

Configuration Manual

MSc Research Project

Programme Name

Tanmaya Kumar Dixit
Student ID: x23116668

School of Computing

National College of Ireland

Supervisor: Shaguna Gupta

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name: Tanmaya Kumar Dixit

 x23116668

Student ID:

 2023-2024

Programme: Msc in Cloud Computing Year:

Module: Msc Research Project

Supervisor: Shaguna Gupta

Submission Due

Date:

14/08/2024

Project Title: Securing Financial Sector in the Cloud: A Multi-Cloud Approach to

Fraud Detection Using Secure Multi-Party Computation

Word Count:
4000

Page Count 25

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature: Tanmaya Kumar Dixit

Date: 14/08/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Tanmaya Kumar Dixit

X23116668

1 Datasets
I. Dataset download links

II. Anti-money laundering Dataset -
https://www.kaggle.com/datasets/berkanoztas/synthetic-transaction-
monitoring-dataset-aml/code

III. Credit card fraud Dataset-
https://www.kaggle.com/datasets/iabhishekofficial/creditcard-fraud-

detection/data

2 Dataset pre-processing

I. Open google collab and then click on Files option and then click on upload to session

storage option and upload your credit card fraud dataset.

Following steps were used to combine two dataframes and create is_fradulent label column
using K means clustering algorithm.

https://www.kaggle.com/datasets/berkanoztas/synthetic-transaction-monitoring-dataset-aml/code
https://www.kaggle.com/datasets/berkanoztas/synthetic-transaction-monitoring-dataset-aml/code
https://www.kaggle.com/datasets/iabhishekofficial/creditcard-fraud-detection/data
https://www.kaggle.com/datasets/iabhishekofficial/creditcard-fraud-detection/data

2

Dataset description

II Second dataset Anti-money laudenring dataset description

3 Setting up Environment for Encryption

3

Now before proceeding with encryption several tools and software were utilised to

properly set up the required environment. We have locally done the encryption of

each dataset. Let see step wise step process of setting up the development
environment.

1. Download and install Visual Studio Code with C++ support. and open Visual
Studio code.

2. Install GIT on the system. Below is the installation guideline to GIT
https://github.com/git-guides/install-git

3. Download and install python https://www.python.org/downloads/

4. Download the latest version of Python 3.9

5. Run the installer and during installation, make sure to check the box that says,

"Add Python to PATH."
6. Create a virtual environment in python and install SEAL into it

7. Building the SEAL Library:

• https://cmake.org/download/ ,Visit the CMake official website and

download the installer for windows. Run the installer and follow the
instructions and add the system PATH during installation.

Installing SEAL library and its python binding:

• Clone the SEAL-Python Repository- git clone

https://github.com/Huelse/SEAL-Python.git
cd SEAL-Python

• Initialize and Update Submodules- git submodule update --init –

recursive

• Build the SEAL Library- cd SEAL
cd SEAL
cmake -S . -B build -G "Ninja" -DSEAL_USE_MSGSL=OFF
-DSEAL_USE_ZLIB=OFF
cmake --build build
cd ..

• Install Python Requirements-

pip install numpy pybind11

• Build PySEAL-

python setup.py build_ext -i

4 Dataset Encryption-
• Dataset Credit-card Fraud dataset Encryption was done using pythonscript

below psedo code for it.

Import necessary libraries and modules (os, numpy, pandas, time,
SEAL-related classes)

Function setup_seal_environment():
Initialize encryption parameters for CKKS scheme
Set polynomial modulus degree to 8192
Set coefficient modulus with specific bit sizes [60, 40, 40, 60]

Create SEAL context with encryption parameters
Create CKKSEncoder with the SEAL context
Generate keys using KeyGenerator:

Create public key
Retrieve secret key

https://github.com/git-guides/install-git
https://www.python.org/downloads/
https://cmake.org/download/
https://github.com/Huelse/SEAL-Python.git

4

Create
Create

Encryptor
Decryptor

using
using

public
secret

key
key

and
and

context
context

Return context, encoder, encryptor, decryptor

Function encrypt_data(encoder, encryptor, data_value):
Convert data_value to a NumPy array with a float64 data type
Set scale factor to 2^40
Encode the data array using CKKSEncoder with the specified scale
Encrypt the encoded data using Encryptor

Return the ciphertext

Function process_dataset(dataset, columns, encoder, encryptor):
each specified column in the dataset:
Initialize an empty list for encrypted values

each value in the column:
Encrypt the value using encrypt_data()
Convert the ciphertext to a string format
Append the encrypted value to the list

Replace the original column data with the encrypted values

Return the modified dataset

Function main():
Start a timer to measure the encryption process duration

Call setup_seal_environment() to initialize SEAL components
Load the dataset from a CSV file

Print all column names in the dataset to verify them

Specify the columns to encrypt, ensuring the names match those
in the dataset

Call

process_dataset()

to encrypt

the

specified

columns

Save the encrypted dataset to a new CSV file

Measure and print the total time taken for encryption
Except KeyError:

Print an error message if a specified column is not found

If running as the main program:
Call main()

• After running the python script for encryption credit card , long and lat columns are

succesfully encrypted.

For

For

Try:

5

Anti-money laundering Encryption was done using python script below psedo code for it

also.

Import necessary libraries and modules (os, numpy, pandas, time, SEAL-related classes)

Function setup_seal_environment():

Initialize encryption parameters for CKKS scheme

Set polynomial modulus degree to 8192
Set coefficient modulus with specific bit sizes [60, 40, 40, 60]

Create SEAL context with encryption parameters

Create CKKSEncoder with the SEAL context
Generate keys using KeyGenerator:

Create public key

Retrieve secret key

Create Encryptor using public key and context

Create Decryptor using secret key and context

Return context, encoder, encryptor, decryptor

Function encrypt_data(encoder, encryptor, data_value):

Convert data_value to a NumPy array with a float64 data type

Set scale factor to 2^40

Encode the data array using CKKSEncoder with the specified scale

Encrypt the encoded data using Encryptor

Return the ciphertext

Function process_dataset(dataset, columns, encoder, encryptor):
For each specified column in the dataset:

Initialize an empty list for encrypted values

For each value in the column:

Encrypt the value using encrypt_data()

Convert the ciphertext to a string format

Append the encrypted value to the list

Replace the original column data with the encrypted values

Return the modified dataset

Function main():

Start a timer to measure the encryption process duration

Call setup_seal_environment() to initialize SEAL components
Load the dataset from a CSV file

Print all column names in the dataset to verify them

Specify the columns to encrypt, ensuring the names match those in the dataset

6

Try:

Call process_dataset() to encrypt the specified columns

Save the encrypted dataset to a new CSV file

Measure and print the total time taken for encryption

Except KeyError:
Print an error message if a specified column is not found

If running as the main program:

Call main()

• After running the python script for encryption, sender account and reciver account
columns are succesfully encrypted.

5. Uploading each Encrypted dataset to respective cloud

platform and Migrating to AWS S3 bucket.

1- Crating AWS S3 bucket

• Go to AWS Management Console and log in with your credentials.

• Search for S3 in search panel

• Click on create bucket

• Proceed with default settings and click create bucket

• Bucket created

2- AWS credentials

• Click on your profile and then click on security credentials

• Scroll down to Access key and create one and along with that you will see get you

Secrect access key also right over there.

• Note down AWS Access key, AWS secret Access key and bucket name. As these

credentials will be used in AZURE and .boto file in GCP , so that data from these

cloud can easily be migrated to AWS S3 bucket.

3 - Credit card fraud datasets uploaded to Azure cloud platform.

Step 1: Create a Storage Account

• First, you need a storage account where your storage container (bucket) will reside.

• Log in to your Azure Portal (portal.azure.com).

• In the Azure Portal, click on "Create a resource" in the top left corner.

• Search for "Storage account" and select it from the results.

• Click "Create".

• Fill in the required details:

• Subscription: Choose your Azure subscription.

https://aws.amazon.com/console/
https://portal.azure.com/

7

• Resource Group: Create a new resource group or select an existing one.

• Storage Account Name: Choose a unique name.

• Location: Choose the region for your storage to reside in.

• Performance: Choose between Standard and Premium (Standard is sufficient for most

cases).

• Account kind: Choose "StorageV2 (general purpose v2)" as it supports all the latest

features.

• Replication: Choose a replication strategy based on your durability and availability

needs (e.g., LRS for locally redundant storage).

• Review any additional options, adjust as necessary, and click "Review + create".

• Once validated, click "Create". It may take a few minutes for the storage account to be

set up.

• Step 2: Create a Container (Bucket)

• Once your storage account is ready, you can create a container within it.

• Go to your newly created storage account in the Azure Portal.

• Under the "Data storage" section, click on "Containers".

• Click "+ Container" to create a new container.

• Enter a name for your container.

• Set the Public access level:

• Private (no anonymous access)

• Blob (anonymous read access for blobs only)

• Container (anonymous read access for containers and blobs)

• Click "Create" to create the container.

• Step 3: Upload Data to the Container

• Now you’re ready to upload data to your new container.

• Open the container you just created by clicking on its name.

• Inside the container interface, click on "Upload".

• A blade will open where you can select files:

• Click on the "Folder" icon to select files from your computer.

• Choose the files you want to upload.

• You can set additional options such as:

• Overwrite if the file already exists.

• Access tier (Hot, Cool, or Archive) depending on how frequently you expect to access

this data.

8

• Click "Upload" to start uploading your files.

Figure- Encrypted dataset uploaded to Azure

4- For migrating Data from Azure to AWS S3 bucket we deployed a python script.Figure is

the python script and Figure shows dataset sent to AWS S3 bucket

6. Uploading Anti-money laundering dataset to Google cloud

platform and migrating it to AWS S3 bucket

• Go to GCP and create new project.

9

• Select your created project and the select BigQuery

• In BigQuerry next to your project name there will be three dots click on that and select create table

• Then click on Create table option and just keep the default settings same and just give name to your
table and click create table

• Now go to cloud storage option in GCP and create a bucket, proceed with default setting and create
the bucket.

• Now we have to unload the table created into the GCP bucket and upload your encrypted aml
dataset.

• Now go back to big querry table and select export option and in that select export to GCS.

• Select browse, select your bucket and then select your uploaded dataset and then its is exported.

• Now click on Activate cloud shell option which is next to present box symbol. Run below listed
commands in the Figure . These commands are available in project directory which is uploaded in

github under the file name GCP to S3 command.txt file.

Figure- GCP command

• Once the commands are run successfully file will be transferred to AWS S3 bucket

from GCP. See figure

Figure – GCP to S3 file transfered

7. IAM ROLE & EC2 Creation
1- IAMROLE

Step 1: Log in to the AWS Management Console

Log In: Go to AWS Management Console and log in with your credentials.

Step 2: Navigate to IAM Service

Open IAM: In the AWS Management Console, find and open the IAM service by

typing "IAM" in the "Find Services" box or selecting it from the "Services" menu.

Step 3: Create a New Role

Create Role: In the IAM dashboard, go to the "Roles" section and click "Create

role".

Select Trust Relationship: Choose the service that will use this role.

Click Next: Proceed to the next step.

Step 4: Attach Permissions Policies

Attach Policies: In the "Attach permissions policies" section, search for and select:

AmazonS3FullAccess: Provides full access to Amazon S3.

https://aws.amazon.com/console/

10

AmazonSageMakerFullAccess: Provides full access to Amazon SageMaker.

Check the Boxes next to these policies to attach them to the role.

Click Next: Move on to the next step.

Step 5: Review and Create the Role

Name the Role: Provide a name for your role, such as SageMakerAndS3FullAccess.

1) Description: Optionally, add a description to detail the role’s purpose, like

"Provides full access to S3 and SageMaker for specific services."

2) Review: Check the configurations to ensure everything is correct.

3) Create Role: Click the "Create role" button to finalize the role creation.

2- EC2 creation

Step 1: Launch an instance

You can launch an EC2 instance using the AWS Management Console as described in the

following procedure. This tutorial is intended to help you quickly launch your first instance,

so it doesn't cover all possible options.

To launch an instance

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. In the navigation bar at the top of the screen, we display the current AWS Region —

for example, Ohio. You can use the selected Region, or optionally select a Region

that is closer to you.

3. From the EC2 console dashboard, in the Launch instance pane, choose Launch

instance.

4. Under Name and tags, for Name, enter a descriptive name for your instance.

5. Under Application and OS Images (Amazon Machine Image), do the following:

a. Choose Quick Start, and then choose the operating system (OS) for your

instance. For your first Linux instance, we recommend that you choose

Amazon Linux.

b. From Amazon Machine Image (AMI), select an AMI that is marked Free

Tier eligible.

6. Under Instance type, for Instance type, choose t2.micro, which is eligible for the

Free Tier. In Regions where t2.micro is not available, t3.micro is eligible for the Free

Tier.

7. Under Key pair (login), for Key pair name, choose an existing key pair or

choose Create new key pair to create your first key pair.

8. Under Network settings, notice that we selected your default VPC, selected the

option to use the default subnet in an Availability Zone that we choose for you, and

configured a security group with a rule that allows connections to your instance from

anywhere. For your first instance, we recommend that you use the default settings.

Otherwise, you can update your network settings as Under Configure storage, notice

that we configured a root volume but no data volumes. This is sufficient for test

purposes.

9. Review a summary of your instance configuration in the Summary panel, and when

you're ready, choose Launch instance.

10. If the launch is successful, choose the ID of the instance from the Success notification

to open the Instances page and monitor the status of the launch.

11. Select the check box for the instance. The initial instance state is pending. After the

instance starts, its state changes to running. Choose the Status and alarms tab. After

your instance passes its status checks, it is ready to receive connection requests.

https://console.aws.amazon.com/ec2/

11

Step2 – Connect to instance
The procedure that you use depends on the operating system of the instance. If you can't connect to your
instance, see Troubleshoot issues connecting to your Amazon EC2 Linux instance for assistance.

Linux instances

You can connect to your Linux instance using any SSH client. If you are running Windows

on your computer, open a terminal and run the ssh command to verify that you have an SSH

client installed. If the command is not found, install OpenSSH for Windows.

To connect to your instance using SSH

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. In the navigation pane, choose Instances.

3. Select the instance and then choose Connect.

4. On the Connect to instance page, choose the SSH client tab.

5. (Optional) If you created a key pair when you launched the instance and downloaded

the private key (.pem file) to a computer running Linux or macOS, run the

example chmod command to set the permissions for your private key.

6. Copy the example SSH command. The following is an example, where key-pair-

name.pem is the name of your private key file, ec2-user is the user name associated

with the image, and the string after the @ symbol is the public DNS name of the

instance.

ssh -i key-pair-name.pem ec2-user@ec2-198-51-100-1.us-east-2.compute.amazonaws.com

7. In a terminal window on your computer, run the ssh command that you saved in the

previous step. If the private key file is not in the current directory, you must specify

the fully-qualified path to the key file in this command.

The following is an example response:

The authenticity of host 'ec2-198-51-100-1.us-east-2.compute.amazonaws.com (198-51-100-

1)' can't be established.

ECDSA key fingerprint is l4UB/neBad9tvkgJf1QZWxheQmR59WgrgzEimCG6kZY.

Are you sure you want to continue connecting (yes/no)?

8. (Optional) Verify that the fingerprint in the security alert matches the instance

fingerprint contained in the console output when you first start an instance. To get the

console output, choose Actions, Monitor and troubleshoot, Get system log. If the

fingerprints don't match, someone might be attempting a man-in-the-middle attack. If

they match, continue to the next step.

9. Enter yes.

8. SMPC Framework Creation
Secure Multi-Party Computation (SMPC):

Secure Multi Party Computation (SMPC) is a cryptographic technique through which several

parties can jointly perform computation on the private data sent by them but the data remains

unseen and insecure with other parties involved in the computation. The sizes of the

subgroups which the parties get to know are just the output of the function and nothing else,

thus they do not compromise on data privacy and security. For implementing it we will be

using MPyc python library.

Why Use MPyC:

MPyC is used because it allow the implementation of SMPC protocols in Python and,

therefore, it is more comfortable to build secure applications. Its asynchronous characteristic

corresponds to beneficial communication, and it makes easy organization and the realization

of the computations that preserve the privacy of the information of every individual. This

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/TroubleshootingInstancesConnecting.html
https://learn.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse?tabs=gui&install-openssh-for-windows
https://console.aws.amazon.com/ec2/
mailto:ec2-user@ec2-198-51-100-1.us-east-2.compute.amazonaws.com

12

makes MPyC useful in a variety of applications, from statistical analysis, to machine

learning, where privacy and security are paramount.

• Connect to the EC2 instance created and install MPyC library in it by running

command.

pip install mpyc

• Now download the both Encrypted data from the S3 bucket using AWS cli, in ec2 aws

cli is already present for verifying write the command shown in figure.

Figure

• IF not present then run command:

Update Your Instance

sudo yum update -y

Install AWS CLI

For Amazon Linux :

sudo yum install aws-cli -y

Verify Installation

aws --version

Configure AWS CLI

aws configure

This command will prompt you to enter:

• AWS Access Key ID

• AWS Secret Access Key

• Default region name

• Default output format

• Now create a project directory in ec2 instance

• Download encrypted data from S3 to ec2 using command

aws s3 cp s3://bucket.name/file.name ./

• Once both datasets are downloaded we will create python script for SMPC using

MPyC library to extract necessary features from the encrypted data. Below is the

script for encrypted anti-money laundering dataset.

from mpyc.runtime import mpc

import pandas as pd

async def secure_interaction_count_and_sum(data, amounts):

"""Count interactions and sum amounts securely using MPC."""

secint = mpc.SecInt() # Secure integer type for interaction counts

secfxp = mpc.SecFxp() # Secure fixed-point type for transaction amounts

interaction_dict = {}

sum_dict = {}

for (sender, receiver), amount in zip(data, amounts):

pair = (str(sender), str(receiver))

13

if pair not in interaction_dict:

interaction_dict[pair] = secint(1)

sum_dict[pair] = secfxp(amount)

else:

interaction_dict[pair] += 1

sum_dict[pair] += secfxp(amount)

Decrypt results securely

interaction_results = {pair: await mpc.output(count) for pair, count in

interaction_dict.items()}

sum_results = {pair: await mpc.output(sum_amount) for pair, sum_amount in

sum_dict.items()}

return interaction_results, sum_results

async def main():

await mpc.start() # Start MPC environment

Load your dataset

dataset_path = 'encrypted_MLdataset.csv'

dataset = pd.read_csv(dataset_path)

Prepare encrypted sender, receiver data, and transaction amounts for secure computation

encrypted_interactions = list(zip(dataset['Sender_account'], dataset['Receiver_account']))

transaction_amounts = dataset['Amount'].tolist() # Make sure this is the correct column

name

Compute interaction counts and total transaction amounts securely

interaction_counts, total_amounts = await

secure_interaction_count_and_sum(encrypted_interactions, transaction_amounts)

Map interaction counts and total transaction amounts back to the dataset

dataset['interaction_count'] = dataset.apply(lambda row:

interaction_counts.get((str(row['Sender_account']), str(row['Receiver_account'])), 0), axis=1)

dataset['total_transaction_amount'] = dataset.apply(lambda row:

total_amounts.get((str(row['Sender_account']), str(row['Receiver_account'])), 0.0), axis=1)

Save the enriched dataset

dataset.to_csv('enriched_MLdataset_full.csv', index=False)

print("Dataset has been enriched and saved.")

await mpc.shutdown() # Shutdown MPC environment

Run the MPC computation

mpc.run(main())

Below is the script for encrypted credit-card fraud dataset.

from mpyc.runtime import mpc

import pandas as pd

async def secure_interaction_count_sum_and_average(data, amounts, locations):

14

"""Count transactions, sum amounts, and compute average by location securely using

MPC."""

secint = mpc.SecInt() # Secure integer type for transaction counts

secfxp = mpc.SecFxp(64) # Secure fixed-point type for transaction amounts and averages

transaction_dict = {}

sum_dict = {}

location_sum_dict = {}

location_count_dict = {}

for credit_card, amount, location in zip(data, amounts, locations):

card_str = str(credit_card)

location_str = str(location)

if card_str not in transaction_dict:

transaction_dict[card_str] = secint(1)

sum_dict[card_str] = secfxp(amount)

else:

transaction_dict[card_str] += 1

sum_dict[card_str] += secfxp(amount)

if location_str not in location_sum_dict:

location_sum_dict[location_str] = secfxp(amount)

location_count_dict[location_str] = secint(1)

else:

location_sum_dict[location_str] += secfxp(amount)

location_count_dict[location_str] += 1

Decrypt results securely

transaction_results = {card: await mpc.output(count) for card, count in

transaction_dict.items()}

sum_results = {card: await mpc.output(total) for card, total in sum_dict.items()}

average_location_results = {loc: await mpc.output(total /

mpc.convert(location_count_dict[loc], secfxp)) for loc, total in location_sum_dict.items()}

return transaction_results, sum_results, average_location_results

async def main():

await mpc.start() # Start MPC environment

Load your dataset

dataset_path = 'encrypted_credit_dataset.csv'

dataset = pd.read_csv(dataset_path)

Prepare encrypted credit card, location data, and transaction amounts for secure

computation

encrypted_cards = dataset['credit_card'].tolist()

transaction_amounts = dataset['transaction_dollar_amount'].tolist()

locations = list(zip(dataset['Long'], dataset['Lat']))

15

Compute transaction counts, total transaction amounts, and average transaction amounts by

location securely

transaction_counts, total_amounts, average_amounts_by_location = await

secure_interaction_count_sum_and_average(encrypted_cards, transaction_amounts,

locations)

Map transaction counts, total transaction amounts, and average transaction amounts by

location back to the dataset

dataset['transaction_count'] = dataset['credit_card'].apply(lambda card:

transaction_counts.get(str(card), 0))

dataset['total_transaction_amount'] = dataset['credit_card'].apply(lambda card:

total_amounts.get(str(card), 0.0))

dataset['average_transaction_amount_by_location'] = dataset.apply(lambda row:

average_amounts_by_location.get(str((row['Long'], row['Lat'])), 0.0), axis=1)

Save the enriched dataset

dataset.to_csv(' enriched_credit_dataset_full.csv’, index=False)

print("Dataset has been enriched and saved.")

await mpc.shutdown() # Shutdown MPC environment

Run the MPC computation

mpc.run(main())

• Now both 'enriched_MLdataset_full.csv' and ' enriched_credit_dataset_full.csv’ are
the final datasets with extracted features which will now be used for training and
validating machine learning model for detecting fradulent activities. And will be
uploaded to AWS S3 bucket using command:

aws s3 cp ~/file.name s3://bucketname/

9. AWS SAGEMAKER
To create a SageMaker notebook instance

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. Choose Notebook instances, and then choose Create notebook instance.

3. On the Create notebook instance page, provide the following information (if a field is

not mentioned, leave the default values):

a. For Notebook instance name, type a name for your notebook instance.

b. For Notebook Instance type, choose ml.t2.medium. This is the least expensive

instance type that notebook instances support, and is enough for this exercise.

If a ml.t2.medium instance type isn't available in your current AWS Region,

choose ml.t3.medium.

c. For Platform Identifier, choose a platform type to create the notebook instance

on. This platform type defines the Operating System and the JupyterLab

version that your notebook instance is created with. For information about

platform identifier type, see Amazon Linux 2 notebook instances. For

information about JupyterLab versions, see JupyterLab versioning.

https://us-east-1.console.aws.amazon.com/s3/object/myaws0222?region=us-east-1&bucketType=general&prefix=enriched_credit_dataset_full.csv
https://us-east-1.console.aws.amazon.com/s3/object/myaws0222?region=us-east-1&bucketType=general&prefix=enriched_credit_dataset_full.csv
https://console.aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-al2.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-jl.html

16

d. For IAM role, choose Create a new role, and then choose Create role. This

IAM role automatically gets permissions to access any S3 bucket that

has sagemaker in the name. It gets these permissions through

the AmazonSageMakerFullAccess policy, which SageMaker attaches to the

role.

4. Choose Create notebook instance.

In a few minutes, SageMaker launches a notebook instance and attaches a 5 GB of

Amazon EBS storage volume to it. The notebook instance has a preconfigured Jupyter

notebook server, SageMaker and AWS SDK libraries, and a set of Anaconda libraries.

Figure- SAGEMAKER Notebook

Model traning script for all three datasets is uploaded in

Github.

Results of each datasets ML model performance.

DATASET1- Anti money laundering dataset
With SMOTE -

17

18

With SMOTE and Bagging-

19

Dataset2- credit card fraud
With SMOTE-

20

21

With SMOTE and Bagging:

22

23

DATASET-3 combined dataset of both enriched AML and Credit card fraud datasets.

Without Smote-

24

With SMOTE-

25

26

References

Amazon.com. Available at: https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html

(Accessed: August 14, 2024)

Amazon.com. Available at: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html

(Accessed: August 14, 2024)

Amazon.com. Available at: https://docs.aws.amazon.com/sagemaker/latest/dg/gs-setup-working-env.html

(Accessed: August 14, 2024).

(Amazon.com. Available at: https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

(Accessed: August 14, 2024).

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://docs.aws.amazon.com/sagemaker/latest/dg/gs-setup-working-env
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install

