

Improving Load Balancing in Cloud Computing
to Minimize Response time and enhancing
resource utilization by using Hybrid meta-

heuristic Ant Colony Optimization-Simulated
Annealing Algorithm

MSc Research Project
Cloud Computing

Anoop Kumar

Student ID: x22249401

School of Computing

National College of Ireland

Supervisor: Sean Heeney

National College of Ireland

Project Submission Sheet
School of Computing

Student Name: Anoop Kumr
Student ID: x22249401
Programme: MSc. Cloud Computing
Year: 2023-2024
Module: Research Project
Supervisor: Sean Heeney
Submission Due Date: 12/08/2024
Project Title: Improving Load Balancing in Cloud Computing to Minimize

Response time and enhancing resource utilization by using
Hybrid meta-heuristic Ant Colony Optimization-Simulated
Annealing Algorithm.

Word Count: 7971
Page Count: 21

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 12th August 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed

into the assignment box located outside the office.

Office Use Only
Signature:

Date:

Penalty Applied (if applicable):

1

Improving Load Balancing in Cloud Computing to
Minimize Response time and enhance resource

utilization by using Hybrid meta-heuristic Ant Colony
Optimization-Simulated Annealing Algorithm

Anoop Kumar

Student ID: x22249401

Abstract

In cloud computing load balancing and task scheduling is critical and is used for the efficient
distribution of workloads and computing resources among virtual machines. Load balancing
is an NP-hard optimization problem. Unequal distribution of tasks among can lead to
underloaded or overloaded VMs leading to poor resource utilization This research explores a
hybrid meta-heuristic algorithm for task distribution and load balancing named ACO-SA, which
combines the Ant colony optimization for exploring the solution search space and the
Simulated annealing algorithm for Exploiting the search space and refining the solution. ACO
is a bio-inspired meta-heuristic algorithm and mimics the foraging behavior of ants to find the
shortest past to food representing the best way to distribute tasks among VMs. On other hand
Simulated annealing algorithm is used to refine the search space for solutions and converge
towards a near-optimal solution. The objective function(fitness function) is defined to
minimize response time in ACO and SA. Response time and resource utilization is considered
as evaluation parameters. The simulation was performed using the Cloudsim toolkit. The
simulation results of the proposed ACO-SA algorithm showed improved performance in
minimizing response time by 7% compared to traditional meta-heuristic algorithms such as
ant colony optimization(ACO) and Particle swarm optimization(PSO). The hybrid algorithms
combines the strength of ACO with SA to optimize load balancing in cloud computing.

Keywords: Cloud Computing, Taks scheduling, Load Balancing, Ant Colony Optimization,
Simulated annealing algorithm, Objective function, Response time, Resource Utilization

1 Introduction

Load balancing in cloud computing is a critical challenge and useful for distribution of workload
among virtual machines. Cloud computing technology is the on-demand sharing of computing
resource using the internet. The main goal of load balancing is to distribute tasks efficiently among
VMs such that no VMs is overloaded or underutilized. Static load balancing algorithms often fail to
handle varying workload patterns. Dynamic load balancing algorithms can handle varying workloads,
Various heuristic and metaheuristic algorithm approaches were studied to balance the load among
virtual machines for optimizing resource utilization and improving performance (Gamal et al. 2019).
With the growing complexity and diversity of cloud workloads, the current load-balancing algorithms
have some limitations in achieving the efficient distribution of the load, response time, and energy
consumption. the load on cloud computing resources entails solving the so-called "NP-hard"
problems characterized by their complexity to the extent that no optimization method can come up
with an ideal solution in polynomial time(Afzal & Kavitha 2019). Static load balancing methods does
not consider the current state of the server when distributing load and it is suitable where the load

2

on the system is fixed and constant to overcome the above problem we have Dynamic Load balancing
which can predict in real-time the amount of load to be distributed to the servers. Dynamic load
balancing is also used in the scaling of the application depending on the users’ demand ,making it
highly fault tolerant and optimized for performance. Heuristic and metaheuristic methods are now
frequently used in cloud computing to attain load balancing. These methods have a number of main
characteristics, for example an extended search space and random search capabilities, that aid in the
identification of optimal solutions for scheduling problems within the required time frame. Cloud
computing is a service on the Internet resource base that follows the concept of "everything can be
a service". It consists of changing computing hardware and software resources into web services that
can be accessed over the Internet. The three primary cloud computing models are Infrastructure as
a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) by offering "virtual
machine" (VM) technology. Virtualization has made it possible for ordinary users to run system and
application software on VMs much more cheaply than the traditional method of acquiring and
owning physical computers. A VMH is a term used to refer to a host machine that can be powered by
one or more virtual machines (VMs) depending on its capacity. A critical challenge in cloud is
managing large amounts of VMHs and task by dynamically reallocating resources to VMs in order to
increase cost-performance efficiency and at the same time ensuring SLAs and load balancing among
VMs. One of the methods of load balancing is to migrate VMs from overcrowded VMHs to other
VMHs with the aim of distributing the workload evenly(Sekaran et al. 2019).Many algorithms are
proposed for the load balancing in cloud computing which are based on the optimization algorithms.
The existing meta-heruistic optimization algorithms like ACO, PSO, firefly etc. are unable to balance
load in minimum amount of time due to complex optimization function. The load balancing scheme
needs to be designed which can balance network load in minimum amount of time and also improve
resource utilization. In this research work hybrid optimization algorithm is developed which is the
combination of ACO (Ant colony optimization) and SA (Simulated Annealing). This hybrid algorithm
aims to optimize response time and resource utilization.

1.1 Research Motivation and Background

Traditional load-balancing techniques often struggle with changing workloads and dynamic resource
allocation leading to increase in response time and inefficient resource utilization. Metaheuristic
algorithms offer promising solutions for solving complex optimization problems. Combining one or
more of these algorithms can exploit their complementary strengths. The motivation behind
developing the hybrid ACO-SA for load balancing comes from the need to achieve improved response
time and enhance resource utilization.

1.2 Research Objectives

1. To develop and implement a hybrid meta-heuristic algorithm combining the Ant colony
optimization and simulated annealing algorithm for load balancing using task scheduling.

2. Evaluate the Performance of the Hybrid Algorithm with other existing algorithms.

1.3 Research Question

The above research problem motivates the following research question:

1.) To what extent does the Hybrid meta-heuristic Ant Colony Optimization Algorithm in Load
balancing minimize response time and enhance resource utilization to enhance cloud load
balancing?

3

It is necessary to develop load-balancing algorithms that is efficienct and has less computational
overhead to ensure that the optimization process itself does not become a problem. This research
aims to fill these gaps by developing and optimizing the hybrid meta-heuristic ACO-SA task
scheduling algorithm to optimize load balancing in the cloud. It will also ensure a comprehensive
comparison of existing strategies with an emphasis on enhancing QoS factors such as resource
consumption and response time. By addressing these aspects, the proposed research will not only
advance the theoretical understanding of hybrid metaheuristic algorithms in cloud computing but
also offer a practical approach to enhance load-balancing.

1.4 Document Structure

This research paper is further divided into 6 sections. Section 2 outlines the related work
previously carried out in the area of task scheduling, load balancing, and hybridization of
algorithms. Section 3 covers the research Methodology, including the techniques and
algorithms used for research. Section 4 covers the Design specifications of the proposed
algorithm. Section 5 contains the implementation of the proposed load-balancing algorithm.
Finally, sections 6 and 7 consist of the experiment, results, and conclusion respectively.

2 Related Work

2.1 Load balancing techniques

(Pradhan et.al 2020) addressed the issue of poor workload distribution among virtual machines
(VMs). They suggested using a modified particle swarm optimization technique (LBMPSO) to enhance
load balancing and task scheduling. The primary objective was to decrease makespan and enhance
resource usage with the incorporation of a fitness function that assesses virtual machine execution
times for the best possible task distribution. Based on simulation findings, their approach minimized
resource usage by 10% and decreased makespan by 15%. (Devaraj et.al 2020) identified the issue of
optimizing resource utilization arising due to the inefficient workload distribution.To solve this issue
they proposed Improved Multi-Objective Particle Swarm Optimization (FIMPSO) which combines
firefly to minimize the search space and IMPSO algorithm to find the best solution for allocating task
among VMs using the minimum distance criterion. The simulation result performed using MATLAB
showed that FIMPSO performed better than the tradition algorithms such as Round Robin, FCFS, and
Genetic algorithm. The IMPSO algorithm finds the minimum distance between the global best (gbest)
particle and line by a point. The FIMPSO algorithm achieved the lowest average response time of
13.58 ms, highest CPU utilization of 98%, memory utilization at 93%, throughput of 72% and reduced
makespan by 148s.

(Mrhari & Hadi 2019) proposed SASPSOLB load-balancing algorithm which uses game theory and a
modified version of particle swarm optimization to balances workloads among Virtual machines. In
order to identify the best or nearly best solution and minimize the expected response time, the load
balancing problem has been represented as a constrained optimization problem. The game was taken
into consideration as a noncooperative user game. The implemented algorithm described in this
paper was compared with another genetic optimization-based technique. As per the simulation
findings, this approach worked better in terms of Makespan and predicted reaction time. (Menaka
and Kumar 2024) created a structure for load balancing and mixed support that was strategy-oriented
to make maximum use of virtual machines with a comparable weight distribution. Time-Conscious
Scheduling and Supportive Particle Swarm Optimization were combined in the SPSO-TCS technique

4

to achieve initial load balancing and minimize make-span time. The goal of this step was to determine
the best make span time minimization for every virtual environment. The research goal was to find
the order of tasks that required the least amount of calculation time and to reduce the time needed
to complete each task. Utilizing the hybrid idea led to the lowest energy usage and a shorter
makespan. SPSO-TCS reduced makespan by 70-80% and improved resource utilization by 10-20%
compared to traditional methods.

(Kruekaew & Kimpan 2022) proposed MOABCQ algorithm, a multi-objective task scheduling
optimization to address the problem of inefficient task scheduling and load balancing. The approach
combined the explorative nature of the ABC Algorithm with the exploitative nature of the Q-learning
algorithm, for reinforcement learning to enhance the speed and efficiency of the ABC algorithm over
independent task scheduling. The performance of the proposed approach is tested against the
scheduling and load balancing techniques in use currently on three datasets: Random, Google Cloud
Jobs, and Synthetic workload using CloudSim. Results demonstrate that the MOABCQ algorithms
improved task distribution efficiency , reduced makespan and lowered cost. (Muneeswari et.al 2024)
devised a new technique of cloud load balancing for virtual machines. A number of the input jobs
from various users were collected into one task collector and then forwarded to the load balancer,
which was empowered with the Bi-LSTM deep learning network . The task details will be sent to the
load balancer to initiate the virtual machine migration when the load is unbalanced. Further, the
refined Bi-LSTM, optimized by a GEP optimizer in the previous phase, was used to attain load
balancing in virtual machines. Then, the effectiveness of the suggested LBVM with regards to the
evaluation criteria like configuration delay, detection rate, accuracy, etc., has been evaluated against
established methods such as MVM, PLBVM, and VMIS. The experimental results showed that the
proposed solution decreased migration time by 49%, 41.7%, 17.8%, compared to MVM, PLBVM, and
VMIS respectively.

2.2 Meta-heuristic algorithm based load balancing techniques

(Kumari et.al (2024) introduced the FHO (Fire Hawk Optimization) method for cloud-based dynamic
load balancing. In order to improve system performance, their study took into account multi-
objective functions as Makespan, use of resources, reaction time (RT), Level of Imbalance, and
throughput. According to the experimental results, the FHO-based load balancing produced the
following results for the number of tasks: Makespan, RT, RU, DOI, and throughput were 2246, 6.7,
134.23, 141, and 5.5, respectively. Comparing these results to other techniques such as PSO, QMPSO,
and the Binary JAYA algorithm, showed better performance. (Abualigah et.al 2024) developed an
optimization method for scheduling tasks in cloud computing using the Levy flying mechanism along
with the Jaya algorithm and SSO (Synergistic Swarm Optimization), to achieve maximum trade-offs
between exploration and exploitation and increasing the rate of convergence. A synergistic
optimization paradigm is formed by combining the cooperative search of the SSO with the Jaya
algorithm's capability to find and use the best solutions available. Levy flights added a random
element to the search process, making it easier for the algorithm to traverse through complex
solution spaces and escape local optima. The modified technique performed better than the original
by 10% and with an overall accuracy of 88%.

(Singhal, et. al 2024) put forward a metaheuristic-based technique in order to provide an optimal
load distribution with the help of Rock hyrax for efficient energy consumption. The algorithm solves
the issues with energy consumption and local optima with the help of QoS parameters. The algorithm

5

results were analyzed both qualitatively and quantitatively with static and dynamic work modes. The
solution minimizes energy consumption in data center by 8%–13% and makespan by 10%–15% from
that of trad scheduling algorithms. These results demonstrated the efficacy of the Rock Hyrax-based
load balancing algorithm in improving data center productivity and energy conservation. (Khaleel
2024) presented a three-phase method for the RASA (Regional Awareness dynamic Scheduling
Algorithm). Using a task categorization model, tasks were first grouped according to important
factors such as CPU usage, memory utilization, and I/O operations. Estimating each node's CPU,
memory, and I/O capacity was the second step. The nodes were then grouped into clusters using a
special coalitional game-theoretic merge-and-split procedure. To address the sluggish convergence
and local optimization problems with the conventional Sparrow Search Algorithm (SSA), they
introduced an upgraded version of the algorithm in the final phase, which improved job placement.
The suggested algorithm reduced processing time by 14%, workload imbalance by 15%, latency
overhead by 9%, energy consumption by 19%, idle times by 26%, and workload imbalance by 15%. In
addition, it increased resource efficiency and availability by 27% and 22%, respectively, and increased
service throughput by 32%.

(P. K. K R et.al 2023) provided a novel load balancing technique called FFBSO, combining Bird Swarm
Optimization (BSO) with the Firefly algorithm (FF), which reduced the search space. BSO models tasks
as birds and VMs as destination food patches, drawing inspiration from the flock behavior of birds.
Tasks were seen as independent and non-preemptive in the cloud environment. However, by
determining the potential optimal locations, the BSO algorithm mapped jobs onto appropriate virtual
machines. The results of the simulation showed that the FFBSO algorithm outperformed the other
methods, achieving a makespan of 35s, the lowest average reaction time of 13ms, and maximum
resource use of 99%. (Jena et.al 2020) introduced a new approach to balance the load among the
VMs (virtual machines) for which a hybrid technique called QMPSO (modified Particle swarm
optimization-improved Q-learning) was implemented. Both the algorithms were integrated for
adjusting the velocity of the MPSO depending on the best action obtained from the improved Q-
learning. The waiting time of tasks was optimized such that the load was balanced among the VMs,
the throughput of VMs was increased and the balance was maintained among priorities of tasks. The
findings revealed that, in comparison to the conventional methods, the new strategy was reliable
and the use of adaptive strategies can help in dealing the unequal distribution of workload.

2.3 Hybrid Load Balancing algorithms

(Kaur & Kaur 2022) identified the challenge of efficient load balancing and resource utilization among
VM’s and proposed a hybrid heuristic-metaheuristic approach combining predict earliest finish
time(PEFT) and Heterogeneous Earliest Finish Time (HEFT) heuristics with Ant Colony Optimization
(ACO), termed as HPA and HHA respectively. They considered makespan, cost, and resource
utilization as key factors. The two approaches were inspected and assessed to determine which
solution to balance load was superior for the suggested HDD-PLB structure. Result showed that the
average makespan was reduced by up to 23.41% improved resource utilization and ensuring a more
balanced distribution of tasks across virtual machines. (Hodžić & Mrdović 2023) identified the
problem of inefficient load balancing and poor resource usage, and increased response time. The
proposed genetic algorithm technique for load balancing dynamically distributes incoming requests
amongst cloud resources. The program was designed to process each request as soon as it arrived.
The suggested method outperformed throttled load balancing, ESCE, and round-robin algorithms in
terms of response and processing time, according to the test simulations that were run by reducing
overall response time by 10.05% and data center processing time by 10.87%.

6

(Haris & Zubair 2022) developed the MMHHO (Mantaray modified multi-objective Harris hawk
optimization to solve the problem of underloaded and overloaded VM’s leading to increased power
consumption and machine failure. The hybridization procedure optimized the search space of Harris
Hawk Optimization (HHO) by considering variables including the use of resources, expense, and
reaction time using the MRFO (Manta Ray Forging Optimization) method. The hybrid strategy
improved the system performance by improving the virtual machine throughput, distributing the
load among the VMs, and preserving the balance of task priorities by altering the waiting period. The
recommended MMHHO-algorithm technique was implemented in the Cloud Sim tool. The results of
the simulation indicated that the recommended MMHHO approach performed better than standard
algorithms. Their work shows that hybridization can result in enhancement in throughput, makespan
and energy consumption.

2.4 Summary of Literature Review and Proposed method

The literature review addresses various efficient optimization techniques for load balancing
techniques in cloud computing. Swarm intelligence methods, such as LBMPSO and FIMPSO, enhance
task scheduling and resource utilization. SASPSOLB and SPSO-TCS are evolutionary algorithms that
show low makespan and energy consumption according to the game theory.Bio-inspired algorithms
like MOABCQ enhance the issue of task distribution. Literature reviews on comparative studies
demonstrate the efficiency of multi-objective optimization approaches, FHO and other hybrid
techniques, combining Levy Flight, Jaya Algorithm, and SSO. HEFT (Heterogeneous Earliest Finish
Time) and PEFT (Predict Earliest Finish Time) heuristics with ACO are two examples of a hybrid
strategy that combines heuristic approaches and metaheuristic algorithms. The MMHHO (Mantaray
modified multi-objective Harris hawk optimization), which enhanced dynamic load balancing by
updating the search space based on resource consumption, cost, and response time. A genetic
algorithm to balance cloud load efficiently assigned cloudlets to suitable virtual machines and
validated faster execution and improved distribution of load as opposed to the baseline algorithms.
In general, all of these different approaches contribute towards the improvement of load balancing
and the conservation of resources in cloud computing. These studies highlight diverse hybrid and
heuristic-metaheuristic approaches that can be used to optimize load balancing.

3 Methodology
The goal of this work is to provide a novel hybrid solution to tackle the cloud load balancing
challenge. This requirement results from the constantly changing nature of the demand for cloud
computing, which includes the growing complexity of jobs, the variety of services available, and
the dynamic allocation of workloads. Investigating cutting-edge load-balancing options that can
effectively manage resource variability and dynamically adjust to the evolving needs of cloud
computing.

3.1 Traditional Ant Colony Optimization and its drawbacks

ACO (Ant Colony Optimization) is a bio-inspired community-based meta-heuristic algorithm for
resolving complex optimization issues. The method draws inspiration from the foraging behavior
of ants, who use pheromone trails to determine the shortest path from their colony to a food
source, the stronger the pheromone trail more likely it is that more ants would follow. Traditional
ACO possess many limitations that can reduce their effectiveness due to their slow convergence

7

time which is due to the probabilistic nature of search and exploration processes involved in the
learning mechanism. ACO also has the tendency to quickly fall into local optima, which limits the
solution space's exploration capabilities. To find a balance balance between exploration and
exploitation pheromone level needs to be controlled, If the rate of pheromone evaporation is high
the algorithm may not converge at all, and If it is very low the algorithm may converge quickly
towards a less optimal solution (Liu. (2022).

3.2 Hybrid approach toward load balancing

To overcome above discussed limitation, the ACO algorithm it must be hybridized with other meta-
heuristic algorithms which can speed up convergence and avoid getting trapped in local optimum
solution. ACO method shows the decentralized nature of cloud computing where multiple agents
(ants) work in parallel and operate independently to find solutions which leads to efficient search as
algorithms adapts to change in problem space. ACO updates pheromone trails are based on current
solutions to find the best path(solution) through complex solution spaces(Gao. 2024). Simulated
annealing algorithm as the ability to mitigate the problem of Local optima in ACO and converge
toward a global optimum solution. It is a probabilistic optimization technique inspired by the
annealing process in metallurgy and imitates the process of cooling. It avoids local optima and
searches for a larger solution space to approximate global optima by accepting less optimal solutions
with a certain probability that decreases over time. The temperature factor in SA offers a balance
between exploitation (refining current solutions) and exploration (searching new areas of the
solution space) (Javadi & Gandhi 2022). This flexibility is crucial in field of cloud computing for
effective load balancing. ACO start with certain number of ants working together to assign
cloudlets(tasks) to virtual machines (VMs) based on current workload and pheromone levels in order
to find the best possible solutions. The hybrid technique uses SA to refine and adjust the initial
solutions generated by ACO by exploring neighboring solution and changing cloudlet(task)
distribution based on a temperature element that controls the acceptance of possible improvement.
Pheromone levels are changed after each iteration, with more better solutions having higher
pheromone levels, which direct other ants toward more optimal solution. The combination of SA's
local optimization capabilities with ACO's global search, the hybrid ACO-SA algorithm can offer a
powerful approach toward efficient load balancing. Each ant starts by searching the path, probability
of choosing the node i node j-th individual in the population is determined by the probability
expression (Shi & Z 2021):

Here, α (alpha) and β (beta) are parameters that control the influence of pheromone trail and
heuristic information respectively in decision-making process of ants. Higher value of α (alpha) and
β (beta) influence the ant's path toward a optimal solution. 𝜏𝑖𝑗 is the pheromone density of the
path. The pheromone density update is described by the below expression(Shi & Z 2021) :

8

𝜏୧
௧ାଵ represents the pheromone density between nodes. Pheromone evaporation(ρ) prevents the

algorithm from converging too quickly.The pheromone values on all paths are reduced by a factor
of (1−ρ). For each ant's solution, pheromone is deposited to the paths which increases the
pheromone value making those paths more suitable for future iterations and solution, in proportion
to the inverse of the solution's cost. After the ACO stage is completed, pheromone evaporation is
applied to further explore the solution space to avoid premature convergence. After this the SA
phase starts to refine the best solution found during the ACO stage. During the refinement process,
neighboring solutions are generated through perturbation and evaluated against the current best
solution. If the new solution shows better fitness value it is accepted, if not it can still be accepted
probabilistically, depending on the fitness value and the current temperature, which decreases
gradually over each iteration. The cooling function makes the search more focused and narrow in
order to refine the solution space. After all, iterations are complete, the best solution returned has
the best way to distribute tasks and balance load. This show the effectiveness of combining the
exploration abilities of ACO with the refinement capability of SA to enhance the distribution of task
in cloud systems for better load balancing.

3.3 Proposed Research Architecture

The proposed architecture discusses about the flow of workload generation to task allocation and
its execution, utilizing a hybrid algorithm for task distribution. See figure 1. For archiecture
diagram

Figure 1: Proposed Architecture

The architecture starts with Workload(Cloudlet/task) generation which are produced based on user
requests or simulation scenarios within CloudSim. Tasks are stored in a task queue managed by the
cloud controller. The controller is responsible for managing the task scheduling and execution

9

process, The Cloud controller is an important component as it maintains information on available
resources(Virtual machines), including the information about current load on each VM, their
processing capabilities, and their availability status. Once task are queued in task queue Cloud
controller invokes the ACO-SA algorithm for optimal allocation of these task to the available VMs.
The Ant colony optimization(ACO) algorithm explores potential solutions (best VM to allocate each
task based on pheromone trails and heuristic information). Then SA algorithm is applied to further
refine current solution and explore the neighboring solutions and compare them, using a probabilistic
approach to avoid getting stuck in local optima and converge towards a global optimal distribution
of task. After the hybrid ACO-SA algorithm has processed task allocation details, it sends this
information back to the cloud controller, which then assigns each cloudlet to a specific VM as per the
algorithm. Virtual machines(VMs) execute tasks and provide report metrics such as start time, finish
time, CPU usage, and response time. Because the entire process is iterative, the Cloud controller uses
this information to modify the distribution of tasks in the future, minimizing response time and
resource utilization.

3.4 Pseudo-code of the Algorithm

Figure 2 : Pseudo-code of the ACO-SA Hybrid Algorithm

10

The algorithm starts by initializing initial parameters such as the number of ants, maximum number
of repetitions, pheromone levels, beginning temperatures, and the rate of cooling including the
pheromone matrix which guides ACO ants in their search for solutions and fitness function that will
evaluate the quanlity of solutions that meet the optimization criteria(minimum response time). The
fitness function guides the search process towards optimal solutions. The main ACO loop runs for a
certain number of iterations which drives the ACO process, The initial temperature (T) is reset to
initial value(T0). Within each ACO iteratin SA phase begins runs till the temperature T is crosses
threshold value of (Tfinal).Each ant generate a potential solution(S') which is compared to the current
solution (S) using the fitness function. if S' is better than the Current solution(S), it is accepted as the
new current solution and if not it may still be accepted based on probability that allows it to escape
local optima by accepting the worst solution occasionally. After the solution is generated and
evaluated temperature is decreased gradually by multiplying it with the cooling rate and converging
toward a better solution After the SA phase is completed with an ACO iteration, the pheromone level
are updated and solution that had better results have stronger pheromone trail , guiding other ants
toward that path. After all the iteration are completed the best solution is returned representing
optimal or near optimal task distribution among VMs. The algorithm stop after finding the best
solution.

3.5 Evaluation Parameters

Relevant parameters were established in order to evaluate the algorithms performance and
conduct a comparison with an already existing meta-heuristic scheduling algorithm such as
ACO and PSO. The hybrid algorithm's main goals are to effectively schedule tasks, reduce
response time, and improve resource utilization. The evaluation parameters were chosen in
a way that made it simple to assess the algorithm's effectiveness. The following are
parameters were employed in the assessment.

• Response time - This represents the total time spent on task execution following
scheduling of task. The goal of the hybrid algorithm is to minimize execution time by
assigning tasks to the best possible virtual machine (VM) based on heuristic factors like
current load and availibility of resource.

• Resource Utilization - This metric evaluates how efficiently the available resources,
like CPU and memory, are being used across all virtual machines. Because the fitness
function of the hybrid algorithms considers the execution time and load on each virtual
machine and assigns the task to the least loaded VM in the network which in return
maximizes resource utilization.

4 Design Specification
This work presents a hybrid meta-heuristic ACO-SA (Ant Colony optimization-simulated annealing)
technique to balance cloud load. The main objective is to improve the response time and resource
utilization while achieving load balance in the cloud by merging the exploratory powers of ACO with
the exploitation powers of SA. The hybrid Ant Colony Optimization (ACO) and Simulated Annealing
(SA) algorithm design features offer a comprehensive solution for cloud load balancing. Here, the
goal is to distribute the cloudlets(tasks) among virtual machines (VMs). This Hybrid approach
primary components include an ACO and SA algorithms component that is distinct but
complimentary. Below is the flow chart of the proposed algorithm(Figure 3).
The first step is to create a datacenter ,with defined number of cloudlets(numTasks) and virtual
machines(numVMs). The next steps is setting the algorithm's parameters for the number of

11

ants(numAnts), maximum number of iterations, rate of pheromone evaporation(ρ), initial
temperature(T0), and the cooling rate for SA algorithm. The ACO-SA algorithm’s objective function
(fitness function) is defined for minimizing response time which is the sum of the total time taken
to perform all the tasks.

Figure 3: Flowchart of the proposed ACO-SA Hybrid algorithm

In the ACO phase, each ant starts with constructing a solution by iterative assignment of tasks
among virtual machines (VMs) based on pheromone levels and heuristic information, the quality of
each solution is evaluated and pheromone levels are adjusted accordingly. The pheromone
evaporation is applied to further explore the solution space. In the refinement phase of SA, the
temperature decreased gradually, while neighboring solutions are generated and their fitness
function is evaluated , if the neighboring solution is better and has better fitness, it replaces the
current solution. By iteratively updating and re-evaluating solutions based on the pheromone levels
and the probabilistic acceptance criteria that are dependent on temperature, the hybrid ACO-SA
algorithm provides a balance between exploration and exploitation to achieve better response time
and resource utilization.

STOP

Initialize Parameters

Construct Solutions

Output the optimal Solution

Compute the fitness value

Compute Transition Probability

Update Pheromone

End
Condition?

Y

N

START

Apply SA Algorithm for the
optimization

12

5 Implementation

The research work is based on load balancing using hybrid optimization algorithm. The cloud sim is
the simulator which is used with eclipse for the simulation of proposed model. The Window 11
system is used with 8 GB RAM and 256 GB Hard disk. The various simulation parameters are
considered to evaluate performance of proposed model.

5.1 Tool used for Evaluation

The Cloud Sim is the open-source framework which is used to model and simulate the cloud
computing environment. The cloud sim is written in java and it is designed by the cloud Labs. The
cloud sim is used to evaluate the designed algorithm based on the simulation and it can produce
the test results. CloudSim framework supports the simulation of large-scale data center. The cloud
Sim is a package which is open source and available free of cost.

5.2 Formulating the objective function

The objective function or fitness function, is the main component in the algorithm and optimization
process. The objective function is defined to reduce the response time, which is the total time
required to complete the tasks. This function is the main criterion for optimizing the task distribution
for better load balancing which is implemented in files “SA.java” and “ACO.java” and is defined with
the “calculateCost” method in both ACO and SA phase to calculate response time(Figure 4). This
function takes into consideration the solution array that defines the task-VM assignment in order
to determine the total response time. The taskVMMatrix has the execution time of each task on
every virtual machine. The below objective function calculates total response time for all cloudlets
based on their VM allocation. In hybrid algorithm ACO generates the initial solutions by assigning
cloudles to VMs and SA optimizes the solution by minimizing the objective function by exploring the
neighboring solution.

Figure 4: Objective function to calculate fitness of solution

5.3 Checking the initial simulation parameters

The initial simulation settings involves creating the datacenter, cloudlets (tasks), and virtual
machines (VMs), and algorithm parameters (Figure 5).

13

Figure 5: Initial simulation Parameter function

Several important settings must be defined while configuring a virtual machine (VM) in order to
guarantee optimal performance and allocation of resources. To uniquely identify the virtual
machine (VM) within the system, for example, the virtual machine identification (vmid) is set to 0.
The MIPS (Million Instructions Per Second) rating, which in this instance is set to 1000, indicates the
computing capacity of the VM and determines the processing power allotted to it. The storage
allocated to each VM is a size of 10,000 MB. 512 MB of RAM is allotted to the virtual machine (VM),
which is sufficient to handle the workload effectively. Furthermore, 1000 Mbps bandwidth (bw)
have been assigned to each virtual machine (VM), ensuring high-speed data transfer between VM
and the data center. The virtual machine is set up with a single processing element (pesNumber),
meaning that one CPU core will be used for operation. The virtual machine (VM) will run over the
Xen Virtual Machine Monitor (vmm), which oversees the VM's execution and offers virtualization
features. The creation and configuration of VMs are implemented under the “createVmList” method
in the “CloudsimACO_SA.java” file which generates list of VMs with the above-specified
configuration parameters and assigns them to datacenter broker for management. With this
configuration, a balanced cloud environment is simulated capable of handling the dynamic workload
generated by cloudlets.

5.4 Pheromone update rule for ACO

In the ACO-SA hybrid, the pheromone update rule is the most important factor that determines
the trade-off between exploration and exploitation to find optimal or near-optimal solutions.
The pheromone levels are updated after the construction of solutions where the quality of the
solutions found is taken into consideration.

14

Pheromone deposit: Once the ant has constructed the solution, the fitness function is used to
evaluate the quality of the solution with respec to factor such as response time and resource
utilization. Pheromone levels are increased inversely proportional to the path length, due to
this pheromone deposition on shorter paths increase. The amount of pheromone deposited
on shorter paths(best solution) is more which encourages other ants to follow the path.

Pheromone Evaporation: With time pheromones on all paths taken by ants start evaporating,
controlled by the evaporation rate(rho). The evaporation rate(rho), makes sure that the
intensity of the pheromones on suboptimal paths decreases with time while the algorithm
converge towards an optimal or near-optimal solution.

In this implementation,”Update_pheromones” method in ACO.java file is responsible for
controlling the pheromone level during after each iteration of ACO.

5.5 Hybridization of ACO and SA Algorithm

The hybrid of ACO and SA algorithms is implemented in this research makes it possible to find the
best solutions and optimize them, thus achieving better performance and efficiency. The
hybridization is implemented in three steps:

1.) ACO phase: This step involves constructing an initial solution using ‘‘runsACO()‘‘ method by

assigning tasks to VMs based on Parameters such as the number of ants, pheromone levels, and
heuristic information. In next step the quality for each solution is evaluated using the fitness
function(response time) and pheromone levels is update based on the quality of solution.
Increasing the number of ants increases the ability to explore a larger solution space but
increases the computation time. Pheromone levels are updated based on the quality of the
solutions. A higher rate of evaporation benefits in exploration since it minimizes the impact of
past solutions. A lower rate benefits the exploitation of the best-found solutions. The ACO phase
is implemented in the “ACO.java” file.

2.) SA phase: This step involves accepting the best solution generated by the ACO phase via
“runSA()“ method in “SA“ class and refining it by exploring the neighboring solution generated
through perturbation and evaluating against the current best solution to avoid getting trapped
in local optima by using a probabilistic acceptance criterion based on fitness change(Solutions
that improve the fitness are accepted) and temperature, which decrease gradually over
iterations thus improving the overall solution quality. SA phase is implemented in the “SA.java”
file.

3.) Hybrid Integration : This step integrates the ACO and SA phase in “runHybridACO_SA()” method
by running the ACO algorithm phase first and generate initial solution and take the best solution
from ACO phase and pass it to the SA phase for refinement. Higher initial temperatures enable
SA to accept less-optimal solutions at the beginning of the search process, which facilitates
exploration. Lower temperatures however decrease this effect with more emphasis on
exploitation. A slower cooling rate (closer to 1) enables a gradual refinement of the solutions,
which may result in improved solutions, but at the cost of longer execution time. A faster cooling
rate results in faster convergence but the solutions obtained may not be the most optimal. The
main aim of integration is to balance exploration(finding a large solution) and
exploitation(refining the best solution) This step is implemented in the “ACO_SA.java” file using
the ACO_SA class(Figure 6) .

15

Figure 6 : Integration of ACO with SA phase.

By carefully tuning parameters such as pheromone, evaporation rate, initial temperature, cooling
rate, the hybrid algorithm can balance exploration and exploitation to optimize response time and
resource utilization in cloud load balancing.

6 Evaluation

In this section, the performance of the hybrid meta-heuristic ACO-SA (Ant Colony Optimization-
Simulated Annealing) algorithm is evaluated. The Response time and resourc utilization is the
parameters used for the Performance Analysis. The results are compared standalone Ant Colony
Optimization (ACO) and Particle Swarm Optimization (PSO) algorithm.

6.1 Experiment / Case Study 1

The objective of this experiment is to evaluate the performance of the proposed hybrid Ant Colony
Optimization-Simulated Annealing (ACO-SA) algorithm in terms of response time. The performance
of the hybrid algorithm is compared with two other algorithms: Ant Colony Optimization (ACO) and
Particle Swarm Optimization (PSO).
No of Datacenter : 1
No of VM : 5
Workload : The workload consists of a varying number of cloudlets (tasks), ranging from 10 to 40

16

Table 1: Response Time Analysis

Number of Cloudlet Ant Colony

Optimization
PSO algorithm Hybrid Algorithm

10 96 seconds 143 seconds 88 seconds

20 192 seconds 235 seconds 168 seconds

30 261 seconds 383 seconds 243 seconds

40 349 seconds 519 seconds 328 seconds

Figure 7. Response Time Analysis with varying cloudlets

Figure 7 shows the comparison of the Hybrid algorithm's response time with that of the ant colony
and PSO methods as the cloudlets increase. The x-axis represents the number of cloudlets, and the
y-axis represents the response time in seconds. It is analyzed that the proposed algorithm
consistently achieves lower response times compared to the ACO and PSO algorithms with the
increasing number of cloudlets. The hybrid ACO-SA algorithm performs better than ACO and PSO
across all the scenarios. For 40 cloudlets, the response time is approximately 328 seconds, as
compared to 349 s of ACO and 519 s of PSO, showcasing better load balancing and resource
utilization.

6.2 Experiment / Case Study 2

The objective of this experiment is to evaluate the performance of the proposed hybrid Ant Colony
Optimization-Simulated Annealing (ACO-SA) algorithm in terms of response time. The performance
of the hybrid algorithm is compared with two other algorithms: Ant Colony Optimization (ACO) and
Particle Swarm Optimization (PSO).
No of Datacenter: 1
No of VM: No of VMs are varied from 5, 7,10 to 15
Workload : The workload is kept constant , number of cloudlets (tasks) = 50

17

Table 2: Response Time Analysis

Number of VMs Hybrid Algorithm ACO algorithm PSO Algorithm

5 432 seconds 487 seconds 622 seconds

7 294 seconds 308 seconds 551 seconds

10 218 seconds 229 seconds 468 seconds

15 147 seconds 172 seconds 299 seconds

Figure 8 : Response time analysis with varying number of VMs

Figure 8 compares the Hybrid algorithm's response time for with that of the ant colony and PSO
algorithms. The x-axis represents the number of VM‘s, and the y-axis represents the response time
in seconds. It is analyzed that the proposed Hybrid algorithm consistently achieves lower response
times compared to the ACO and PSO algorithms with the increasing number of Virtual machines. The
hybrid ACO-SA algorithm performs better than ACO and PSO across all the scenarios. The hybrid
algorithn has the Lowest response times across all configurations, starting from 432 seconds with 5
VMs and decreasing to 147 seconds with 15 VMs. ACO-SA Hybrid provides an overall average
reduction in response time of approximately 8.79% compared to ACO, showcasing better load
balancing and lower response time.

6.3 Experiment / Case Study 3

The aim of this experiment is to evaluate the resource utilization of the proposed hybrid ACO-SA
algorithm in comparison to ACO and PSO. The analysis focuses on how each algorithm manages
resource usage as the number of cloudlets(tasks) increases. No of VM varies from 5 to 15
number of cloudlets (tasks) is kept constant at 50, It can be seen that task are distributed evenly
across all the virtual machines. As shown in figure 9, the resource utilization of proposed hybrid

18

algorithm is compared with existing optimization algorithms like ant colony optimization and PSO
algorithms. The x-axis represents the number of VMs, and the y-axis represents the percentage of
resources utilized.It is analyzed that proposed Hybrid algorithm show the highest overall utilization
across all VM configuration as compared to ACO and PSO algorithms

Figure 9. Resource utilization of ACO-SA with 50 cloudlets and 5, 7,10 and 15 VMs

For 5 VM, the resource utilization is approximately 88% compared to ACO‘s 77% and PSO‘s 62%,
performs better compared to other algorithms and trend continues with increasing number of VM‘s
indicating higher efficiency in managing the workload.

6.4 Discussion

One of the most important metrics for assessing the effectiveness of scheduling algorithms is
response time. The Hybrid ACO-SA algorithm performs better than ACO and PSO with regard to the
response times and resource utilization with varied configurations. With 5 VMs, ACO-SA achieves
an average response time of 432s which is lower than that of ACO’s 487s and PSO’s 622s. This
continues with the increasing number of VMs and cloudlets. Resource utilization is another
important factor, ACO-SA with 5 VMs shows 88% compared to ACO‘s 77% and PSO‘s 62% and this
continues with the increased number of VMs. This shows that VMs are effectively utilized, reducing
idle time and improving performance. Reduced response times result in quicker task completion
and more effective resource utilization, which also reduces energy consumption. The experiment
results show that hybrid algorithms can efficiently handle varying workloads and VM configurations.
ACO-SA algorithm consistently maintains a lower response time and high resource utilization which
is achieved due to the pheromone-based exploration and probabilistic exploitation nature of the
algorithm to balance the load across VMs.

19

7 Conclusion and Future Work

In this research ,a hybrid metaheuristic approach using Ant colony and simulated annealing
algorithm is explored, a novel hybrid task scheduling algorithm for load balancing among virtual
machines in cloud computing. The ability of ACO to update the pheromone and improve the solution
was combined with SA to refine the solution space and find an optimum solution. The simulation of
cloud data center and algorithms simulation was done using Cloudsim Toolkit. Response time and
resource utilization were the evaluation parameters considered and were compared between the
hybrid ACO-SA algorithm, traditional Ant Colony Optimization (ACO), and Particle Swarm
Optimization (PSO) algorithms to evaluate the performance. The experimental results show that the
proposed algorithm improves cloud computing load balancing by approximately 7-8% compared to
the ACO, and PSO algorithms. In the future research integration of Machine learning techniques can
be explored to further optimize the algorithm performance to improve load balancing.

References

Afzal, S. and Kavitha, G. (2019) ‘Load balancing in cloud computing – A hierarchical taxonomical
classification’, Journal of Cloud Computing, 8(1), 22. doi: 10.1186/s13677-019-0146-7.

Gamal, M., Rizk, R., Mahdi, H. and Elnaghi, B.E. (2019) ‘Osmotic bio-inspired load balancing algorithm

in cloud computing’, IEEE Access, 7, pp. 42735-42744. doi: 10.1109/ACCESS.2019.2907615

Sekaran, K., Khan, M.S., Patan, R., Gandomi, A.H., Krishna, P.V. and Kallam, S. (2019) ‘Improving the

response time of M-learning and cloud computing environments using a dominant firefly approach’,

IEEE Access, 7, pp. 30203-30212. doi: 10.1109/ACCESS.2019.2896253

Pang, S., Li, W., He, H., Shan, Z. and Wang, X. (2019) ‘An EDA-GA hybrid algorithm for multi-objective

task scheduling in cloud computing’, IEEE Access, 7, pp. 146379-146389.

Javadi, S.A. and Gandhi, A. (2022) ‘User-centric interference-aware load balancing for cloud-deployed

applications’, IEEE Transactions on Cloud Computing, 10(1), pp. 736-748

Mrhari, A. and Hadi, Y. (2019) ‘A load balancing algorithm in cloud computing based on modified

particle swarm optimization and game theory’, in 2019 4th World Conference on Complex Systems

(WCCS), Ouarzazate, Morocco, pp. 1-6. doi: 10.1109/ICoCS.2019.8930807.

Menaka, M. and Sendhil Kumar, K.S. (2024) ‘Supportive particle swarm optimization with time-

conscious scheduling (SPSO-TCS) algorithm in cloud computing for optimized load balancing’,

International Journal of Cognitive Computing in Engineering, 5, pp. 192-198. doi:

20

10.1016/j.ijcce.2024.05.002.

Pradhan, A. and Bisoy, S.K. (2020) ‘A novel load balancing technique for cloud computing platform

based on PSO’, Journal of King Saud University - Computer and Information Sciences, 2(45), pp. 672-

680. doi: 10.1016/j.jksuci.2020.10.016

 Gao, J. (2024) ‘Simulation design of load balancing optimization for cloud computing data stream

storage based on big data algorithms’, in 2024 Asia-Pacific Conference on Software Engineering,

Social Network Analysis and Intelligent Computing (SSAIC), New Delhi, India, pp. 931-936. doi:

10.1109/SSAIC61213.2024.00188.

Devaraj, A.F.S., Elhoseny, M., Dhanasekaran, S., Lydia, E.L. and Shankar, K. (2020) ‘Hybridization of

firefly and improved multi-objective particle swarm optimization algorithm for energy efficient load

balancing in cloud computing environments’, Journal of Parallel and Distributed Computing, 142, pp.

36-45. doi: 10.1016/j.jpdc.2020.03.022.

Kruekaew, B. and Kimpan, W. (2022) ‘Multi-objective task scheduling optimization for load balancing

in cloud computing environment using hybrid artificial bee colony algorithm with reinforcement

learning’, IEEE Access, 10, pp. 17803-17818. doi: 10.1109/ACCESS.2022.3149955.

Muneeswari, G., Madavarapu, J.B., Ramani, R., Rajeshkumar, C. and Singh, C.J.C. (2024) ‘GEP

optimization for load balancing of virtual machines (LBVM) in cloud computing’, Measurement:

Sensors, 33, 101076. doi: 10.1016/j.measen.2024.101076.

Kumari, K.A., Soujanya, T., Alsalami, Z., Rohini, I. and Dhandayuthapani, B.V. (2024) ‘Fire Hawk

Optimization based multi-objective dynamic load balancing in cloud computing’, in 2024

International Conference on Distributed Computing and Optimization Techniques (ICDCOT),

Bengaluru, India, pp. 1-4. doi: 10.1109/ICDCOT61034.2024.10516057.

Abualigah, L., Hussein, A.M., Almomani, M.H., Zitar, R.A., Migdady, H., Alzahrani, A.I. and Alwadain,

A. (2024) ‘Improved synergistic swarm optimization algorithm to optimize task scheduling problems

in cloud computing’, Sustainable Computing: Informatics and Systems, 43, 101012. doi:

10.1016/j.suscom.2024.101012.

Singhal, S. et al. (2024) ‘Energy efficient load balancing algorithm for cloud computing using Rock

Hyrax optimization’, IEEE Access, 12, pp. 48737-48749. doi: 10.1109/ACCESS.2024.3380159.

21

Khaleel, M.I. (2024) ‘Region-aware dynamic job scheduling and resource efficiency for load balancing

based on adaptive chaotic sparrow search optimization and coalitional game in cloud computing

environments’, Journal of Network and Computer Applications, 221, 103788. doi:

10.1016/j.jnca.2023.103788.

K R, P.K., GM, S., Yamsani, N., T.M., K.K. and Pani, A.K. (2023) ‘A novel energy-efficient hybrid

optimization algorithm for load balancing in cloud computing’, in 2023 International Conference on

Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE), Ballari, India, pp. 1-5.

doi: 10.1109/AIKIIE60097.2023.10390196.

Jena, U.K., Das, P.K. and Kabat, M.R. (2020) ‘Hybridization of meta-heuristic algorithm for load

balancing in cloud computing environment’, Journal of King Saud University - Computer and

Information Sciences, 7(3), pp. 1159-1163.

Kaur, A. and Kaur, B. (2022) ‘Load balancing optimization based on hybrid Heuristic-Metaheuristic

techniques in cloud environment’, Journal of King Saud University - Computer and Information

Sciences. doi: 10.1016/j.jksuci.2019.02.010.

Hodžić, L. and Mrdović, S. (2023) ‘Using genetic algorithms for load balancing in cloud computing’, in

2023 XXIX International Conference on Information, Communication and Automation Technologies

(ICAT), Sarajevo, Bosnia and Herzegovina, pp. 1-6. doi: 10.1109/ICAT57854.2023.10171261.

Haris, M. and Zubair, S. (2022) ‘Mantaray modified multi-objective Harris hawk optimization

algorithm expedites optimal load balancing in cloud computing’, Journal of King Saud University -

Computer and Information Sciences, 34(10, Part B), pp. 9696-9709. doi: 10.1016/j.jksuci.2021.12.003.

Liu, H. (2022) ‘Research on cloud computing adaptive task scheduling based on ant colony algorithm’,

Optik, 258, 168677. doi: 10.1016/j.ijleo.2022.168677

Shi, Y., Hu, Z. and Lu, Z. (2021) ‘Optimized dynamic load balance method based on ant colony

optimization algorithm’, in 2021 IEEE 9th International Conference on Computer Science and Network

Technology (ICCSNT), pp. 70-73. doi: 10.1109/ICCSNT53786.2021.9615

