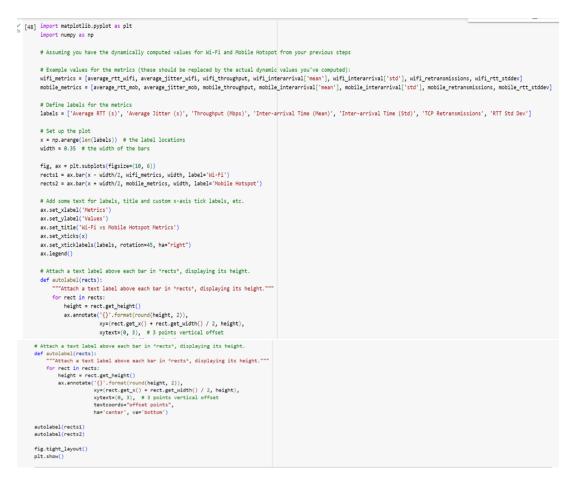


Figure 44: Code for Visualization for all the metrics calculated above for Network Dataset

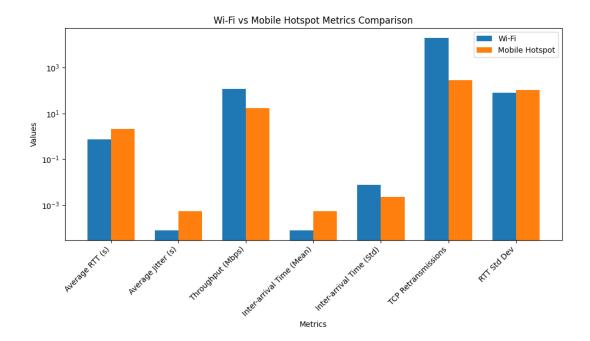


Figure 45: Graph of visualization

6 Processing Dataset and Model Training on Combined Dataset

6.1 Processing Dataset and calculating performance metrics

This research have tow combined dataset as follow:

- Wifi-combined : Game-Metrics Dataset + Wireshark-Network(5G) Dataset
- Mobile-combined : Game-Metrics Dataset + Wireshark-MobHotspot(4G) Dataset

6.1.1 Read Dataset

In [122]:	#Read Dataset									
In [123]:	import pandas as pd import boto3 from io import StringIO									
	<pre># Initialize 53 client s3_client = boto3.client('s3')</pre>									
	<pre># Define S3 bucket names and file paths network_metrics_bucket = 'fortnite=3-bucket' wifi_file = 'wireshark_mobHotspot.csv' mobile_file = 'wireshark_mobHotspot.csv'</pre>									
	<pre># Function to read CSV from S3 def read_s3_cs(v[bucket, file):</pre>									
	# Step 1: Read the Wi-Fi and Mobile Hotspot datasets wifi_data = read_s3_csv(network_metrics_bucket, wifi_file) moli_data = read_s3_csv(network_metrics_bucket, mobile_file)									
	# Step 2: Check the first few rows of the datasets to see if they differ print("Wi-Fi Dataset Mead:") print(wifi_data.mead())									
	<pre>print("\nMobile Hotspot Dataset Head:") print(mobile_data.head())</pre>									
	<pre># Step 3: Check if the datasets are identical if wifi_data.equals(mobile_data): print("\nThe Wi-Fi and Mobile Hotspot datasets are identical.") else: print("\nThe Wi-Fi and Mobile Hotspot datasets are NOT identical.")</pre>									

Figure 46: Code to load both dataset

Wi	-Fi D	atase	et Head	d:								
	No.		Time							S	ource `	\
0	1	0.00	99999					2001	:7c8:c	5:c0	0a::2	
1	2	0.00	99999					2001	:7c8:c	5:c0	0a::2	
2	3	0.00	99999					2001	:7c8:c	5:c0	0a::2	
3	4	0.00	99999					2001	:7c8:c	5:c0	0a::2	
4	5	0.00	90012	2a02:	8084:	20c2	:5780	:2def	:7b7d::	1c79	:b8bf	
						D	estin	ation	Proto	col	Length	\
0	2a02	: 8084	4:20c2	:5780:	2def:					ТСР	74	`
1	2a02	: 8084	4:20c2	:5780:	2def:	7b7d	:1c79	:b8bf		тср	74	
2	2a02	: 8084	4:20c2	:5780:	2def:	7b7d	:1c79	:b8bf	-	ТСР	74	
3	2a02	: 8084	4:20c2	:5780:	2def:	7b7d	:1c79	:b8bf	-	тср	74	
4				:	2001:	7c8:	c5:c0	0a::2		ТСР	1066	
										Info		
0	80	80 3	> 2010	97 [AC	K] Sed	a=1	Ack=1	Win=0	5506 Le	en=0		
1	80	80 3	> 2010	03 TACI	KÎ Sed	a=1	Ack=1	Win=9	9910 Le	en=0		
2	8080	>	20103	[ACK]	Sea=:	L Ac	k=144	1 Win=	=9933	L		
3	8080	>		[ACK]								
4	2010	7 >		[PSH,								
				- /	-							

Figure 47: Wifi(5G) Dataset Head(first few rows from dataset)

Мо	bile	Hot	spot D	ataset He	ad:				
	No.		Time		Source	Destinatior	Protocol	Length	\
0	1	0.	999999	74.125.	193.100	192.168.86.242	UDP	70	
1	2	0.	999999	74.125.	193.100	192.168.86.242	UDP	69	
2	3	0.	999999	74.125.	193.100	192.168.86.242	UDP	70	
3	4	0.	000164	74.125.	193.100	192.168.86.242	UDP	70	
4	5	0.	900270	192.168	3.86.242	74.125.193.100	UDP	1292	
				Info)				
0	44	3	> 580	48 Len=28	3				
1	44	3	> 580	48 Len=27	7				
2	44	3	> 580	48 Len=28	3				
3	44	3	> 580	48 Len=28	3				
4	5804	8	> 443	Len=1256	9				

Figure 48: Mobile(4G) Dataset Head(first few rows from dataset)

In [124]:	<pre>print('game_metrics') print(game_metrics.head()) print(game_metrics['Iime'].describe()) print('wifiData time descirbe') print(wifi_data['Iime'].describe()) print('mobData time descirbe') print(mobile_data['Iime'].describe())</pre>												
	game metrics												
	Same_me		Time CPU	lleado	Memory Usa		1 116 2 7 6	Network Latency	\				
	0 2024-	08-13 21:3		4.7	93.		23.0	12.349606	(
		08-13 21:3		5.9	93.		43.0						
	2 2024-	08-13 21:3	6:08	1.2	94.		44.0						
	3 2024-	08-13 21:3	6:52	2.6	94.	2	23.0	12.058258					
	4 2024-	08-13 21:3	7:21	6.0	93.	6	24.0	13.025284					
		Disk I/O	Jitter	Downl	oad Bandwidt	h Upl	oad Ban	dwidth					
	0 2581	573134848	1.333475		567.57935	56	49.	733278					
	1 2581	912073728	2.987087		331.06736	6	49.	434823					
	2 2582	229181952	1.558423		522.44639	90	49.	794932					
		377055232			494.31862		49.	976185					
	4 2582	576309760	3.298640		191.83890	99	50.	464365					
	count				335								
	mean	2024-08-	14 15:21:1										
	min		2024-08-										
	25%		2024-08-	- · - · ·									
	50%		2024-08-										
	75%		2024-08-										
	max		2024-08-	14 21:	33:03								
		'ime, dtype a time des											
	count	a time des 8.147494											
	mean												
	std	1.410971											
	sta min	0.000000											
	25%	1.300070											
	25% 50%	4.024866											
	75%	2.050613											
	max	5.023966											
		ime. dtvpe											
			100.004										

Figure 49: code to load game metrics dataset and its output

6.1.2 Combine wifi (5G) and Mobile(4G) Dataset with Game metrics

Figure 50: Code to Merge dataset

Figure 51: Code to display Merged Dataset

6.1.3 Check Missing Values

Figure 52: Check Missing Values

6.1.4 Let's examine how different metrics correlate with each other in both datasets. This will help us identify potential relationships between variables.

Figure 53: Check Correlation between different Metrics

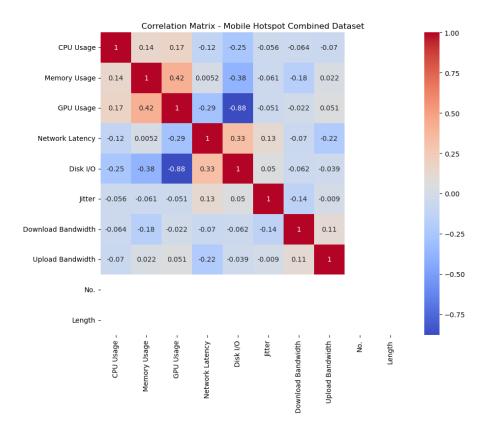


Figure 55: Correlation Matrix for 4G combined dataset

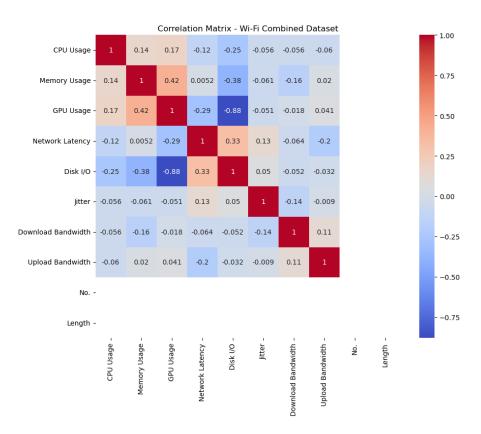


Figure 54: Correlation Matrix for wifi combined Dataset

6.1.5 Plot all Performance Metric graph for Wifi(5G) vs Mobile(4G) Network

```
In [137]: import matplotlib.pyplot as plt
           import seaborn as sns
            # Define the figure size and subplots (5 rows, 2 columns)
           fig, axes = plt.subplots(5, 2, figsize=(14, 18))
           # Plot 1: CPU Usage for Wi-Fi and Mobile Hotspot
           sns.histplot(wifi_combined['CPU Usage'], kde=True, bins=30, ax=axes[0, 0])
           axes[0, 0].set_title('CPU Usage - Wi-Fi')
           sns.histplot(mobile_combined['CPU Usage'], kde=True, bins=30, ax=axes[0, 1])
           axes[0, 1].set_title('CPU Usage - Mobile Hotspot')
           # Plot 2: Memory Usage for Wi-Fi and Mobile Hotspot
           sns.histplot(wifi_combined['Memory Usage'], kde=True, bins=30, ax=axes[1, 0])
           axes[1, 0].set_title('Memory Usage - Wi-Fi')
           sns.histplot(mobile_combined['Memory Usage'], kde=True, bins=30, ax=axes[1, 1])
axes[1, 1].set_title('Memory Usage - Mobile Hotspot')
           # Plot 3: GPU Usage for Wi-Fi and Mobile Hotspot
           sns.histplot(wifi_combined['GPU Usage'], kde=True, bins=30, ax=axes[2, 0])
axes[2, 0].set_title('GPU Usage - Wi-Fi')
           sns.histplot(mobile_combined['GPU Usage'], kde=True, bins=30, ax=axes[2, 1])
           axes[2, 1].set_title('GPU Usage - Mobile Hotspot')
           # Plot 4: Network Latency for Wi-Fi and Mobile Hotspot
           sns.histplot(wifi_combined['Network Latency'], kde=True, bins=30, ax=axes[3, 0])
axes[3, 0].set_title('Network Latency - Wi-Fi')
sns.histplot(mobile_combined['Network Latency'], kde=True, bins=30, ax=axes[3, 1])
           axes[3, 1].set_title('Network Latency - Mobile Hotspot')
           # Plot 5: Jitter for Wi-Fi and Mobile Hotspot
           sns.histplot(wifi_combined['Jitter'], kde=True, bins=30, ax=axes[4, 0])
           axes[4, 0].set_title('Jitter - Wi-Fi')
           sns.histplot(mobile_combined['Jitter'], kde=True, bins=30, ax=axes[4, 1])
           axes[4, 1].set_title('Jitter - Mobile Hotspot')
            # Adjust Layout to avoid overlapping
           plt.tight_layout()
            # Show the plot
           plt.show()
```

Figure 56: Wifi(5G) vs Mobile(4G) Network Performance Metrics

6.1.6 Feature Scaling and Create new features.

Figure 57: Feature Scaling and creating new features

```
In [144]: #correlations between these newly created features
In [145]: import seaborn as sns
          import matplotlib.pyplot as plt
          # Plot the distribution of the new features for Wi-Fi dataset
          plt.figure(figsize=(14, 8))
          plt.subplot(2, 2, 1)
sns.histplot(wifi_combined_scaled['Network Efficiency'], kde=True, bins=30)
          plt.title('Network Efficiency - Wi-Fi')
          plt.subplot(2, 2, 2)
           sns.histplot(wifi_combined_scaled['Latency to Jitter'], kde=True, bins=30)
          plt.title('Latency to Jitter - Wi-Fi')
          plt.subplot(2, 2, 3)
          sns.histplot(wifi_combined_scaled['Resource to Performance'], kde=True, bins=30)
plt.title('Resource to Performance - Wi-Fi')
          plt.tight lavout()
          plt.show()
          # Now, do the same for the Mobile Hotspot dataset
          plt.figure(figsize=(14, 8))
          plt.subplot(2, 2, 1)
           sns.histplot(mobile_combined_scaled['Network Efficiency'], kde=True, bins=30)
          plt.title('Network Efficiency - Mobile Hotspot')
          plt.subplot(2, 2, 2)
sns.histplot(mobile_combined_scaled['Latency to Jitter'], kde=True, bins=30)
          plt.title('Latency to Jitter - Mobile Hotspot')
          plt.subplot(2, 2, 3)
           sns.histplot(mobile_combined_scaled['Resource to Performance'], kde=True, bins=30)
          plt.title('Resource to Performance - Mobile Hotspot')
          plt.tight_layout()
          plt.show()
```

Figure 58: Correlation between newly created features

6.2 Model Training

6.2.1 Random Forest

```
In [148]: #1. Random Forest
In [149]: import pandas as pd
                import numpy as np
                import boto3
                 from io import StringIO
                from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
                from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from sklearn.preprocessing import StandardScaler
               # Initialize S3 client
s3_client = boto3.client('s3')
                 # Define S3 bucket and file paths
                bucket_name = 'fortnite-s3-bucket'
wifi_file = 'combined_wifi_game_metrics.csv'
mobile_file = 'combined_mobile_game_metrics.csv'
                 # Function to read CSV file from S3
                def read_s3_csv(bucket, file):
    obj = s3_client.get_object(Bucket=bucket, Key=file)
    data = obj['Body'].read().decode('utf-8')
    return pd.read_csv(StringIO(data))
                 # Step 1: Load both combined datasets from S3 (Wi-Fi and Mobile Hotspot)
                wifi_combined = read_s3_csv(bucket_name, wifi_file)
mobile_combined = read_s3_csv(bucket_name, mobile_file)
                # Step 2: Handle NaN values in numeric columns only
                numeric_cols_wifi = wifi_combined.select_dtypes(include=[np.number]).columns
numeric_cols_mobile = mobile_combined.select_dtypes(include=[np.number]).columns
                wifi_combined[numeric_cols_wifi] = wifi_combined[numeric_cols_wifi].fillna(wifi_combined[numeric_cols_wifi].mean())
mobile_combined[numeric_cols_mobile] = mobile_combined[numeric_cols_mobile].fillna(mobile_combined[numeric_cols_mobile].mean())
                                Prepare features (X) and target (y)
                 # Step 3:
                target column
                                           'Network Latency
                features = [col for col in numeric_cols_wifi if col != target_column]
               X_wifi, y_wifi = wifi_combined[features], wifi_combined[target_column]
X_mobile, y_mobile = mobile_combined[features], mobile_combined[target_column]
               X_train_wifi, X_test_wifi, y_train_wifi, y_test_wifi = train_test_split(X_wifi, y_wifi, test_size=0.2, random_state=42)
X_train_mobile, X_test_mobile, y_train_mobile, y_test_mobile = train_test_split(X_mobile, y_mobile, test_size=0.2, random_state=4
               # Step 4: Scale the features
scaler = StandardScaler()
               X_train_wifi = scaler.fit_transform(X_train_wifi)
X_test_wifi = scaler.transform(X_test_wifi)
               X_train_mobile = scaler.fit_transform(X_train_mobile)
X_test_mobile = scaler.transform(X_test_mobile)
               # Step 5: Train Random Forest Model
random_forest = RandomForestRegressor(n_estimators=100, random_state=42)
                # Train on Wi-Fi data
               random_forest.fit(X_train_wifi, y_train_wifi)
y_pred_wifi = random_forest.predict(X_test_wifi)
               # Calculate metrics for Wi-Fi
mse_wifi = mean_squared_error(y_test_wifi, y_pred_wifi)
mae_wifi = mean_absolute_error(y_test_wifi, y_pred_wifi)
rmse_wifi = np.sqrt(mse_wifi)
               r2_wifi = r2_score(y_test_wifi, y_pred_wifi)
               print(f"Wi-Fi Random Forest Results: MSE: {mse_wifi:.4f}, MAE: {mae_wifi:.4f}, RMSE: {rmse_wifi:.4f}, R2: {r2_wifi:.4f}")
               # Train on Mobile Hotspot data
               random_forest.fit(X_train_mobile, y_train_mobile)
y_pred_mobile = random_forest.predict(X_test_mobile)
                # Calculate metrics for Mobile Hotspot
               mse_mobile = mean_squared_error(y_test_mobile, y_pred_mobile)
mae_mobile = mean_absolute_error(y_test_mobile, y_pred_mobile)
rmse_mobile = np.sqrt(mse_mobile)
               r2_mobile = r2_score(y_test_mobile, y_pred_mobile)
               print(f"Mobile Hotspot Random Forest Results: MSE: {mse_mobile:.4f}, MAE: {mae_mobile:.4f}, RMSE: {rmse_mobile:.4f}, R2: {r2_mobile:.4f}
```

Figure 59: Training Random Forest Model

6.2.2 XGBoost Model Training

```
In [169]: #XGBoost Model
 In [170]: import xgboost as xgb
               from sklearn.model_selection import GridSearchCV
              from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
              import matplotlib.pyplot as plt
               # Step 1: Initialize the XGBoost model
              xgb_model = xgb.XGBRegressor(objective='reg:squarederror', random_state=42)
               # Step 2: Define the parameter grid for GridSearchCV
               param_grid = {
                    'n_estimators': [100, 200, 300],
                   'max_depth': [3, 6, 9],
'learning_rate': [0.01, 0.1, 0.2],
                    'subsample': [0.7, 0.8, 1.0],
'colsample_bytree': [0.7, 0.8, 1.0],
                    'gamma': [0, 0.1, 0.2]
              }
               # Step 3: Perform GridSearchCV
              grid_search_xgb = GridSearchCV(estimator=xgb_model, param_grid=param_grid,
                                                     scoring='neg_mean_squared_error', cv=3, verbose=1)
               # Fit the model on the Wi-Fi dataset
              grid_search_xgb.fit(X_train_wifi_scaled, y_train_wifi)
               # Step 4: Best parameters and model
              best_params_xgb = grid_search_xgb.best_params_
              best_xgb_wifi = grid_search_xgb.best_estimator_
               # Step 5: Predict on the test data
              y_pred_wifi_xgb = best_xgb_wifi.predict(X_test_wifi_scaled)
              # Step 6: Evaluate the model
              mse_wifi_xgb = mean_squared_error(y_test_wifi, y_pred_wifi_xgb)
              mae_wifi_xgb = mean_absolute_error(y_test_wifi, y_pred_wifi_xgb)
               rmse_wifi_xgb = mse_wifi_xgb ** 0.5
              r2_wifi_xgb = r2_score(y_test_wifi, y_pred_wifi_xgb)
In [171]: # Print the results
         print(f"Best Hyperparameters for Wi-Fi dataset (XGBoost): {best_params_xgb}")
print(f"Wi-Fi XGBoost Results: MSE: {mse_wifi_xgb:.4f}, MAE: {mae_wifi_xgb:.4f}, RMSE: {rmse_wifi_xgb:.4f}, R2: {r2_wifi_xgb:.4f}
          # Step 7: Plot feature importances
         importances_xgb = best_xgb_wifi.feature_importances_
feature_importances_xgb = pd.Series(importances_xgb, index=X_train_wifi.columns)
feature_importances_xgb.sort_values(ascending=False).plot(kind='bar', figsize=(10, 6))
          plt.title("XGBoost Feature Importance - Wi-Fi Dataset")
         plt.show()
         .
          Best Hyperparameters for Wi-Fi dataset (XGBoost): {'colsample_bytree': 1.0, 'gamma': 0, 'learning_rate': 0.1, 'max_depth': 9,
         'n_estimators': 200, 'subsample': 0.7}
Wi-Fi XGBoost Results: MSE: 85.2439, MAE: 4.1361, RMSE: 9.2328, R2: -0.3435
```

Figure 60: Training XGBoost Model

A. Further tuning of the XGBoost model by adjusting the parameter grid and focusing on more fine-grained control over the parameters

```
In [172]: import xgboost as xgb
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score

                   # Step 1: Initialize the XGBoost model
xgb_model = xgb.XGBRegressor(objective='reg:squarederror', random_state=42)
                   # Step 2: Define the refined parameter grid for GridSearchCV
                  # Step 2: Define the refined parameter grid for GridS
param_grid = {
    'n_estimators': [100, 200, 300],
    'max_depth': [6, 9, 12],
    'learning_rate': [0.01, 0.05, 0.1],
    'subsample': [0.7, 0.9, 1.0],
    'colsample_bytree': [0.7, 1.0],
    'gamma': [0, 0.1, 0.2],
    'min_child_weight': [1, 5, 10],
    'reg_alpha': [0, 0.01, 0.1] # L1 regularization
}
                   }
                   # Step 3: Perform GridSearchCV
grid_search_xgb = GridSearchCV(estimator=xgb_model, param_grid=param_grid,
                                                                            scoring='neg_mean_squared_error', cv=3, verbose=1, n_jobs=-1)
                   # Fit the model on the Wi-Fi dataset
                   grid_search_xgb.fit(X_train_wifi_scaled, y_train_wifi)
                   # Step 4: Best parameters and model
                   best_params_xgb = grid_search_xgb.best_params_
best_xgb_wifi = grid_search_xgb.best_estimator_
                    # Step 5: Predict on the test data
                   y_pred_wifi_xgb = best_xgb_wifi.predict(X_test_wifi_scaled)
                   # Step 6: Evaluate the model
                   # Step 6. Evolute the model
mse_wifi_xgb = mean_squared_error(y_test_wifi, y_pred_wifi_xgb)
mse_wifi_xgb = mean_absolute_error(y_test_wifi, y_pred_wifi_xgb)
rmse_wifi_xgb = mse_wifi_xgb ** 0.5
                   r2_wifi_xgb = r2_score(y_test_wifi, y_pred_wifi_xgb)
                   # Print the results
                  print("Best Hyperparameters for Wi-Fi dataset (XGBoost): {best_params_xgb}")
print(f"Wi-Fi XGBoost Results after further tuning: MSE: {mse_wifi_xgb:.4f}, MAE: {mae_wifi_xgb:.4f}, RMSE: {rmse_wifi_xgb:.4f},
                   # Step 7: Plot feature importances
                  # Step /: PLOT Feature importances
importances_xgb = best_xgb_wifi.feature_importances_
feature_importances_xgb = pd.Series(importances_xgb, index=X_train_wifi.columns)
feature_importances_xgb.sort_values(ascending=False).plot(kind='bar', figsize=(10, 6))
plt.title("XGBoost Feature Importance - Wi-Fi Dataset (After Further Tuning)")
                   plt.show()
```

Figure 61: Tunned XGBoost : Applying GridSearchCV

6.2.3 Support Vector Regression (SVR) using paratmer grid

```
In [175]: from sklearn.svm import SVR
from sklearn.model_selection import GridSearchCV
                  from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
                 # Step 1: Define a pipeline with StandardScaler and SVR
pipe_svr = Pipeline([
    ('scaler', StandardScaler()), # Scaling is essential for SVR
    ('svr', SVR())
                  1)
                  # Step 2: Define parameter grid for tuning SVR
                 # step 2: Define purameter grid jor tuning svi
param_grid_svr = {
    'svr_kernel': ['linear', 'rbf', 'poly'], # Different kernel types
    'svr_C': [0.1, 1, 10, 100], # Regularization parameter
    'svr_epsilon': [0.01, 0.1, 0.2], # Epsilon for margin of error
    'svr_gamma': ['scale', 'auto'] # Kernel coefficient for 'rbf' and 'poly'
                  }
                 # Step 4: Fit the model on the Wi-Fi dataset
                 grid_search_svr.fit(X_train_wifi_scaled, y_train_wifi)
                  # Step 5: Get the best model and predict on the test data
                 best_svr = grid_search_svr.best_estimator_
y_pred_wifi_svr = best_svr.predict(X_test_wifi_scaled)
                  # Step 6: Evaluate the model
                 # Step 6: Evaluate the model
mse_wifi_svr = mean_squared_error(y_test_wifi, y_pred_wifi_svr)
mae_wifi_svr = mean_absolute_error(y_test_wifi, y_pred_wifi_svr)
rmse_wifi_svr = mse_wifi_svr ** 0.5
r2_wifi_svr = r2_score(y_test_wifi, y_pred_wifi_svr)
                  # Print the results
                  print(f"Best Hyperparameters for Wi-Fi dataset (SVR): {grid_search_svr.best_params_}")
print(f"Wi-Fi SVR Results: MSE: {mse_wifi_svr:.4f}, MAE: {mae_wifi_svr:.4f}, RMSE: {rmse_wifi_svr:.4f}, R2: {r2_wifi_svr:.4f}")
```

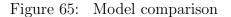
Figure 62: SVR Model Training

6.2.4 Neural Network

```
In [ ]: #Neural Network
In [66]: # Import required Libraries
               from tensorflow.keras.models import Sequential
               from tensorflow.keras.layers import Dense, Dropout
from tensorflow.keras.optimizers import Adam
               from tensorflow.keras.regularizers import 12
from tensorflow.keras.callbacks import EarlyStopping
               from sklearn.preprocessing import StandardSCaler
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
               import numpy as np
               import matplotlib.pyplot as plt
              # Step 1: Create the neural network model with Dropout and L2 regularization
def create_nn_model(input_dim):
    model = Sequential()
                     model = Sequential()
# Input Layer + first hidden Layer
model.add(Dense(64, input_dim=input_dim, activation='relu', kernel_regularizer=12(0.01)))
model.add(Dropout(0.2)) # Dropout Layer to prevent overfitting
                      # Second hidden Layer
                    model.add(Dense(32, activation='relu', kernel_regularizer=12(0.01)))
model.add(Dropout(0.2)) # Dropout Layer to prevent overfitting
# Output Layer for regression
model.add(Dense(1))
                     # Step 2: Compile the model with a reduced learning rate
model.compile(optimizer=Adam(learning_rate=0.0001), loss='mean_squared_error', metrics=['mae'])
                     return model
               # Step 3: Scale the data (Neural networks perform better with scaled input)
               scaler = StandardScaler()
              X_train_wifi_scaled = scaler.fit_transform(X_train_wifi)
X_test_wifi_scaled = scaler.transform(X_test_wifi)
               # Step 4: Create and train the model
              input_dim = X_train_wifi_scaled.shape[1]
model_nn = create_nn_model(input_dim)
              # Step 5: Implement early stopping to prevent overfitting
early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)
              # Step 5: Implement early stopping to prevent overfitting
early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)
               # Train the model with early stopping
              epochs=100,
batch_size=32,
                                                    verbose=1.
                                                    callbacks=[early_stopping])
             # Step 6: Predict on the test data
y_pred_wifi_nn = model_nn.predict(X_test_wifi_scaled)
                         7: Evaluate the model
              mse_wifi_nn = mean_squared_error(y_test_wifi, y_pred_wifi_nn)
mae_wifi_nn = mean_absolute_error(y_test_wifi, y_pred_wifi_nn)
rmse_wifi_nn = np.sqrt(mse_wifi_nn)
              r2_wifi_nn = r2_score(y_test_wifi, y_pred_wifi_nn)
             # Print results
print(f"Wi-Fi Neural Network Results: MSE: {mse_wifi_nn:.4f}, MAE: {mae_wifi_nn:.4f}, RMSE: {rmse_wifi_nn:.4f}, R2: {r2_wifi_nn:
             # Step 8: PLotting the training Loss and validation Loss
plt.plot(history.history['loss'], label='Train Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')
plt.title('Model Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
nlt lagend()
              plt.legend()
              plt.show()
             # Step 9: Plotting the training MAE and validation MAE
plt.plot(history.history['mae'], label='Train MAE')
plt.plot(history.history['val_mae'], label='Validation MAE')
plt.tile('Mean Absolute Error')
plt.xlabel('Epoch')
              plt.ylabel('MAE')
plt.legend()
              plt.show()
```

Figure 63: Neural Network Model Training

A. Adding more layer to tune Neural Network for improving model's accuracy


```
In [183]: # Import required Libraries
from tensorflow.keras.models import Sequential
                  from tensorflow.keras.layers import Dense, Dropout
                  from tensorflow.keras.optimizers import Adam
                  from tensorflow.keras.regularizers import 12
                  from tensorflow.keras.callbacks import EarlyStopping
from sklearn.preprocessing import StandardScaler
                  from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
                  import numpy as np
                  import matplotlib.pyplot as plt
                  # Step 1: Create a neural network model with more layers, Dropout, and L2 regularization
                  # Step 1: Create a neural network model with more layers, bropout, and L2 regularization
def create_deep_nn_model(input_dim):
    model = Sequential()
    # Input layer + first hidden layer
    model.add(Dense(128, input_dim=input_dim, activation='relu', kernel_regularizer=12(0.01)))
    relu' dd(Dense(128, input_dim=input_dim, activation='relu', kernel_regularizer=12(0.01)))

                         model.add(Dropout(0.3)) # Dropout Layer to prevent overfitting
                        model.add(Dropout(0.3)) # Dropout Layer to prevent overfitting
# Second hidden Layer
model.add(Dense(64, activation='relu', kernel_regularizer=12(0.01)))
model.add(Dropout(0.3)) # Dropout Layer to prevent overfitting
# Third hidden Layer
                         model.add(Dense(32, activation='relu', kernel_regularizer=12(0.01)))
model.add(Dropout(0.2)) # Dropout Layer to prevent overfitting
                         # Fourth hidden Layer
                        model.add(Dense(16, activation='relu', kernel_regularizer=12(0.01)))
model.add(Dropout(0.2)) # Dropout Layer to prevent overfitting
                        # Output Layer for regression
model.add(Dense(1))
                        # Step 2: Compile the model with a reduced learning rate
model.compile(optimizer=Adam(learning_rate=0.0001), loss='mean_squared_error', metrics=['mae'])
                         return model
                  # Step 3: Scale the data (Neural networks perform better with scaled input)
                  scaler = StandardScaler()
X_train_wifi_scaled = scaler.fit_transform(X_train_wifi)
X_test_wifi_scaled = scaler.transform(X_test_wifi)
                  # Step 4: Create and train the model
                  input_dim = X_train_wifi_scaled.shape[1]
                  model_nn = create_deep_nn_model(input_dim)
                  # Step 5: Implement early stopping to prevent overfitting
early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)
                  # Train the model with early stopping
history = model_nn.fit(X_train_wifi_scaled, y_train_wifi,
                                                         validation_split=0.2,
                                                          epochs=150,
                                                         batch_size=32,
                                                         verbose=1,
callbacks=[early_stopping])
                  # Step 6: Predict on the test data
                  y_pred_wifi_nn = model_nn.predict(X_test_wifi_scaled)
                  # Step 7: Evaluate the model
                  # Step /: Evaluate the model
mse_wifi_nn = mean_squared_error(y_test_wifi, y_pred_wifi_nn)
mae_wifi_nn = mean_absolute_error(y_test_wifi, y_pred_wifi_nn)
rmse_wifi_nn = np.sqrt(mse_wifi_nn)
r2_wifi_nn = r2_score(y_test_wifi, y_pred_wifi_nn)
                  # Print results
print(f"Wi-Fi Neural Network Results (with more layers): MSE: {mse_wifi_nn:.4f}, MAE: {mae_wifi_nn:.4f}, RMSE: {rmse_wifi_nn:.4f}
                  # Step 8: Plotting the training loss and validation loss
plt.plot(history.history['loss'], label='Train Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')
                  plt.title('Model Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
                  plt.legend()
                  plt.show()
                  # Step 9: Plotting the training MAE and validation MAE
plt.plot(history.history['mae'], label='Train MAE')
plt.plot(history.history['val_mae'], label='Validation MAE')
plt.title('Mean Absolute Error')
                  plt.xlabel('Epoch')
plt.ylabel('MAE')
```

Figure 64: Adding more layer to tune Neural Network for improving model's accuracy

6.2.5 Comparing all the trained Model

```
In [191]: import matplotlib.pyplot as plt
                                                 import seaborn as sns
import pandas as pd
                                                # Data for model comparison
model_data = {
    'Model': ['Random Forest', 'SVR (Refined)', 'XGBoost', 'Neural Network', 'Complex Neural Network'],
    'MsE': [18.3747, 30.9906, 86.8246, 29.2626, 26.2754],
    'MAE': [2.9667, 4.0076, 4.0761, 3.8804, 3.4884],
    'RMSE': [4.2866, 5.5669, 9.3180, 5.4095, 5.1260],
    'NdE': [2.0407, 2004, 0.9164, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407, 0.0407,
                                                                  'R<sup>2</sup> Score': [0.7104, 0.5116, -0.3685, 0.5388, 0.5859]
                                                }
                                                # Create a DataFrame
df = pd.DataFrame(model_data)
                                                # Set the figure size
plt.figure(figsize=(12, 8))
                                                # PLot MSE, MAE, RMSE, and R<sup>2</sup> in subplots
fig, axs = plt.subplots(2, 2, figsize=(14, 10))
                                                 # PLot MSE
                                                sns.barplot(x='Model', y='MSE', data=df, ax=axs[0, 0])
axs[0, 0].set_title('Mean Squared Error (MSE)')
axs[0, 0].tick_params(axis='x', rotation=45)
                                                 # PLot MAE
                                                sns.barplot(x='Model', y='MAE', data=df, ax=axs[0, 1])
axs[0, 1].set_title('Mean Absolute Error (MAE)')
axs[0, 1].tick_params(axis='x', rotation=45)
                                                 # PLot RMSE
                                                # PLOT NMSE
sns.barplot(x='Model', y='RMSE', data=df, ax=axs[1, 0])
axs[1, 0].set_title('Root Mean Squared Error (RMSE)')
axs[1, 0].tick_params(axis='x', rotation=45)
                                               # Plot R<sup>2</sup> Score
sns.barplot(x='Model', y='R<sup>2</sup> Score', data=df, ax=axs[1, 1])
axs[1, 1].set_title('R<sup>2</sup> Score')
axs[1, 1].tick_params(axis='x', rotation=45)
                                   # Adjust Layout
plt.tight_layout()
                                    # Show the plots
                                    plt.show()
```


6.3 Changing Target variable to Jitter

6.3.1 Training all models with new target variable jitter

```
In [198]: from sklearn.ensemble import RandomForestRegressor
                from sklearn.svm import SVR
               from xgboost import XGBRegressor
from xsbearn.metrics import mean_squared_error, mean_absolute_error, r2_score
               from sklearn.model_selection import train_test_split, cross_val_score
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout
               from tensorflow.keras.optimizers import Adam
from sklearn.preprocessing import StandardScaler
               # Step 1: Set 'Jitter' as the target variable (from previous step)
X_wifi = wifi_combined.drop(['Jitter', 'Time'], axis=1) # Dropping Jitter (target) and Time (for now)
               y_wifi = wifi_combined['Jitter']
               # Step 2: Train-test split
               X_train_wifi, X_test_wifi, y_train_wifi, y_test_wifi = train_test_split(X_wifi, y_wifi, test_size=0.2, random_state=42)
                # Step 3: Standardize the data (For SVR and Neural Network)
acclum = Standardize()
                           = StandardScaler()
               X_train_wifi_scaled = scaler.fit_transform(X_train_wifi)
X_test_wifi_scaled = scaler.transform(X_test_wifi)
               # Step 4: Define evaluation function to store results
                model_performance = pd.DataFrame(columns=['Model',
                                                                                             'MSE', 'MAE', 'RMSE', 'R<sup>2</sup> Score', 'Cross-Validated R<sup>2</sup>'])
              def store_results(model_name, y_true, y_pred, model, X_train, y_train):
    mse = mean_squared_error(y_true, y_pred)
    mae = mean_absolute_error(y_true, y_pred)
    rmse = mse ** 0.5
                     r2 = r2_score(y_true, y_pred)
                    # Perform cross-validation to calculate the cross-validated R<sup>2</sup> score
cross_val_r2 = cross_val_score(model, X_train, y_train, cv=5, scoring='r2').mean() if model else 'Not applicable'
                     # Store the results in the DataFrame
model_performance.loc[len(model_performance)] = [model_name, mse, mae, rmse, r2, cross_val_r2]
               # Step 5: Train models
                # Random Forest
               def train_random_forest(X_train, y_train, X_test, y_test):
    rf = RandomForestRegressor(n_estimators=100, random_state=42)
                      rf.fit(X_train, y_train)
y_pred = rf.predict(X_test)
                      store_results('Random Forest', y_test, y_pred, rf, X_train, y_train)
                # SVR
                def train_svr(X_train, y_train, X_test, y_test):
    svr = SVR(kernel='rbf', C=100, epsilon=0.2, gamma='auto')
                      svr.fit(X_train, y_train)
y_pred = svr.predict(X_test)
                      store_results('SVR', y_test, y_pred, svr, X_train, y_train)
                # XGBoost
                def train_xgboost(X_train, y_train, X_test, y_test):
                     xgb_model = XGBRegressor(objective='reg:squarederror', random_state=42)
xgb_model.fit(X_train, y_train)
                      v pred = xgb model.predict(X test)
                      store_results('XGBoost', y_test, y_pred, xgb_model, X_train, y_train)
                # Neural Network
               # Neural Network
def create_nn_model(input_dim):
    model = Sequential()
    model.add(Dense(64, input_dim=input_dim, activation='relu'))
    model.add(Dropout(0.3))
                     model.add(Dense(32, activation='relu'))
model.add(Dense(1)) # Output Layer
                      model.compile(optimizer=Adam(learning_rate=0.001), loss='mean_squared_error', metrics=['mae'])
                      return model
                def train_neural_network(X_train, y_train, X_test, y_test):
                     input_dim = X_train.shape[]
model_nn = create_nn_model(input_dim)
model_nn.fit(X_train, y_train, epochs=100, batch_size=32, verbose=1, validation_split=0.2)
y_pred = model_nn.predict(X_test).flatten()
                      # Since cross val score doesn't work directly with Keras models, we skip cross-validation for Neural Networks
                      store_results('Neural Network', y_test, y_pred, None, X_train, y_train)
               # Step 6: Train all models with 'Jitter' as the target
              # Step 6: Frain all models with Sitter as the target
train_random_forest(X_train_wifi, y_train_wifi, X_test_wifi, y_test_wifi)
train_svn(X_train_wifi_scaled, y_train_wifi, X_test_wifi_scaled, y_test_wifi)
train_xgboost(X_train_wifi, y_train_wifi, X_test_wifi, y_test_wifi)
train_neural_network(X_train_wifi_scaled, y_train_wifi, X_test_wifi_scaled, y_test_wifi)
               # Step 7: Display the stored results
print(model_performance)
```

Figure 66: All Model Trained on Jitter as Target Variable

6.4 Changing Target variable back to Network latency

6.4.1 Training all Model again on Network Latency as target variable

Now after all the HyperTunning, GridSearchCv, changing target variable, and add more layer , we will once again train all the model to improve the accuracy.

A. Working on Wifi(5G) combined Dataset

```
In [199]: import pandas as pd
                import matplotlib.pyplot as plt
                # Step 1: Drop 'Jitter' from the dataset
wifi_combined_no_jitter = wifi_combined.drop(['Jitter'], axis=1)
                # Step 2: Select a new target variable (for example, 'Network Latency')
new_target_variable = 'Network Latency'
                # Step 3: Prepare the new features (X) and the new target (y)
X_wifi_new = wifi_combined_no_jitter.drop([new_target_variable, 'Time'], axis=1) # Drop the new target and 'Time'
y_wifi_new = wifi_combined_no_jitter[new_target_variable]
                 # Step 4: Train-test split
                # Step 4. Individual spint
from sklearn.model_selection import train_test_split
X_train_wifi_new, X_test_wifi_new, y_train_wifi_new, y_test_wifi_new = train_test_split(X_wifi_new, y_wifi_new, test_size=0.2, ra
                  # Step 5: Standardize the data (For SVR and Neural Network)
                from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
                X_train_wifi_scaled_new = scaler.fit_transform(X_train_wifi_new)
X_test_wifi_scaled_new = scaler.transform(X_test_wifi_new)
                # Step 6: Create a DataFrame to store results
model_performance = pd.DataFrame(columns=['Model', 'MSE', 'MAE', 'RMSE', 'R<sup>2</sup>'])
                 # Step 7: Redefine the model training functions and store results
                 # Random Forest
                 from sklearn.ensemble import RandomForestRegressor
                def train_random_forest(X_train, y_train, X_test, y_test):
    rf = RandomForestRegressor(n_estimators=100, random_state=42)
                      rf.fit(X_train, y_train)
y_pred = rf.predict(X_test)
                       store results('Random Forest', y test, y pred)
                # SVR
                from sklearn.svm import SVR
                def train_svr(X_train, y_train, X_test, y_test):
    svr = SVR(kernel='rbf', C=100, epsilon=0.2, gamma='auto')
                      svr.fit(X_train, y_train)
y_pred = svr.predict(X_test)
                      store_results('SVR', y_test, y_pred)
                 # XGBoost
                from xgboost import XGBRegressor
                from xgoost import Adoregressor
def train_xgbost(L train, y_train, X_test, y_test):
  xgb_model = XGBRegressor(objective='reg:squarederror', random_state=42)
                      xgb_model.fit(X_train, y_train)
y_pred = xgb_model.predict(X_test)
                       store_results('XGBoost', y_test, y_pred)
                # Neural Network
                from tensorflow.keras.models import Sequential
                from tensorflow.keras.layers import Dense, Dropout
                from tensorflow.keras.optimizers import Adam
                def create_nn_model(input_dim):
                      model = Sequential()
                      model.add(Dense(64, input_dim=input_dim, activation='relu'))
                       model.add(Dropout(0.3))
                      model.add(Dense(32, activation='relu'))
model.add(Dense(1)) # Output Layer
model.compile(optimizer=Adam(learning_rate=0.001), loss='mean_squared_error', metrics=['mae'])
                      return model
                def train_neural_network(X_train, y_train, X_test, y_test):
                     train_neural_network(_train, y_train, X_test, y_test):
input_dim = X_train.shape[1]
model_nn = create_nn_model(input_dim)
model_nn.fit(X_train, y_train, epochs=100, batch_size=32, verbose=1, validation_split=0.2)
y_pred = model_nn.predict(X_test).flatten()
                       store_results('Neural Network', y_test, y_pred)
                 # Step 8: Evaluation and store function
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
                 def store_results(model_name, y_true, y_pred):
                      mse = mean_squared_error(y_true, y_pred)
mae = mean_absolute_error(y_true, y_pred)
rmse = mse ** 0.5
                       rd2 = rd2_score(y_true, y_pred)
model_performance)] = [model_name, mse, mae, rmse, r2]
                 # Step 9: Train the models with the new target ('Network Latency')
                # Step 9: Train the models with the new target (`NetWork Latency ')
train_random_forest(X_train_wifi_new, y_train_wifi_new, X_test_wifi_new, y_test_wifi_new)
train_svn(X_train_wifi_scaled_new, y_train_wifi_new, X_test_wifi_scaled_new, y_test_wifi_new)
train_xgboost(X_train_wifi_new, y_train_wifi_new, X_test_wifi_new, y_test_wifi_new)
train_neural_network(X_train_wifi_scaled_new, y_train_wifi_new, X_test_wifi_scaled_new, y_test_wifi_new)
                 # Step 10: Display the stored results
                 print(model_performance)
                 # Step 11: Visualization of the model comparison
                # step II: visualization of the model comparison
model_performance.set_index('Model', inplace=True)
model_performance.plot(kind='bar', figsize=(10, 6))
plt.title("Model Performance Comparison")
plt.ylabel("Error / R<sup>2</sup>")
                plt.xticks(rotation=45)
plt.tight_layout()
                 plt.show()
```

Figure 67: Training all Model on Network 42 tency as target variable on Wifi(5G) Combined Dataset

Visualization of all model against performance metrics (MSE, MAE, RSME, R-squared)

Figure 68: Visualization of all model against performance metrics : 5G Dataset

B. Working on Mobile(4G) combined Dataset

```
In [201]: import pandas as pd
               import matplotlib.pyplot as plt
               # Step 1: Drop 'Jitter' from the mobile_combined dataset
mobile_combined_no_jitter = mobile_combined.drop(['Jitter'], axis=1)
               # Step 2: Select a new target variable (for example, 'Network Latency')
               new_target_variable = 'Network Latency
               # Step 3: Prepare the new features (X) and the new target (y)
X_mobile_new = mobile_combined_no_jitter.drop([new_target_variable, 'Time'], axis=1) # Drop the new target and 'Time'
y_mobile_new = mobile_combined_no_jitter[new_target_variable]
                # Step 4: Train-test split
               from sklearn.model selection import train test split
               X_train_mobile_new, X_test_mobile_new, y_train_mobile_new, y_test_mobile_new = train_test_split(X_mobile_new, y_mobile_new, test_
               # Step 5: Standardize the data (For SVR and Neural Network)
from sklearn.preprocessing import StandardScaler
               scaler = StandardScaler()
X_train_mobile_scaled_new = scaler.fit_transform(X_train_mobile_new)
               X_test_mobile_scaled_new = scaler.transform(X_test_mobile_new)
               # Step 6: Create a DataFrame to store results
               model_performance_mobile = pd.DataFrame(columns=['Model', 'MSE', 'MAE', 'RMSE', 'R<sup>2</sup>'])
               # Step 7: Redefine the model training functions and store results for mobile combined
               # Random Forest
               from sklearn.ensemble import RandomForestRegressor
def train_random_forest_mobile(X_train, y_train, X_test, y_test):
                    rf = RandomForestRegressor(n_estimators=100, random_state=42)
rf.fit(X_train, y_train)
y_pred = rf.predict(X_test)
                     store_results_mobile('Random Forest', y_test, y_pred)
               from sklearn.svm import SVR
               def train_svr_mobile(X_train, y_train, X_test, y_test):
    svr = SVR(kernel='rbf', C=100, epsilon=0.2, gamma='auto')
                    svr.fit(X_train, y_train)
y_pred = svr.predict(X_test)
store_results_mobile('SVR', y_test, y_pred)
               # XGBoost
               from xgboost import XGBRegressor
               def train_xgboost_mobile(X_train, y_train, X_test, y_test):
    xgb_model = XGBRegressor(objective='reg:squarederror', random_state=42)
                    xgb_model.fit(X_train, y_train)
y_pred = xgb_model.predict(X_test)
                    store_results_mobile('XGBoost', y_test, y_pred)
               # Neural Network
               from tensorflow.keras.models import Sequential 
from tensorflow.keras.layers import Dense, Dropout
               from tensorflow.keras.optimizers import Adam
               def create nn model(input dim):
                    model = Sequential()
model.add(Dense(64, input_dim=input_dim, activation='relu'))
                    model.add(Dropout(0.3))
                    model.add(Dense(32, activation='relu'))
model.add(Dense(1)) # Output Layer
                    model.compile(optimizer=Adam(learning_rate=0.001), loss='mean_squared_error', metrics=['mae'])
                    return model
               def train_neural_network_mobile(X_train, y_train, X_test, y_test):
                    input_dim = X_train.shape[1]
model_nn = create_nn_model(input_dim)
model_nn.fit(X_train, y_train, epochs=100, batch_size=32, verbose=1, validation_split=0.2)
y_pred = model_nn.predict(X_test).flatten()
                     store_results_mobile('Neural Network', y_test, y_p
               # Step 8: Evaluation and store function for mobile combined
              from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
              def store_results_mobile(model_name, y_true, y_pred):
                    mse = mean_squared_error(y_true, y_pred)
mae = mean_absolute_error(y_true, y_pred)
rmse = mse ** 0.5
place_base
                    r2 = r2 score(y true, y pred)
                    model_performance_mobile.loc[len(model_performance_mobile)] = [model_name, mse, mae, rmse, r2]
              # Step 9: Train the models with the new target ('Network Latency') for mobile_combined
train_random_forest_mobile(X_train_mobile_new, y_train_mobile_new, X_test_mobile_new, y_test_mobile_new)
train_svr_mobile(X_train_mobile_scaled_new, y_train_mobile_new, X_test_mobile_scaled_new, y_test_mobile_new)
train_xgboost_mobile(X_train_mobile_new, y_train_mobile_new, X_test_mobile_new, y_test_mobile_new)
train_neural_network_mobile(X_train_mobile_scaled_new, y_train_mobile_new, X_test_mobile_new)
               # Step 10: Display the stored results for mobile combined
              print(model_performance_mobile)
              # Step 11: Visualization of the model comparison for mobile_combined
              model_performance_mobile.set_index('Model', inplace=True)
model_performance_mobile.plot(kind='bar', figsize=(10, 6))
              plt.title("Mobile Combined Model Performance Comparison
plt.ylabel("Error / R<sup>2</sup>")
              nlt_xticks(rotation=45)
              plt.tight_layout()
              plt.show()
```

Figure 69: Training all Model on Network Latency as target variable on Mobile(4G) Combined Dataset

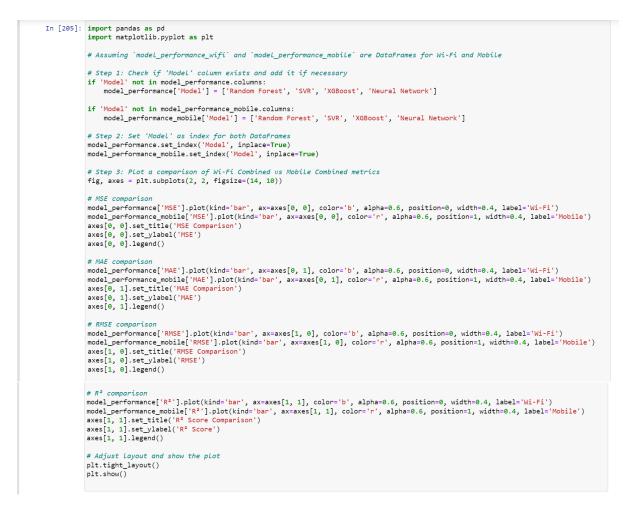


Figure 70: Visualization of all model against performance metrics : 4G Dataset

These are all the steps carried during this research for the implementation. After implementing and training Model results were evaluated and compared.

References