—

\\ .
National
Collegeof

[reland

Configuration Manual

MSc Research Project
Programme Name

Tanmaya Kumar Dixit
Student ID: x23116668

School of Computing
National College of Ireland

Supervisor: Shaguna Gupta

‘—-
National College of Ireland \ National

MSc Project Submission Sheet COllegeOf
c Project Submission Shee I
reland
School of Computing
Student Name: Tanmaya Kumar Dixit
x23116668
Student ID:
2023-2024
Programme: Msc in Cloud Computing Year:
Module: Msc Research Project
Supervisor: Shaguna Gupta
Submission Due
Date: 14/08/2024
Project Title: Securing Financial Sector in the Cloud: A Multi-Cloud Approach to
Fraud Detection Using Secure Multi-Party Computation
Word Count:
4000 Page Count 25

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Tanmaya Kumar Dixit

Date: 14/08/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project m
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Sighature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Tanmaya Kumar Dixit
X23116668

1 Datasets
I. Dataset download links
Il. Anti-money laundering Dataset -
https://www.kaggle.com/datasets/berkanoztas/synthetic-transaction-
monitoring-dataset-aml/code

I1l. Credit card fraud Dataset-

https://www.kaggle.com/datasets/iabhishekofficial/creditcard-fraud-
detection/data

2 Dataset pre-processing

I. Open google collab and then click on Files option and then click on upload to session
storage option and upload your credit card fraud dataset.

Following steps were used to combine two dataframes and create is_fradulent label column
using K means clustering algorithm.

https://www.kaggle.com/datasets/berkanoztas/synthetic-transaction-monitoring-dataset-aml/code
https://www.kaggle.com/datasets/berkanoztas/synthetic-transaction-monitoring-dataset-aml/code
https://www.kaggle.com/datasets/iabhishekofficial/creditcard-fraud-detection/data
https://www.kaggle.com/datasets/iabhishekofficial/creditcard-fraud-detection/data

import pandas as pd
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler

Load datasets
card_info = pd.read_csv('/content/cc_info.csv')
transaction_info = pd.read_csv('/content/transactions.csv')

Check for missing values
print(card_info.isnull().sum())
print(transaction_info.isnull().sum())

Merge the datasets on ‘credit_card® column
df = transaction_info.merge(card_info, on="credit_card"')
print(df.head())

Preprocess data by scaling relevant features

scaler = StandardScaler()

features = ['transaction_dollar_amount', ‘'Long’, 'Lat’', 'credit_card_limit']
df[features] = scaler.fit_transform(df[features])

Apply KMeans clustering
kmeans = KMeans(n_clusters=2, random_state=42)
df['cluster_label'] = kmeans.fit_predict(df[features])

Label transactions as fraudulent based on clustering
cluster_fraud_label = df.groupby('cluster_label')['transaction_dollar_amount’].mean().idxmax()
df["is_fraudulent’'] df[‘cluster_label'].apply(lambda x: 1 if x == cluster_fraud_label else 9)

Output the head of the dataframe to see the result
print(df.head())

Save the combined and labeled dataset to a CSV file
df.to_csv(' 'preprocessed_dataset.csv', index=False)

Dataset description
© df.head(10)
= credit_card date transaction_dollar_amount Long Lat city state zipcode credit_card_limit cluster_label is_fraudulent @
0 1003715054175576 2015-09-11 00:32:40 -0.338757 -0.195624 -0.124321 Houston PA 15342 0.565333 0 ° m
1 1003715054175576 2015-10-24 22:23:08 0137514 -0.196623 -0.140504 Houston PA 15342 0.565333 0 0
2 1003715054175576 2015-10-26 18:19:36 -0.300492 -0.197457 -0.115857 Houston PA 15342 0.565333 0 0
3 1003715054175576 2015-10-22 19:41:10 0.402484 -0.195625 -0.119957 Houston PA 15342 0.565333 0 0
4 1003715054175576 2015-10-26 20:08:22 -0.113818 -0.198832 -0.142989 Houston PA 15342 0.565333 0 0
5 1003715054175576 2015-10-17 21:28:57 0285522 -0.199073 -0.125523 Houston PA 15342 0.565333 0 0
6 1003715054175576 2015-08-29 18:34:04 0293945 -0.198806 -0.128298 Houston PA 15342 0.565333 0 0
7 1003715054175576 2015-08-14 21:34:39 0.096201 -0.199098 -0.127701 Houston PA 15342 0.565333 0 0
8 1003715054175576 2015-09-17 19:20:37 0.073739 3.645499 -1.148556 Houston PA 15342 0.565333 0 0
9 1003715054175576 2015-09-11 18:59:04 -0.225084 -0.201256 -0.124227 Houston PA 15342 0.565333 0 0

I Second dataset Anti-money laudenring dataset description

© import pandas as pd

Load a CsV file
df = pd.read_csv('/content/SAML-D.csv")

Display the first few rows of the DataFrame
df.head()

= Time Date Sender_account Receiver_account Amount Payment_currency Received_currency Sender_bank_location Receiver_bank_location Payment_type Is_laundering Laundering_type FH
0 10:35:19 2022-10-07 8724731955 2769355426 1459.15 UK pounds UK pounds UK UK Cash Deposit 0.0 Normal_Cash_Deposits u
1 10:3520 2022-10-07 1491989064 8401255335 6019.64 UK pounds Dirham UK UAE Cross-border 0.0 Normal_Fan_Out
2 10:35:20 2022-10-07 287305149 4404767002 14328.44 UK pounds UK pounds UK UK Cheque 0.0 Normal_Small_Fan_Out
3 10:35:21 2022-10-07 5376652437 9600420220 11895.00 UK pounds UK pounds UK UK ACH 0.0 Normal_Fan_In
4 10:35:21 2022-10-07 9614186178 3803336972 11525 UK pounds UK pounds UK UK Cash Deposit 0.0 Normal_Cash_Deposits

3 Setting up Environment for Encryption

Now before proceeding with encryption several tools and software were utilised to
properly set up the required environment. We have locally done the encryption of
each dataset. Let see step wise step process of setting up the development
environment.

1. Download and install Visual Studio Code with C++ support. and open Visual
Studio code.
2. Install GIT on the system. Below is the installation guideline to GIT
https://github.com/git-guides/install-git
Download and install python https://www.python.org/downloads/
Download the latest version of Python 3.9
Run the installer and during installation, make sure to check the box that says,
"Add Python to PATH."
Create a virtual environment in python and install SEAL into it
7. Building the SEAL Library:

e https://cmake.org/download/ ,Visit the CMake official website and
download the installer for windows. Run the installer and follow the
instructions and add the system PATH during installation.

Installing SEAL library and its python binding:

ok w

Sk

e Clone the SEAL-Python Repository- git clone
https://github.com/Huelse/SEAL -Python.git
cd SEAL-Python

e |Initialize and Update Submodules- git submodule update --init —
recursive

e Build the SEAL Library- cd SEAL
cd SEAL
cmake -S . -B build -G "Ninja" -DSEAL_USE_MSGSL=0FF
-DSEAL_USE_ZLIB=0OFF
cmake --build build
cd ..
e Install Python Requirements-
pip install numpy pybind11
e Build PySEAL-

python setup.py build_ext -i

4 Dataset Encryption-

e Dataset Credit-card Fraud dataset Encryption was done using pythonscript
belowpsedo code for it.

Import necessary libraries and modules (os, numpy, pandas, time,
SEAL-related classes)

Function setup_seal_environment():
Initialize encryption parameters for CKKS scheme
Set polynomial modulus degree to 8192
Set coefficient modulus with specific bit sizes [60, 40, 40, 60]

Create SEAL context with encryption parameters
Create CKKSEncoder with the SEAL context
Generate keys using KeyGenerator:

Create public key

Retrieve secret key

https://github.com/git-guides/install-git
https://www.python.org/downloads/
https://cmake.org/download/
https://github.com/Huelse/SEAL-Python.git

Create Encryptor using public key and context
Create Decryptor using secret key and context

Return context, encoder, encryptor, decryptor

Function encrypt_data(encoder, encryptor, data_value):
Cconvert data_value to a NumPy array with a float64 data type
Set scale factor to 2A40
Encode the data array using CKKSEncoder with the specified scale
Encrypt the encoded data using Encryptor

Return the ciphertext

Function process_dataset(dataset, columns, encoder, encryptor):
For each specified column in the dataset:
Initialize an empty Tlist for encrypted values

For each value in the column:
Encrypt the value using encrypt_data()
Convert the ciphertext to a string format
Append the encrypted value to the Tist

Replace the original column data with the encrypted values
Return the modified dataset

Function main(): _ _
Start a timer to measure the encryption process duration

Call setup_seal_environment() to initialize SEAL components
Load the dataset from a csv file

Print all column names in the dataset to verify them

) Specify the columns to encrypt, ensuring the names match those
in the dataset

Try:
Call process_dataset() to encrypt the specified columns
Save the encrypted dataset to a new CSv file

Measure and print the total time taken for encryption
Except KeyError: _ o _
Print an error message if a specified column is not found

If running as the main program:
call mainQ

credit_card date transactior Long Lat city state zipcode credit_can cluster_lak is_fraud
<seal.Ciphertextobjectat 11/09/201500:32 -0.33876 <seal.Ciphertext objec <seal.Ciphertext object at 0x0(Houston PA 15342 0.565333 0
<seal.Ciphertextobjectat 24/10/201522:23 0.137514 <seal.Ciphertext objec <seal.Ciphertext objectat 0x0(Houston PA 15342 0.565333 0
<seal.Ciphertextobjectat 26/10/201518:19 -0.30049 <seal.Ciphertext objec <seal.Ciphertext objectat 0x0C Houston PA 15342 0.565333 0
<seal.Ciphertextobjectat 22/10/201519:41 0.402484 <seal.Ciphertext objec <seal.Ciphertext objectat 0x0(Houston PA 15342 0.565333 0
<seal.Ciphertext objectat 26/10/201520:08 -0.11382 <seal.Ciphertext objec <seal.Ciphertext object at 0x0(Houston ~ PA 15342 0.565333 0
<seal.Ciphertextobjectat 17/10/201521:28 0.285522 <seal.Ciphertext objec <seal.Ciphertext object at 0x0(Houston PA 15342 0.565333 0
<seal.Ciphertextobjectat 29/08/201518:34 0.293945 <seal.Ciphertext objec <seal.Ciphertext objectat 0x0(Houston PA 15342 0.565333 0
<seal.Ciphertextobjectat 14/08/201521:34 0.096201|<seal.Ciphertext objec|<seal.Ciphertext objectat 0x0(Houston PA 15342 0.565333 0
<geal Cinhertext nhiertat 17/09/201519-20 N N73739 <seal Cinherteyt nh'\pr‘(epal Cinhertext nhiert at ¥ Honstan PA 15347 N RRR33R n

e After running the python script for encryption credit card , long and lat columns are
succesfully encrypted.

Anti-money laundering Encryption was done using python script below psedo code for it
also.

Import necessary libraries and modules (os, numpy, pandas, time, SEAL-related classes)

Function setup_seal_environment():
Initialize encryption parameters for CKKS scheme
Set polynomial modulus degree to 8192
Set coefficient modulus with specific bit sizes [60, 40, 40, 60]

Create SEAL context with encryption parameters
Create CKKSEncoder with the SEAL context
Generate keys using KeyGenerator:

Create public key

Retrieve secret key

Create Encryptor using public key and context
Create Decryptor using secret key and context

Return context, encoder, encryptor, decryptor

Function encrypt_data(encoder, encryptor, data_value):
Convert data_value to a NumPy array with a float64 data type
Set scale factor to 2”40
Encode the data array using CKKSEncoder with the specified scale
Encrypt the encoded data using Encryptor

Return the ciphertext
Function process_dataset(dataset, columns, encoder, encryptor):
For each specified column in the dataset:
Initialize an empty list for encrypted values
For each value in the column:
Encrypt the value using encrypt_data()
Convert the ciphertext to a string format
Append the encrypted value to the list
Replace the original column data with the encrypted values

Return the modified dataset

Function main():
Start a timer to measure the encryption process duration

Call setup_seal_environment() to initialize SEAL components
Load the dataset from a CSV file

Print all column names in the dataset to verify them

Specify the columns to encrypt, ensuring the names match those in the dataset

5

Try:

Call process_dataset() to encrypt the specified columns
Save the encrypted dataset to a new CSV file

Measure and print the total time taken for encryption
Except KeyError:
Print an error message if a specified column is not found

If running as the main program:
Call main()

After running the python script for encryption, sender account and reciver account

columns are succesfully encrypted.

Time Date Sender_account Receiver_account Amount Payment_c Received_« Sender_ba Receiver_t Payment_t Is_launderi Laundering_type

10:35:19 07/10/2022 <seal.Ciphertext objectat 0 <seal.Ciphertext objectat0 1459.15 UK pounds UK pounds UK
10:35:20 07/10/2022 <seal.Ciphertext objectat0 <seal.Ciphertext objectat0 6019.64 UK pounds Dirham UK
10:35:20 07/10/2022 <seal.Ciphertext objectat0 <seal.Ciphertext objectat0 14328.44 UK pounds UK pounds UK
10:35:21 07/10/2022 <seal.Ciphertext objectat0 <seal.Ciphertext objectat0 11895 UK pounds UK pounds UK
10:35:21 07/10/2022 <seal.Ciphertext objectat0 <seal.Ciphertext objectat0 115.25|UK pounds_UK pounds UK
10:35:21 07/10/2022 <seal.Ciphertext objectat 0 <seal.Ciphertext objectat0 5130.99 UK pounds UK pounds UK
10:35:23 07/10/2022 <seal.Ciphertext objectat0 <seal.Ciphertext objectat0 12176.52 UK pounds UK pounds UK
10:35:23 07/10/2022 <seal.Ciphertext object at 0 <seal.Ciphertext objectat0 56.9 UK pounds UK pounds UK

UK Cash Depc
UAE Cross-bort
UK Cheque
UK ACH

UK Cash Depe
UK ACH

UK ACH

UK Creditcarc

5. Uploading each Encrypted dataset to respective cloud
platform and Migrating to AWS S3 bucket.

1- Crating AWS S3 bucket

Go to AWS Management Console and log in with your credentials.

Search for S3 in search panel

Click on create bucket

Proceed with default settings and click create bucket
Bucket created

2- AWS credentials

Click on your profile and then click on security credentials

Scroll down to Access key and create one and along with that you will see get you

Secrect access key also right over there.

Note down AWS Access key, AWS secret Access key and bucket name. As these
credentials will be used in AZURE and .boto file in GCP , so that data from these

cloud can easily be migrated to AWS S3 bucket.

3 - Credit card fraud datasets uploaded to Azure cloud platform.
Step 1: Create a Storage Account

First, you need a storage account where your storage container (bucket) will reside.
Log in to your Azure Portal (portal.azure.com).
In the Azure Portal, click on "Create a resource” in the top left corner.
Search for "Storage account” and select it from the results.
Click "Create".

Fill in the required details:

Subscription: Choose your Azure subscription.

0 Normal_Cash_Deposits
0 Normal Fan_Out

0 Normal_Small_Fan_Out
0 Normal Fan_In

0 Normal_Cash_Deposits
0 Normal _Group

0 Normal_Small_Fan_Out
0 Normal Small Fan_Out

https://aws.amazon.com/console/
https://portal.azure.com/

Resource Group: Create a new resource group or select an existing one.

Storage Account Name: Choose a unique name.

Location: Choose the region for your storage to reside in.

Performance: Choose between Standard and Premium (Standard is sufficient for most
cases).

Account kind: Choose "StorageV2 (general purpose v2)" as it supports all the latest
features.

Replication: Choose a replication strategy based on your durability and availability
needs (e.g., LRS for locally redundant storage).

Review any additional options, adjust as necessary, and click "Review + create".

Once validated, click "Create". It may take a few minutes for the storage account to be
set up.

Step 2: Create a Container (Bucket)

Once your storage account is ready, you can create a container within it.

Go to your newly created storage account in the Azure Portal.

Under the "Data storage™ section, click on "Containers".

Click "+ Container" to create a new container.

Enter a name for your container.

Set the Public access level:

Private (no anonymous access)

Blob (anonymous read access for blobs only)

Container (anonymous read access for containers and blobs)

Click "Create" to create the container.

Step 3: Upload Data to the Container

Now you’re ready to upload data to your new container.

Open the container you just created by clicking on its name.

Inside the container interface, click on "Upload".

A blade will open where you can select files:

Click on the "Folder" icon to select files from your computer.

Choose the files you want to upload.

You can set additional options such as:

Overwrite if the file already exists.

Access tier (Hot, Cool, or Archive) depending on how frequently you expect to access
this data.

e Click "Upload" to start uploading your files.

= Microsoft Azure £ Search resources, services, and docs (G+ Bl 0 @ @ & X312520studentnd.. (z)

COULEGE OF RELAND... ¥

Archive status Blob type Size Lease state

Block blot 62.71 MiB Available

Block blot 18 M Available

Figure- Encrypted dataset uploaded to Azure

4~ For migrating Data from Azure to AWS S3 bucket we deployed a python script.Figure is
the python script and Figure shows dataset sent to AWS S3 bucket

ge.blob import BlobServiceClient

azure_connection_strin,
blob_service client =
blob_client = blob_service client.get blob_client(container:

local_file_name = BLOB_NAME
with open(local_file name, “wb") as download file:
download_file.write(blob_client.download_blob().readall

s3_client = boto3.client(

3
aws_access_key_ id=,

aws_secret_access_key:

)

s3_client.upload file(local file nam BUCKET _ , local file name)

os.remove(local_file name)

print(f"File {BLOB_NAME} successfully transferred fro

August 10, 2024, 10:12:32
encrypted_credit_dataset.csv sV .7 MB tandar
encrypted_credit_dataset.csv (UTgc»omm 62 Standard

6. Uploading Anti-money laundering dataset to Google cloud
platform and migrating it to AWS S3 bucket

e Go to GCP and create new project.

o Select your created project and the select BigQuery

e InBigQuerry next to your project name there will be three dots click on that and select create table

e Then click on Create table option and just keep the default settings same and just give name to your
table and click create table

e Now go to cloud storage option in GCP and create a bucket, proceed with default setting and create
the bucket.

e Now we have to unload the table created into the GCP bucket and upload your encrypted aml
dataset.

e Now go back to big querry table and select export option and in that select export to GCS.

e Select browse, select your bucket and then select your uploaded dataset and then its is exported.
e Now click on Activate cloud shell option which is next to present box symbol. Run below listed

commands in the Figure . These commands are available in project directory which is uploaded in
github under the file name GCP to S3 command.txt file.

pl pund-s-1 54

cd

touch .boto

echo [Credentials] >> ~/.bot

Figure- GCP command

e Once the commands are run successfully file will be transferred to AWS S3 bucket
from GCP. See figure
O i} August 13, 2024, 23:39:59

csv 178.0 MB Standard
encrypted_MLdataset_full_final.csv (UTC+01:00)

Figure — GCP to S3 file transfered

7. 1AM ROLE & EC2 Creation
1- IAMROLE
Step 1: Log in to the AWS Management Console
Log In: Go to AWS Management Console and log in with your credentials.
Step 2: Navigate to IAM Service
Open IAM: In the AWS Management Console, find and open the 1AM service by
typing "IAM™ in the "Find Services" box or selecting it from the "Services" menu.
Step 3: Create a New Role
Create Role: In the IAM dashboard, go to the "Roles™ section and click "*Create
role.
Select Trust Relationship: Choose the service that will use this role.
Click Next: Proceed to the next step.
Step 4: Attach Permissions Policies
Attach Policies: In the "Attach permissions policies" section, search for and select:
AmazonS3FullAccess: Provides full access to Amazon S3.

https://aws.amazon.com/console/

AmazonSageMakerFullAccess: Provides full access to Amazon SageMaker.
Check the Boxes next to these policies to attach them to the role.
Click Next: Move on to the next step.
Step 5: Review and Create the Role
Name the Role: Provide a name for your role, such as SageMakerAndS3Full Access.
1) Description: Optionally, add a description to detail the role’s purpose, like
"Provides full access to S3 and SageMaker for specific services."
2) Review: Check the configurations to ensure everything is correct.
3) Create Role: Click the ""Create role' button to finalize the role creation.

2- EC2 creation

Step 1: Launch an instance
You can launch an EC2 instance using the AWS Management Console as described in the
following procedure. This tutorial is intended to help you quickly launch your first instance,
so it doesn't cover all possible options.

To launch an instance

1.
2.

o

10.

11.

Open the Amazon EC2 console at https://console.aws.amazon.com/ec?/.
In the navigation bar at the top of the screen, we display the current AWS Region —
for example, Ohio. You can use the selected Region, or optionally select a Region
that is closer to you.
From the EC2 console dashboard, in the Launch instance pane, choose Launch
instance.
Under Name and tags, for Name, enter a descriptive name for your instance.
Under Application and OS Images (Amazon Machine Image), do the following:
a. Choose Quick Start, and then choose the operating system (OS) for your
instance. For your first Linux instance, we recommend that you choose
Amazon Linux.
b. From Amazon Machine Image (AMI), select an AMI that is marked Free
Tier eligible.
Under Instance type, for Instance type, choose t2.micro, which is eligible for the
Free Tier. In Regions where t2.micro is not available, t3.micro is eligible for the Free
Tier.
Under Key pair (login), for Key pair name, choose an existing key pair or
choose Create new key pair to create your first key pair.
Under Network settings, notice that we selected your default VPC, selected the
option to use the default subnet in an Availability Zone that we choose for you, and
configured a security group with a rule that allows connections to your instance from
anywhere. For your first instance, we recommend that you use the default settings.
Otherwise, you can update your network settings as Under Configure storage, notice
that we configured a root volume but no data volumes. This is sufficient for test
purposes.
Review a summary of your instance configuration in the Summary panel, and when
you're ready, choose Launch instance.
If the launch is successful, choose the ID of the instance from the Success notification
to open the Instances page and monitor the status of the launch.
Select the check box for the instance. The initial instance state is pending. After the
instance starts, its state changes to running. Choose the Status and alarms tab. After
your instance passes its status checks, it is ready to receive connection requests.

10

https://console.aws.amazon.com/ec2/

Step2 — Connect to instance
The procedure that you use depends on the operating system of the instance. If you can't connect to your
instance, see Troubleshoot issues connecting to your Amazon EC2 Linux instance for assistance.

Linux instances
You can connect to your Linux instance using any SSH client. If you are running Windows
on your computer, open a terminal and run the ssh command to verify that you have an SSH
client installed. If the command is not found, install OpenSSH for Windows.

To connect to your instance using SSH

Open the Amazon EC2 console at https://console.aws.amazon.com/ec?/.

In the navigation pane, choose Instances.

Select the instance and then choose Connect.

On the Connect to instance page, choose the SSH client tab.

(Optional) If you created a key pair when you launched the instance and downloaded
the private key (.pem file) to a computer running Linux or macQOS, run the

example chmod command to set the permissions for your private key.

6. Copy the example SSH command. The following is an example, where key-pair-
name.pem is the name of your private key file, ec2-user is the user name associated
with the image, and the string after the @ symbol is the public DNS name of the
instance.

ssh -i key-pair-name.pem ec2-user@ec2-198-51-100-1.us-east-2.compute.amazonaws.com

7. In aterminal window on your computer, run the ssh command that you saved in the
previous step. If the private key file is not in the current directory, you must specify
the fully-qualified path to the key file in this command.

The following is an example response:

The authenticity of host 'ec2-198-51-100-1.us-east-2.compute.amazonaws.com (198-51-100-
1)' can't be established.

ECDSA key fingerprint is 14UB/neBad9tvkgJf1QZWxheQmR59WgrgzEimCG6kZY .

Are you sure you want to continue connecting (yes/no)?

8. (Optional) Verify that the fingerprint in the security alert matches the instance
fingerprint contained in the console output when you first start an instance. To get the
console output, choose Actions, Monitor and troubleshoot, Get system log. If the
fingerprints don't match, someone might be attempting a man-in-the-middle attack. If
they match, continue to the next step.

9. Enter yes.

orwdPE

8. SMPC Framework Creation

Secure Multi-Party Computation (SMPC):

Secure Multi Party Computation (SMPC) is a cryptographic technique through which several
parties can jointly perform computation on the private data sent by them but the data remains
unseen and insecure with other parties involved in the computation. The sizes of the
subgroups which the parties get to know are just the output of the function and nothing else,
thus they do not compromise on data privacy and security. For implementing it we will be
using MPyc python library.

Why Use MPyC:

MPyC is used because it allow the implementation of SMPC protocols in Python and,
therefore, it is more comfortable to build secure applications. Its asynchronous characteristic
corresponds to beneficial communication, and it makes easy organization and the realization
of the computations that preserve the privacy of the information of every individual. This

11

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/TroubleshootingInstancesConnecting.html
https://learn.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse?tabs=gui&install-openssh-for-windows
https://console.aws.amazon.com/ec2/
mailto:ec2-user@ec2-198-51-100-1.us-east-2.compute.amazonaws.com

makes MPyC useful in a variety of applications, from statistical analysis, to machine
learning, where privacy and security are paramount.

e Connect to the EC2 instance created and install MPyC library in it by running
command.
pip install mpyc

e Now download the both Encrypted data from the S3 bucket using AWS cli, in ec2 aws
cI| is already resent for verlfylng write the command shown in flgure

Figure
e |F not present then run command:

Update Your Instance

sudo yum update -y

Install AWS CLI

For Amazon Linux :

sudo yum install aws-cli -y

Verify Installation

aws --version

Configure AWS CLI

aws configure

This command will prompt you to enter:
e AWS Access Key ID
e AWS Secret Access Key
o Default region name
o Default output format

e Now create a project directory in ec2 instance
e Download encrypted data from S3 to ec2 using command
aws s3 cp s3://bucket.name/file.name ./

e Once both datasets are downloaded we will create python script for SMPC using
MPyC library to extract necessary features from the encrypted data. Below is the
script for encrypted anti-money laundering dataset.

from mpyc.runtime import mpc
import pandas as pd

async def secure_interaction_count_and_sum(data, amounts):
"""'Count interactions and sum amounts securely using MPC.
secint = mpc.Secint() # Secure integer type for interaction counts
secfxp = mpc.SecFxp() # Secure fixed-point type for transaction amounts
interaction_dict = {}
sum_dict = {}

for (sender, receiver), amount in zip(data, amounts):
pair = (str(sender), str(receiver))

12

if pair not in interaction_dict:
interaction_dict[pair] = secint(1)
sum_dict[pair] = secfxp(amount)
else:
interaction_dict[pair] += 1
sum_dict[pair] += secfxp(amount)

Decrypt results securely

interaction_results = {pair: await mpc.output(count) for pair, count in
interaction_dict.items()}

sum_results = {pair: await mpc.output(sum_amount) for pair, sum_amount in
sum_dict.items()}

return interaction_results, sum_results

async def main():
await mpc.start() # Start MPC environment

Load your dataset
dataset_path ='encrypted_MLdataset.csv'
dataset = pd.read_csv(dataset_path)

Prepare encrypted sender, receiver data, and transaction amounts for secure computation

encrypted_interactions = list(zip(dataset['Sender_account'], dataset['Receiver_account']))

transaction_amounts = dataset[' Amount'].tolist() # Make sure this is the correct column
name

Compute interaction counts and total transaction amounts securely
interaction_counts, total_amounts = await
secure_interaction_count_and_sum(encrypted_interactions, transaction_amounts)

Map interaction counts and total transaction amounts back to the dataset

dataset['interaction_count’] = dataset.apply(lambda row:
interaction_counts.get((str(row['Sender_account'), str(row['Receiver_account)), 0), axis=1)

dataset['total_transaction_amount'] = dataset.apply(lambda row:
total_amounts.get((str(row['Sender_account']), str(row['Receiver_account')), 0.0), axis=1)

Save the enriched dataset
dataset.to_csv(‘enriched_MLdataset_full.csv', index=False)
print("Dataset has been enriched and saved.")

await mpc.shutdown() # Shutdown MPC environment

Run the MPC computation
mpc.run(main())

Below is the script for encrypted credit-card fraud dataset.
from mpyc.runtime import mpc
import pandas as pd

async def secure_interaction_count_sum_and_average(data, amounts, locations):

13

"""'Count transactions, sum amounts, and compute average by location securely using
MPC.""™

secint = mpc.Seclnt() # Secure integer type for transaction counts

secfxp = mpc.SecFxp(64) # Secure fixed-point type for transaction amounts and averages
transaction_dict = {}

sum_dict = {}

location_sum_dict = {}

location_count_dict = {}

for credit_card, amount, location in zip(data, amounts, locations):
card_str = str(credit_card)
location_str = str(location)

if card_str not in transaction_dict:
transaction_dict[card_str] = secint(1)
sum_dict[card_str] = secfxp(amount)
else:

transaction_dict[card_str] += 1
sum_dict[card_str] += secfxp(amount)

if location_str not in location_sum_dict:
location_sum_dict[location_str] = secfxp(amount)
location_count_dict[location_str] = secint(1)

else:

location_sum_dict[location_str] += secfxp(amount)
location_count_dict[location_str] +=1

Decrypt results securely

transaction_results = {card: await mpc.output(count) for card, count in
transaction_dict.items()}

sum_results = {card: await mpc.output(total) for card, total in sum_dict.items()}
average_location_results = {loc: await mpc.output(total /
mpc.convert(location_count_dict[loc], secfxp)) for loc, total in location_sum_dict.items()}

return transaction_results, sum_results, average_location_results

async def main():
await mpc.start() # Start MPC environment

Load your dataset
dataset_path = 'encrypted_credit_dataset.csv'
dataset = pd.read_csv(dataset_path)

Prepare encrypted credit card, location data, and transaction amounts for secure
computation

encrypted_cards = dataset['credit_card"].tolist()

transaction_amounts = dataset['transaction_dollar_amount].tolist()

locations = list(zip(dataset['Long'], dataset['Lat']))

14

Compute transaction counts, total transaction amounts, and average transaction amounts by
location securely

transaction_counts, total_amounts, average_amounts_by _location = await
secure_interaction_count_sum_and_average(encrypted_cards, transaction_amounts,
locations)

Map transaction counts, total transaction amounts, and average transaction amounts by
location back to the dataset

dataset['transaction_count'] = dataset['credit_card'].apply(lambda card:
transaction_counts.get(str(card), 0))

dataset['total_transaction_amount'] = dataset['credit_card'].apply(lambda card:
total_amounts.get(str(card), 0.0))

dataset['average_transaction_amount_by location] = dataset.apply(lambda row:
average_amounts_by location.get(str((row['Long'], row['Lat'])), 0.0), axis=1)

Save the enriched dataset
dataset.to_csv(' enriched_credit_dataset _full.csv’, index=False)
print("Dataset has been enriched and saved.")

await mpc.shutdown() # Shutdown MPC environment

Run the MPC computation
mpc.run(main())

® Now both "enriched_MLdataset_full.csv’ and 'enriched credit dataset full.csv’ are
the final datasets with extracted features which will now be used for training and
validating machine learning model for detecting fradulent activities. And will be
uploaded to AWS S3 bucket using command:

aws s3 cp ~/file.name s3://bucketname/

9. AWS SAGEMAKER

To create a SageMaker notebook instance
1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.
2. Choose Notebook instances, and then choose Create notebook instance.
3. On the Create notebook instance page, provide the following information (if a field is
not mentioned, leave the default values):

a. For Notebook instance name, type a name for your notebook instance.

b. For Notebook Instance type, choose ml.t2.medium. This is the least expensive
instance type that notebook instances support, and is enough for this exercise.
If a ml.t2.medium instance type isn't available in your current AWS Region,
choose ml.t3.medium.

c. For Platform Identifier, choose a platform type to create the notebook instance
on. This platform type defines the Operating System and the JupyterLab
version that your notebook instance is created with. For information about
platform identifier type, see Amazon Linux 2 notebook instances. For
information about JupyterLab versions, see JupyterLab versioning.

15

https://us-east-1.console.aws.amazon.com/s3/object/myaws0222?region=us-east-1&bucketType=general&prefix=enriched_credit_dataset_full.csv
https://us-east-1.console.aws.amazon.com/s3/object/myaws0222?region=us-east-1&bucketType=general&prefix=enriched_credit_dataset_full.csv
https://console.aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-al2.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-jl.html

d. For IAM role, choose Create a new role, and then choose Create role. This
IAM role automatically gets permissions to access any S3 bucket that
has sagemaker in the name. It gets these permissions through
the AmazonSageMakerFull Access policy, which SageMaker attaches to the

role.
4. Choose Create notebook instance.

In a few minutes, SageMaker launches a notebook instance and attaches a 5 GB of
Amazon EBS storage volume to it. The notebook instance has a preconfigured Jupyter
notebook server, SageMaker and AWS SDK libraries, and a set of Anaconda libraries.

Notebook instances info

Q, Search notebook instances

Name v Instance Creation time

combine ml.m5.2xlarge 7/25/2024, 11:55:27 AM

‘ (&) ‘ Create notebook instance
1 @
v Status v Actions
© Stopped Start

Figure- SAGEMAKER Notebook

Model traning script for all three datasets is uploaded in

Github.

Results of each datasets ML model performance.

DATASET1- Anti money laundering dataset
With SMOTE -

Class distribution in the wvalidation set:
Is_laundering
=] 29524

1 121
Mame: count, dtype: inté4

Decision Tree (Training) Metrics:

Accuracy: 99.93%

Balanced Accuracy: 99.51%

Precision: 58.40%, Recall: 99.88%, Fl Score: 73.49%%
MSE: @.20085287562138455211, RMSE: @.92553578299262686
Classification Report:

precision recall fl-score support

a 1.2 1.a8 1.2 838@94

1 @.58 @a.99 a.732 765

accuracy 1.2 838859

macro avg a.79 1.a8 e.87 838859

eighted avg 1.2 1.a8 1.2 838859
Confusion Matrix:

[[837554 548]

[7 758]1]

16

Decision Tree (Validation) Metrics:

Accuracy: 99.93%

Balanced Accuracy: 99.78%

Preciszion: 56.85%, Recall: 99.48%, F1 Score: 71.78%
M5E: @.80807152564194263644, RMSE: 2.026744278255850622
Classification Report:

precision recall fl-score support

l.ea@ 1.0@ 1.08 285524

1 2.586 2.99 a.72 121

accuracy 1.e@ 2859715
macro avg .78 1.09 a.88 2859715
weighted avg 1.e0 1.02 1.80 289715

Confusion Matrix:
[[289375 149]
[1 198]]

Random Forest (Training) Metrics:

Accuracy: 10a.e0%

Balanced Accuracy: 182.00%

Precision: 180.06%, Recall: 100.80%, F1 Score: 188.08%
MSE: @.8, RMSE: @.@

Classification Report:

precision recall fl-score support

1.ea 1.8 1.e8 838094

1 1.8 1.08 l.ea 7e5

accuracy 1.e@ 338859
Macro avg 1.ea 1.8 1.e8 833859
weighted avg 1.28 1.02 1.20 838859

Confusion Matrix:
[[338294 @]
[@ 765]]

Random Forest (Validation) Metrics:

Accuracy: 99.99%

Balanced Accuracy: 94.76%

Precision: 19@.08%, Recall: 89.53%, F1l Score: 94.43%
M5E: 9.53675225%918191=-a5, RMSE: 2.8@97656296566162a4
Classification Report:

precision recall fl-score support

a 1.e8 1.89 1.08 289524

1 1.e8 @.98 @.94 191

accuracy 1.88 289715
MaCro avg 1.e0 @.95 2.87 289715
weighted avg l.e@ 1.09 1.20 289715

Confusion Matrix:
[[209524 e]
[28 171]]

17

Logistic Regression (Training) Metrics:

Accuracy: 51.77%

Balanced Accuracy: 55.75%

Precision: @.11%, Recall: 59.74%, F1l Score: @.23%
M5E: @.482337317713704, RMSE: @.894505@88328159
Classification Report:

precision recall fl-score support

1.0 @.52 2.68 338094

1 2.8 a.ea 2.88 765

accuracy 8.52 838859
MAECro avg 2.58 @.56 2.34 838859
weighted avg 1.e0 @a.52 8.68 838859

Confusion Matrix:
[[433789 4843@5]
[3es 4577]]

Logistic Regression (Validation) Metrics:
Accuracy: 51.38%

Balanced Accuracy: 57.33%

Precision: @.12%, Recall: 63.87%, Fl Score: @.24%
M3E: @.4820065326752974, RMSE: 0.6942669830533556
Classification Report:

precision recall fl-score support

@ l.e@ @.52 2.88 209524

1 a.ea a.64 a.ea 121

BCCUracy @.52 289715
macro avg 2.5 @.58 8.34 285715
weighted avg 1.8 @.52 9.68 289715

Confusion Matrix:
[[1@8509 181815]
[&9 122]]

With SMOTE and Bagging-

Bagging Decision Tree (Validation) Metrics:

Accuracy: 0.9992847435805736, Balanced Accuracy: ©.997026631094305, Precision: ©.56047197640118, Recall: 0.9947643979057592, F1 Score: ©.7169811320754716, MSE: 0.0007152564194263644,
RMSE: ©.026744278255850622

Classification Report

precision recall fl-score support
e 1.00 1.00 1.e0 209524

1 0.56 0.99 e.72 121

accuracy 1.0 209715
macro avg 0.78 1.00 2.86 209715
weighted avg 1.e0 1.00 1.e0 209715

Confusion Matrix:
[[209375 149]
(i 1 1%0]]

Class distribution in the validation set:

Is_laundering

e 209524

1 191

Name: count, dtype: inté4

Bagging Decision Tree (Training) Metrics:

Accuracy: ©.9993515000733139, Balanced Accuracy: ©.9970634613482061, Precision: ©.584934665641814, Recall: 0.9947712418300654, F1 Score: 0.7366892545982575, MSE: ©.000648499926686129
6, RMSE: 0.025465661717028475

Classification Report:

precision recall fl-score support

° 1.00 1.00 1.00 838094

1 .58 .99 0.74 765

accuracy 1.e0 838859
macro avg 2.79 1.00 0.87 838859
weighted avg 1.00 1.00 1.00 838859

Confusion Matrix:
[[837554 540]
[4 761]]

18

Bagging Random Forest (Training) Metrics:

Accuracy: ©.9999964237136396, Balanced Accuracy: 0.9980392156862745, Precision: 1.8, Recall: ©.996078431372549, F1 Score: ©.9980353634577603, MSE: 3.57628636040145e-06, RMSE: 2.001
11071784543175

Classification Report:

precision recall fl-score support
e 1.0 1.00 1.e0 838094

1 1.ee 1.00 1.e0 765

accuracy 1.e0 838859
macro avg 1.e0 1.00 1.ee 838859
weighted avg 1.e0 1.00 1.ee 838859

Confusion Matrix:
[[838094 o]
i 3 762]]

Bagging Random Forest (Validation) Metrics:

Accuracy: 0.9999094008535393, Balanced Accuracy: ©0.950261780104712, Precision: 1.8, Recall: 0.900523560209424, F1 Score: ©.9476584022038568, MSE: 9.059914646067282e-05, RMSE: ©.00951

8358391060551

Classification Report:
precision recall fl-score support
=) 1.00 1.00 1.00 209524
1 1.e0 0.90 .95 121
accuracy 1.00 209715
macro avg 1.00 2.95 .97 209715
weighted avg 1.00 1.0 1.00 209715

Confusion Matrix:
[[209524 o]
[19 172]]

Bagging Logistic Regression (Training) Metric
Accuracy: 0.51472059@707139, Balanced Accurac
8609, RMSE: ©.6966199891568292
Classification Report:

©.5579743726314819, Precision: ©.0011295661483758804, Recall: ©.6813071895424836, F1 Score: ©.0022548964340773675, MSE: ©.485279409292

precision recall fl-score support
=] 1.e0 0.51 9.68 838094

1 2.00 0.60 @.eo0 765

accuracy 2.51 838859
macro avg .50 0.56 2.34 838859
weighted avg 1.00 0.51 2.68 838859

Confusion Matrix:
[[431318 4@6776]
[305 46e]]

Bagging Logistic Regression (Validation) Metrics:

Accuracy: ©.5151658202799@37, Balanced Accuracy: ©.5795137265010863, Precision: ©.0012090590964494948, Recall: 0.643979057591623, F1 Score: @.802413586727235266, MSE: ©.4848341797200
9635, RMSE: ©.6963003516587482

Classification Report:

precision recall fl-score support
2 1.e0 0.52 9.68 209524

1 2.00 0.64 9.0 191

accuracy 9.52 209715
macro avg 9.50 9.58 2.34 209715
weighted avg 1.e0 0.52 .68 209715

Confusion Matrix:
[[107915 101609]
[e 123]]

Dataset2- credit card fraud
With SMOTE-

19

Class distribution in the dataset:
is_fraudulent

o 289107

1 5481

Name: count, dtype: int64

Class distribution in the training set:
is_fraudulent

° 231285

] 4385

Name: count, dtype: int64

Class distribution in the validation set:
is_fraudulent

e 57822

1 109

Neme: count, dtype: int64

Decision Tree (Training) Metrics:

Accuracy: 1., Balanced Accuracy: 1.8, Precision: 1.8, Recall: 1.8, F1 Score: 1.9, MSE: 0.9, RMSE: 0.0

Classification Report:

precision recall fi-score
° 1.00 1.00 1.00

3 1.00 1.00 1.00

accuracy 1.00
macro avg 1.00 1.00 1.00
weighted avg 1.00 1.00 1.00

Confusion Matrix:
[[231285 (3]
i o 4385]]

Decision Tree (Validation) Me

support

231285
4385

235678

235670
235670

trics:

Accuracy: 1.8, Balanced Accuracy: 1.0, Precision: 1.8, Recall: 1.0, F1 Score: 1.0, MSE: 0.0, RMSE: 0.0

Classification Report:

precision recall fl-score

2 1.00
1 1.00

accuracy
macro avg 1.00
weighted avg 1.00

Confusion Matrix:
[[57822 @]
[@ 109]]

1.00
1.008

1.00
1.08

1.00
1.00

1.00
1.00
1.00

Random Forest (Training) Metrics:
Accuracy: 1.9, Balanced Accuracy:

Classification Report:

precision
@ 1.e0
1 1.00

accuracy
macro avg 1.e0
weighted avg 1.00

Confusion Matrix:
[[231285 e]
[o 4385]]

recall

1.00
1.00

1.00
1.0

support

57822
1096

58918
58918
58918

1.0, Precision: 1.0, Recall: 1.8, F1 Score: 1.8, MSE: ©.0, RMSE: 0.0

fl-score

1.e0
1.e0

1.00
1.e0
1.00

support

231285
4385

235670

235670
235670

20

Random Forest (Validation) Metrics:
Accuracy: 1.9, Balanced Accuracy: 1.0, Precision: 1.8, Recall: 1.0, F1 Score: 1.8, MSE: ©.0, RMSE: 0.0
Classification Report:

precision recall fil-score support

@ 1.e0 1.00 1.00 57822

1 1.e0 1.0 1.00 1096

accuracy 1.e0 58918
macro avg 1.e@ 1.00 1.e0 58918
weighted avg 1.00 1.00 1.e0 58918

Confusion Matrix:
[[57822 o]
[e 1096]]

Logistic Regression (Training) Metrics:

Accuracy: ©0.9999915135570926, Balanced Accuracy: 0.999995676330062, Precision: ©.9995441075906086, Recall: 1.8, F1 Score: ©.9997720018239854, MSE: 8.48644290745534e-06, RMSE: ©.002
3149997417802

Classification Report:

precision recall fl-score support

e 1.00 1.08 1.00 231285

1 1.e0 1.0 1.00 4385

accuracy 1.00 23567@
macro avg 1.e0 1.00 1.e0 235670
weighted avg 1.e0 1.08 1.ee 235670

Confusion Matrix:
[[231283 2]
r e 438511

Logistic Regression (Validation) Metrics

Accuracy: ©.9999321090328932, Balanced Accuracy: ©0.9999654110892048, Precision: ©.9963636363636363, Recall: 1.0, F1 Score: 0.9981785063752276, MSE: 6.789096710682644e-05, RMSE: ©.008
239597508788062

Classification Report:

precision recall fl-score support
e 1.00 1.00 1.e0 57822

1 1.e0 1.00 1.e0 1096

accuracy 1.00 58918
macro avg 1.00 1.00 1.ee 58918
weighted avg 1.0 1.00 1.e0 58918

Confusion Matrix:
[[57818 4]
[e 109]]

With SMOTE and Bagging:

21

Bagging Decision Tree (Validation) Metrics:
Accuracy: 1.0, Balanced Accuracy: 1.0, Precision: 1.0, Recall: 1.8, F1 Score: 1., MSE: ©.0, RMSE: 0.8
Classification Report:

precision recall fl-score support

@ 1.00 1.0 1.00 57822

1 1.00 1.00 1.00 1096

accuracy 1.00 58918
macro avg 1.e0 1.00 1.e0 58918
weighted avg 1.0 1.00 1.e0 58918

Confusion Matrix:
[[57822 o]
[e 109]]

Class distribution in the training set:
is_fraudulent

2 231285

x 4385

Name: count, dtype: inté4

Class distribution in the validation set:
is_fraudulent

2] 57822

X 1896

Name: count, dtype: int64

Bagging Decision Tree (Training) Metrics:

Accuracy: 1.8, Balanced Accuracy: 1.0, Precision: 1.8, Recall: 1.0, F1 Score: 1.8, MSE: ©.0, RMSE: 0.0
Classification Report:

precision recall fl-score support

2 1.00 1.00 1.e0 231285

1 1.00 1.00 1.e0 4385

accuracy 1.00 23567@
macro avg 1.00 1.0@ 1.00 235672
weighted avg 1.00 1.00 1.e0 235670

Confusion Matrix:
[[231285 o]
L e 4385]]

Bagging Random Forest (Training) Metrics:
Accuracy: 1.0, Balanced Accuracy: 1.0, Precision: 1.0, Recall: 1.0, F1 Score: 1.8, MSE: ©.0, RMSE: 0.0
Classification Report:

precision recall fl-score support

@ 1.e0 1.00 1.0 231285

1 1.00 1.00 1.00 4385

accuracy 1.e0 23567@
macro avg 1.e0 1.00 1.00 23567@
weighted avg 1.e0 1.00 1.e0 23567@

Confusion Matrix:
[[231285 o]
[2 4385]1]

Bagging Random Forest (Validation) Metrics:
Accuracy: 1.9, Balanced Accuracy: 1.0, Precision: 1.0, Recall: 1.0, F1 Score: 1., MSE: ©.0, RMSE: 0.0
Classification Report:

precision recall fl-score support

@ 1.ee 1.00 1.e0 57822

1 1.00 1.00 1.e0 1096

accuracy 1.00 58918
macro avg 1.00 1.00 1.e0 58918
weighted avg 1.00 1.00 1.00 58918

Confusion Matrix:
[[57822]
[e 1096]]

22

Bagging Logistic Regression (Training) Metrics:
Accuracy: ©.9999915135570926, Balanced Accurac
3149997417802

Classification Report:

0.999995676330069, Precision: ©.9995441075906086, Recall: 1.9, F1 Score: ©.9997720018239854, MSE: 8.48644290745534e-06, RMSE: ©.00291

precision recall fl-score support
2] 1.00 1.00 1.0 231285

1 1.e00 1.00 1.e0 4385

accuracy 1.e0 235670
macro avg 1.00 1.0 1.00 235670
weighted avg 1.00 1.00 1.00 235670

Confusion Matrix:
[[231283 2]
[o 4385]]

Bagging Logistic Regression (Validation) Metrics:

Accuracy: ©.9999151362911165, Balanced Accuracy: ©.999956763861506, Precision: ©.9954586739327884, Recall: 1.8, F1 Score: ©.9977241693218024, MSE: 8.4863708883533@4e-05, RMSE: ©.0092
12150068444013

Classification Report:

precision recall fl-score support
2 1.00 1.00 1.00 57822

1 1.ee 1.00 1.00 1096

accuracy 1.00 58918
macro avg 1.e0 1.00 1.00 58918
weighted avg 1.00 1.00 1.00 58918

Confusion Matrix:
[[57817 5]
[e 109]]

DATASET-3 combined dataset of both enriched AML and Credit card fraud datasets.

Without Smote-

Accuracy, Precision, Recall, F1 Score - Random Forest

1.0 7
0.8
0.6
0.4
0.2 1
0.0 - -
Accuracy Precision Recall F1 Score
Classification Report (Test) - Random Forest Model:
precision recall fl-score support
2] 1.08 1.0 1.0e 267348
1 1.08 @.%e @.95 1287
accuracy 1.ee 268633
macro avg 1.00 .95 2.97 268633
weighted avg 1.08 1.0 1.0e 268633

Accuracy Score (Test) - Random Forest Model:
99.95%

23

Accuracy, Precision, Recall, F1 Score - Decision Tree

1.0+
0.8
0.6
0.4 1
0.2 1
0.0 -
Accuracy Precision Recall F1 Score
Clessification Report (Test) - Decision Tree Model:
precision recall fl-score support
a 1.90 1.0@ 1.9 267348
1 ©.65 @.95 277 1287
accuracy 1.88 268633
macro avg @.82 .97 .88 263633
weighted avg 1.88 1.0@ 1.2@ 268633

Accuracy Score (Test) - Decision Tree Model:

99.73%

Accuracy, Precision, Recall, F1 Score - Logistic Regression

0.8
0.6 1
0.4 1
0.2 1
0.0- T T
Accuracy Precision Recall
Clzssification Report (Test) - Logistic Regression Model:
precision recall fl-score support
a 1.00 8.78 2.88 267348
1 @.82 8.85 B.84 1287
accuracy 8.7 268633
macro avg 2.51 e.82 2.45 268633
weighted avg @.99 8.78 8.87 268633
Accuracy Score (Test) - Logistic Regression Model:

78.35%

With SMOTE-

—

F1 Score

24

Accuracy, Precision, Recall, F1 Score - Random Forest

107
0.8
0.6
0.4
0.2 1
0.0-
Accuracy Precision Recall F1 Score
Classification Report (Test) - Random Forest Model
precision recall fl-score support
a 1.20 1.0 1.60 267346
1 1.20 9.90 2.94 1287
accuracy 1.60 268633
macro avg 1.20 8.95 ©.97 263633
weighted avg 1.20 K 1.60 268633

Accuracy Score (Test) - Rendom Forest Model:

99.95%
Accuracy, Precision, Recall, F1 Score - Decision Tree
1.0+
0.8
0.6
0.4 1
0.2
0.0 -
Accuracy Precision Recall F1 Score
Classification Report (Test) - Decision Tree Model:
precision recall fl-score support
a 1.0@ 1.90 1.8@ 267348
1 1.0@ .97 8.99 1287
accuracy 1.2e 268633
macro avg 1.88 2.99 8.99 268633
weighted avg 1.08 1.08 1.2@ 268633

Accuracy Score (Test) - Decision Tree Model:
99.99%
ACCuracy, Frecision, Kecdll, ri >Core - Logisuc Kegression

10
0.8
0.6 1
0.4
0.2 1
0.0 - 7 - —
Accuracy Precision Recall F1 Score
Classification Report (Test) - Logistic Regression Model:
precision recall fl-score support
a 1.0@ 8.78 .88 267348
1 2.82 2.85 @.24 1287
accuracy 8.78 268633
macro avg 8.51 @.82 @.46 268633
weighted avg 8.99 8.78 .87 268633

Accuracy Score (Test) - Logistic Regression Model:
78.35%

25

References

Amazon.com. Available at: https://docs.aws.amazon.com/IAM/latest/UserGuide/id roles create for-user.html
(Accessed: August 14, 2024)

Amazon.com. Available at: https://docs.aws.amazon.com/AWSEC?2/latest/UserGuide/EC2 GetStarted.html
(Accessed: August 14, 2024)

Amazon.com. Available at; https://docs.aws.amazon.com/sagemaker/latest/dg/gs-setup-working-env.html
(Accessed: August 14, 2024).

(Amazon.com. Available at: https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
(Accessed: August 14, 2024).

26

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://docs.aws.amazon.com/sagemaker/latest/dg/gs-setup-working-env
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install

